Multimed Tools Appl (2006) 31: 221-245
DOI 10.1007/511042-006-0037-z

Caching video objects: layers vs versions?

Felix Hartanto - Jussi Kangasharju -
Martin Reisslein - Keith Ross

Published online: 23 September 2006
© Springer Science + Business Media, LLC 2006

Abstract Because Internet access rates are highly heterogeneous, many video con-
tent providers today make available different versions of the videos, with each
version encoded at a different rate. Multiple video versions, however, require more
server storage and may also dramatically impact cache performance in a traditional
cache or in a CDN server. An alternative to versions is layered encoding, which can
also provide multiple quality levels. Layered encoding requires less server storage
capacity and may be more suitable for caching; but it typically increases transmission
bandwidth due to encoding overhead. In this paper we compare video streaming of
multiple versions with that of multiple layers in a caching environment. We examine
caching and distribution strategies that use both versions and layers. We consider
two cases: the request distribution for the videos is known a priori; and adaptive
caching, for which the request distribution is unknown. Our analytical and simulation

A shorter version of this work has appeared in Proc. of IEEE International Conference on
Multimedia and Expo (ICME), Vol. 2, pages 45-48, Lausanne, Switzerland, August 2002.

F. Hartanto

Department of Computer Science and Engineering, The Chinese University of Hong Kong,
Hong Kong

e-mail: hartanto@cse.cuhk.edu.hk

J. Kangasharju
Department of Computer Science, Darmstadt University of Technology, Germany
e-mail: jussi@tk.informatik.tu-darmstadt.de

M. Reisslein()

Department of Electrical Engineering, WINTech Center, Arizona State University,
Goldwater Center, MC 5706, Tempe, AZ 85287-5706, USA

e-mail: reisslein@asu.edu

K. Ross
Polytechnic University, Six MetroTech Center, Brooklyn, NY 11201, USA
e-mail: ross@poly.edu

@ Springer

222 Multimed Tools Appl (2006) 31: 221-245

results indicate that mixed distribution/caching strategies provide the best overall
performance.

Keywords Proxy caching - Streaming video - Layered video - Multi-version video

1 Introduction

Many analysts expect streaming stored video to be the dominant traffic type in the
Internet in the upcoming years, dwarfing the bandwidth usage of other Internet
applications. Driving this demand is the current deployment of residential broadband
access technologies, such as cable modem and xDSL technologies.

Given that the Internet will soon be transporting vast quantities of video traffic,
a major concern becomes the efficient distribution of the video data. As with Web
objects, video data can be transported to the client in many different ways, including
(a) directly from origin server to client; (b) through intermediate ISP caches; and (c)
through content distribution networks (CDNs) such as the Akamai network.

In designing new strategies for distributing stored video over the Internet, we
also must take into account that access to the Internet is highly heterogeneous
[1, 10]. Today, Internet access includes 56 Kbps modem connections, 128 Kbps
ISDN connections, shared-bandwidth cable modem connections, xDSL connections
with downstream rates in the 100 Kbps to 6 Mbps range, and high-speed switched
Ethernet connections at 10-100 Mbps. Because Internet access is heterogeneous,
video content providers typically provide multiple quality levels, with each quality
level having a different encoding rate.

Multiple quality levels can be created by encoding video into multiple versions,
each version encoded at a different rate. However, multiple versions of the same
video can cause large increases in the amount of storage. For example, for storing
1,000 videos, each video having an average length of 1 h and having an average
encoded bit rate of 4 Mbps, the required storage is 1,800 GB of storage. If for
each video there is a second lower-quality version at half the bit rate of the high-
quality version, then we need an additional 900 GB of storage. When there are many
versions, the additional required bandwidth can be yet much more.

Layered encoding (also known as hierarchical encoding) can also be used to create
multiple quality levels. The storage requirements at a server for maintaining multiple
layers is typically much less than maintaining the same number of versions. However,
creating video layers generates additional bandwidth overhead [2, 9]. In particular,
for the same quality level, layered encoding typically requires more transmission
bandwidth than does a video version.

Given the presence of a caching and/or content distribution network infrastruc-
ture, and the need for multiple video quality levels, in this paper we compare
distributing video versions to distributing video layers. We also examine mixed
strategies consisting of both versions and layers.

Specifically, we consider a model in which all video content is encoded into two
versions: a low-quality version and a high-quality version. All videos are also hier-
archical encoded into a base layer and an enhancement layer. A proxy, representing
an institutional cache or a server in a CDN, sits between the origin servers and the
clients. Bandwidth between the proxy and the clients is assumed to be abundant.

@ Springer

Multimed Tools Appl (2006) 31: 221-245 223

However, bandwidth between the origin server and the proxy is a constrained re-
source, as well as is the storage capacity at the proxy. When the proxy receives a
request for a video at a specific quality level, the proxy will directly satisfy the request
if it has cached the appropriate version or layers; otherwise, if sufficient bandwidth is
available between origin server and proxy, the origin server will stream the needed
version or layer(s) to the client through the proxy.

We first consider the case when the request distribution for the videos is known.
We consider three natural distribution strategies and develop an analytical perfor-
mance methodology. We then consider the case when the request distribution is
unknown. We propose three natural adaptive caching strategies and use simulation
to compare their performance. Broadly speaking, we find that mixed strategies that
use both versions and layers provide the most robust performance. Our model and
methodology brings out a number of subtle issues that shed important insights on the
distribution of multi-quality video in the Internet.

This paper is organized as follows. We end this section with an overview of
related work. In Section 2 we present our model and establish some basic properties
of optimal caching strategies. In Section 3 we consider the case when the request
distribution is known. We develop an analytical methodology, which we use to
study the performance of three natural caching strategies. In Section 4 we consider
adaptive caching and again study three natural distribution schemes. We discuss
video transcoding in the context of our distribution framework in Section 5 and
summarize our findings in Section 6.

1.1 Related work

Decuetos et al. [4] also compared streaming of video versions to streaming of
video layers. In particular, in a TCP-friendly context, they proposed prefetching and
quality-level switching schemes for both pure versions and pure layers. The paper [4]
focused on time-dependent streaming of a single video from origin server to client;
it did not take into account an intermediate cache sitting between origin servers and
clients.

Kim and Ammar [8] compared streaming layers and versions in a multicast con-
text. Their results show that while layering may have a slight advantage in general,
there are also situations where versions are to be preferred. However, their work is
based on multicast and does not take into account any caching.

Kangasharju et al. [7] considered caching strategies for layered video. In par-
ticular, they formulated the problem as an optimization problem, showed that the
optimization problem was intractable, and proposed and studied several natural
heuristics. The paper [7] did not take into account multiple versions, and therefore
did not compare caching layers, caching versions, and mixed strategies.

2 Model and notation

Figure 1 illustrates our architecture for video caching. Suppose there are M videos
available; and all of them are stored on the origin servers. Popular videos are cached
in a proxy server, which is located close to its client community.

@ Springer

224 Multimed Tools Appl (2006) 31: 221-245

Fig.1 Architecture for
caching and streaming of
adaptive video

Wide Area Network

&

Proxy
Caching [~ | _
Local Access Network
{abundant bandwidth)

L NN

Client Client Client

2.1 Proxy server

The clients direct their requests to the proxy server; if the requested video (defined
by type and quality) is in the proxy, then the video is streamed from the proxy to
the client; if it is not in the proxy, the video is streamed from the origin server to the
proxy, and then from the proxy to the client.

The proxy server is connected to the origin servers via a wide area network
(e.g., the Internet). We model the bandwidth available for streaming from the origin
servers to the proxy server as a bottleneck link of fixed capacity C (bit/s). The proxy
is connected to the clients via a local access network, which could be a LAN running
over Ethernet, or a residential access network using xDSL or HFC technologies. For
the purposes of this study, we assume that there is abundant bandwidth for streaming
from the proxy to the clients. We model the proxy server as having a storage capacity
of G (bytes) and having infinite storage bandwidth (for reading from storage). Our
focus in this study is on caching strategies that cache complete layers or versions of
videos in the proxy. Our goal is to cache video layers or versions so as to maximize
the number of supported streams.

@ Springer

Multimed Tools Appl (2006) 31: 221-245 225

2.2 Versions

Real Networks [12] and other video streaming technology companies today allow
content providers to encode video into multiple quality versions. Video versions
allow service and content providers to offer flexible streaming services to clients with
vastly different access bandwidths and decoding capabilities. Clients with low-speed
access will only be interested in the low-quality stream. Clients with LAN, cable-
modem or ADSL access will be interested in high-quality streams.

Many content providers today store multiple versions of the same video on the
origin server and stream the video version that is most appropriate on a user-to-
user basis. This approach allows for flexible pricing structures. A content or service
provider may offer the low-quality version for a standard charge and charge a
premium for the high-quality version. Throughout this paper we shall assume that
two quality levels are available for each video.

Although the approach of multiple versions offers greater service and pricing
flexibility, it has major drawbacks. First, it requires more storage at the origin server
than does the approach that makes only one quality level available. Second, if one
quality version is cached in a proxy server, and there is a request for a different
quality version, then the requested version must be fully streamed from the origin
server, i.e., the cached version is of no use. And third, if both quality levels are cached
in the proxy, then more storage is necessary than when only one version is used.

2.3 Layers

An alternative to using versions is to use layered (also known as hierarchical
encoded) video. With layered encoding, each video object is encoded into a base
layer and one or more enhancement layers. The base layer contains the most essential
information, and the enhancement layers provide quality enhancements. A particular
enhancement layer can be decoded only if all lower quality layers are available.
Throughout this paper, we will assume that each video has been coded into two
layers, a base layer and a single enhancement layer.

The storage requirements for the base and enhancement layer together are
typically less than the requirements for the low-quality and high-quality versions
together, for both the origin server and the proxy. Furthermore, if the base layer
is cached in the proxy, and a client requests a high-quality version, then only the
enhancement layer needs to be streamed from the origin server. Nevertheless,
layered encoding has one major drawback, namely, encoding overhead. Typically,
for the same high-quality level, the total rate of the base and enhancement layer
combined is larger than the rate of the high-quality version. Also, for the same low-
quality level, the rate of base layer is often larger than that of the low-quality version.
This overhead impacts both transmission and storage resources.

In summary, in this study each video can be encoded into either versions or layers.
For versions, we suppose that there are two possible versions, namely, a high-quality
version and a low-quality version. For layers, we suppose that the video is encoded
into two layers, namely, a base layer and an enhancement layer. Thus, each video
has four objects associated with it: a low-quality version, a high-quality version, a
base layer, and an enhancement layer. We denote these four objects by /, i, b, and e,
respectively.

@ Springer

226 Multimed Tools Appl (2006) 31: 221-245

If T(m) is the length of video m, m=1,..., M, in seconds and r(m) is the
encoding rate for one of the versions or layers in bit/s, then the corresponding
storage requirement for the object is S(m) = T (m) x r(m) bit. Table 1 summarizes
the notation we will use for the two versions and the two layers. We naturally assume
that the rate of the high-quality version is larger than the rate of the low-quality
version, i.e., r,(m) > ri(m).

In order to compare the caching of layers and versions, we suppose throughout
that the encodings are such that the visual quality of the base layer is the same as
the visual quality of the low-quality version; and the video quality of the base and
enhancement layer combined is the same as the high-quality version. However, due
to encoding overhead to create layers, we do not assume that the layers and versions
have the same encoding rates. Instead, we make the following three natural Rate
Assumptions which are based on video encoding experiments [2, 9]:

1. Due to the overhead of layered encoding, the base layer has at least the same rate
as the low-quality version, i.e., r,(m) = ri(m) x [1 + O;(m)] where Oy(m) > 0 is
the low-quality coding overhead.

2. Again due to the overhead of layered encoding, the base and enhancement
layers together have at least the same rate as the high-quality version, i.e.,
ro(m) 4+ re(m) = rp(m) x [1 + Oyn(m)] where Oy (m) > 0 is the high-quality cod-
ing overhead.

3. The base and enhancement layers together have smaller rate than the two
versions, 1.e., r,(m) + re(m) < ri(m) + rn(m).

For any video, the proxy can contain objects made from versions and/or layers.
However, we assume the decoding constraint, namely, that the proxy never caches the
enhancement layer if the base layer is not cached. When a request arrives to the proxy
for some low-quality video, the proxy can satisfy the request if it is currently storing
either the low-quality version or the base layer of the video. Otherwise, the proxy
must obtain either the low-quality version or the base layer from the origin server
and relay the object to the requesting client. When a request arrives to the proxy
for some high-quality video, the proxy can satisfy the request if it is currently storing
either the high-quality version or if it is storing both the base and enhancement layers
of the video. Otherwise, it must retrieve an object from the network to satisfy the
request. If the proxy has stored the base layer, then the proxy can retrieve either the
enhancement layer or the high-quality version.

Note that we do not consider the details of the layered codec used to create the
layered videos. In our caching model each video object (layer or version) is always
treated as an entity, i.e., either we have all of it or none of it. This applies to both
objects that are cached and objects that are streamed from the origin server. Also,
for simplicity, we assume that the users always watch the complete video without
interruptions. For these reasons, we do not need to consider the details of the

Table 1 Notation: rates and storage requirements of layers and versions of videom, m=1,..., M
Base layer Enh. layer Low quality High quality

Encoding rate ry (m) re(m) ri(m) rh(m)

Size Sp(m) Se(m) Si(m) Sh(m)

@ Springer

Multimed Tools Appl (2006) 31: 221-245 227

codec, but only the aggregate effect of the layered codec, i.e., how much overhead it
introduces. How this overhead is distributed over the individual frames has no effect
on the results in this model. As we present in Section 3, a client specifies a target
quality (low or high) and the request is either accepted or blocked. If the request
is accepted, then the entire video is delivered at the requested target quality, with
absolutely no quality changes.

2.4 Basic properties

For a given video, there are four cachable objects: the low-quality version (/), the
high-quality version (%), the base layer (b), and the enhancement layer (e). Thus for
any given video, there are 2* = 16 different combinations of objects that can be put
in the cache, including putting no object in the cache. This is a daunting number of
combinations to analyze. Recall that our goal is to maximize the number of supported
streams. Fortunately, without loss of generality, we may restrict ourselves to only five
of the combinations:

Theorem 1 There is an optimal caching configuration such that for each video one of
the following five object combinations is used: @, {l}, {h}, {b}, or {b, e}. In other words,
for each given video we either cache just the low-quality version, just the high-quality
version, just the base layer, the base and enhancement layers together, or no objects at
all.

Proof Because of the decoding constraint for layered video, we can rule out all
combinations that include e but not b.

Now consider {b, h}. Note that Rate Assumptions 3 and 1 together imply
that ry(m) > re(m). Hence ry(m) + rn(m) > ry(m) + re(m). It follows from this last
expression that we can replace the combination {b, h} with {b, e} and use less storage
while still satisfying all requests at the proxy for the video. Thus we can rule out
{b, h}.

Now consider {b, I}, {b, [, e}, {b, I, h},{b, I, h, e}. By caching the base layer,
we satisfy all low-quality requests and we partially satisfy higher quality requests
(only need to get enhancement layer from network). If we additionally cache the
low-quality version, we take up more storage and we do not satisfy more requests for
low-quality video. Combining this observation with ry,(m) > r.(m) implies that if we
cache the base layer, then there is no need to also cache the low-quality layer. Thus
we can rule out all these four cases.

Now consider {/, A}. This combination will satisfy all requests at the proxy. How-
ever, the combination {b, e} also satisfies all requests and, by Rate Assumption 3,
takes less storage. Thus, we can rule out {/, A}.

Finally, we can also rule out {b, e, h} since the combination {b, e} also satisfies
all requests but takes less storage. |

As a corollary to the above theorem, for any given video we use either versions or
layers but not both.

Theorem 1 generalizes to a scenario where we have three levels of quality without
any need for additional rate assumptions. However, for scenarios with four or more
levels of quality, we will need additional information about the details of the video

@ Springer

228 Multimed Tools Appl (2006) 31: 221-245

codec and the encoding rates of the different objects. This observation can be
explained as follows. Say we have four quality levels. The layers have rates ry,, r,,
r,, and ry,, and the corresponding versions have rates ry,, rv,, rv,, and ry,. Suppose
that the cache contains the first two layers (/; and /;) and the highest quality version,
vy. This clearly would violate Theorem 1, since we have both layers and versions for
the same video. Making similar basic rate assumptions as for two layers, we know that
r, +r, <ry, +rv,, hence we cannot replace the lower layers with the corresponding
versions. To replace vs with layers, we would need to get both /3 and /; into the
cache. From the same basic rate assumptions we know that r, < ry,, however we
do not know whether r|, +r, < ry, would hold. For this, we would need additional
information about how the codec distributes the video data into the layers.

If the codec puts the bulk of the data into the lower layers, then the higher
layers are likely to be small which would mean that Theorem 1 would hold in the
general case. However, if the lower layers are small and the higher layers contain a
large amount of data, then the question of whether Theorem 1 holds would remain
open. If we know how the codec distributes the data, then the actual verification of
Theorem 1 is simple, since we only need to compare the rates of the higher layers to
the rates of the higher quality versions. In a scenario with a large number of layers
this could mean a large number of possible combinations which we would need to
verify; however, the actual verification would be a simple operation which could
easily be performed.

Motivated by the above theorem, in the following sections we will propose and
examine strategies for caching layer and version objects. But it is also useful to make
a few additional Observations about extreme cases:

1. For a given video if all (or “nearly all”) requests are for the low-quality version
(and none or “nearly none” are for the high-quality version), then we would
either cache the low-quality version or cache no objects for that video, i.e., as
object combination we would use either {/} or .

2. Similarly, if for a given video if all (or “nearly all”) requests are for the high-
quality version, we would use either {/} or @.

3. If there is no overhead for layered encoding, that is, if O,(m) = Oy (m) = 0, then
for video m we would only use layers; in particular, we would use either @, {b},
or {b, e}.

However, when (a) there is layering overhead, and (b) request rates for low- and
high-quality versions are both significant, then it is not obvious whether we should
use versions or layers; furthermore, for some videos it may be preferable to use
versions whereas for others it may be preferable to use layers.

3 Known request distribution

We start by modeling the steady-state cache performance using a static caching
model. With this model, we assume that the request pattern is known a priori and
does not change dynamically. Suppose that there are M videos. Suppose that requests
for video streams arrive according to a Poisson process with rate A (requests/hour).
Let j denote the requested quality level with j= 0 indicating a request for a
low quality video, and j= 1 indicating a request for a high quality video. Let

@ Springer

Multimed Tools Appl (2006) 31: 221-245 229

p(jym), j=0, 1, m=1,..., M, denote the probability that a given request is for
the j-quality stream of video m. As a proper mass distribution the p(j, m)’s satisfy

Yo Sy pGim) = 1.

The corollary to Theorem 1 suggests three caching strategies, namely:

1. Pure version caching, where we cache only video versions.
2. Pure layer caching, where we cache only video layers.
3. Mixed caching, where we cache layers for some videos and versions for others.

For all three caching strategies we first order the request probabilities p(j, m),
j=0,1;m=1,..., M, in decreasing order. We then fill the cache by considering
the objects (j, m) that are the most requested. First, we put the object (j, m) with the
largest request probability p(j, m) into the cache. Next, we cache the object (j, m)
with the next largest probability p(j, m), and so on. If at some point (as the cache fills
up) the object needed to satisfy the request with the next largest request probability
does not fit into the remaining cache space, we skip this object and try to cache the
objects with the next largest request probabilities.

With pure version caching we cache only versions of the videos. We cache the
high quality version of video m if the next largest probability p(j, m) is for the high
quality stream of video m (i.e., j = 1). If the next largest probability is for the low
quality stream of video m, then we cache the low quality version of video m. Note
that with pure version caching we may end up caching both high and low quality
versions of the same video (which we know from Theorem 1 is sub-optimal).

With pure layer caching we cache only video layers. If the next largest request
probability p(j, m) is for the low quality stream of video m (i.e., j = 0), then we
cache the base layer of video m. On the other hand, if the next largest probability
is for the high quality stream of video m (i.e., j = 1), then we cache both base and
enhancement layer of video m. If the base layer has already been cached, i.e., if
p(0,m) > p(1,m), then we need to cache the enhancement layer only. Due to the
decoding constraint, we never cache the enhancement layer of a given video without
caching the corresponding base layer.

With mixed caching we cache the high quality version of video m if the next largest
p(j, m) is for the high quality stream of video m and no other object of the video has
been cached. On the other hand, if the next largest probability is for the low quality
stream of video m and no other object of the video has been cached, then we (a)
cache the low quality version of video m if r, (m) > ri(m), and (b) cache the base
layer of video m if ry(m) = ri(m). However, if we have already cached the low (or
high) quality version of a given video and the next largest probability is for a different
quality of the video, then we replace the low (or high) quality version of the video
with the base and enhancement layer of the video.

3.1 Video caching model

In this section we develop an analytical model for the caching and streaming of
video layers and versions. We derive expressions for the blocking probability of
a client request and the long run rate at which client requests are satisfied. To
keep track of the objects in the cache we introduce a vector of cache indicators
c=(cy, ¢y ..., cy), With ey, = {0}, {1}, {h}, {I, h}, {b}, or {b, e},form=1,..., M.
cm indicates whether no object, the low-quality version, the high-quality version,

@ Springer

230 Multimed Tools Appl (2006) 31: 221-245

both the low- and high-quality version, the base layer, or the base layer together
with the enhancement layer is cached for video m. (We allow for ¢,, = {/, h} to
accommodate pure version caching in our model; note, however, that by Theorem 1
it is sub-optimal to cache both the low- and high-quality version for a given video m.)
In our model we focus on the bottleneck link of capacity C, that connects the proxy
server to the origin servers. We model this link as a stochastic knapsack [13]. Let
b, (jym), j=0, 1, m=1,..., M, denote the link capacity required for satisfying
a request for a j-quality stream of video m, given that the object(s) ¢, are cached
for video m. Table 2 gives the b, (j, m)’s for all possible combinations of ¢, and
j. We assume that the lower rate versions are streamed over the bottleneck link
whenever a request cannot be satisfied by the cache; except in the case where the base
layer is cached and the high-quality stream is requested, in that case we stream the
enhancement layer. Without loss of generality we assume that C and all b, (j, m)’s
are positive integers. Let be = (b, (j,m)), j=0, 1, m=1,..., M, be the vector of
the bandwidth requirements of the requests. Note that this vector has 2M elements.
Throughout we assume that the client watches the entire stream without interruption,
thus the bandwidth b, (j, m) is occupied for T'(m) seconds. Let n = (n(j, m)), j=0,
I,m=1,..., M, be the vector of the numbers of ongoing j-quality streams of video
m. The n(j, m)’s are non-negative integers. Let S¢ = {n : b¢e x n < C} be the state
space of the stochastic knapsack model of the bottleneck link, where be x n =
ng:l Z}:o b, (j,m) x n(j,m). Furthermore, let S¢(j, m) be the subset of states in
which the knapsack (i.e., the bottleneck link) admits a stream with the bandwidth
requirement b, (j, m). We have S¢(j,m) ={n € S¢ : be x n < C—b,, (j,m)}. The
blocking probabilities can be explicitly expressed as

Znesc(i [zt [0 (0 Gy G f(n()

Be(jm) =1— , 1)

Znesc [T o (o Gy G f(njom)!

where p(j, m) = Ap(j, m)T(m) is the load offered by requests for j-quality streams of
video m. These blocking probabilities can be efficiently calculated using the recursive
Kaufman-Roberts algorithm [13, p. 23]. The expected blocking probability of a
client’s request is given by

M 1

B(e) =YY p(j,m)Be(j,m).

m=1 j=0

Table 2 Bandwidth requirement for streaming j-quality stream of video m given cache configuration
be,, (J,m)

bc,,,(j, m) cm = {0} cm = {1} cm = {h} cm = {l, h} cn = (b} cn=1{b, e}

=0 ri(m) 0 ri(m) 0 0 0
=1 rp(m) rh(m) 0 0 e (M) 0

@ Springer

Multimed Tools Appl (2006) 31: 221-245 231

The long run throughput, i.e., the long run rate at which client requests are satisfied
is given by
M 1

TH(e) =4 x)) p(im)(1 = Be(j.m)).

m=1 j=0

We define the normalized throughput TH,(c) as the ratio of the rate of satisfied
requests to the total request arrival rate, i.e., TH,, (¢) = TH(c)/A.

3.2 Numerical results

We assume that there are M = 1,000 different videos. For a given video m we
generate the version and layer rates as follows. The rate of the high quality version
rp(m) is drawn randomly from a uniform distribution between 2 and 6 Mbps with a
granularity of 0.1 Mbps and an average of 4 Mbps. The rate of the low quality version
ri(m) is uniformly drawn between 0.5 x ry(m) and 0.7 x ry(m) with an average of
0.6 x ry(m). The length of the video 7'(mm) is drawn from an exponential distribution
with an average length of 1 h.

We assume that the aggregate rate for the layered video has an overhead Oy, (m)
over the high quality version, i.e., r, (1) + re(m) = [1 + Oy (m)] x r,(m). We consider
two cases: (a) rp(m) = ri(m), and (b) r,(m) > ri(m), in this case we vary r,(m) be-
tween ri(m) and [1 + Oy (m)] x ri(m). With r,(m) fixed, the rate of the enhancement
layer r.(m) is then computed as r.(m) = [1 + Op(m)] x rp(m) — r,(m).

The p(j, m)s are determined as follows. Let p,, m=1,..., M, denote the
probability that a given client request is for video m (irrespective of whether the
request is for the low quality stream or the high quality stream of the video). We draw
the p,,s from a Zipf distribution with parameter { = 1. Let ¢ denote the probability
that the request for a given video is for the low quality stream of the video. We
fix g as a system parameter in our numerical analysis. We set p(0,m) =q X pn,
and p(1,m) = (1 — q) x p,. Client requests arrive according to a Poisson process.
The average request arrival rate is 1 = 270 requests/hour, chosen to give a blocking
probability of 2% when g = 1.0.

The cache size is set to G = 200 GB and the link capacity is C = 150 Mbps.
For a given realization of the layer and version rates (r1(m), ry(m), ro(m), re(m))
as well as video lengths T(m), m =1, ..., M, we apply the three outlined caching
strategies to obtain the cache indicators ¢,,, m = 1, ..., M. With these cache indica-
tors we calculate the normalized throughput using the stochastic knapsack analysis
introduced in the previous section. We run many independent replications of this
procedure to obtain confidence intervals for the normalized throughput. For every
independent replication we draw a new independent set of layer and version rates
and video lengths. We repeat this procedure until the 95% confidence interval of the
normalized throughput is less than 1% of the corresponding sample mean.

In figure 2 we plot the normalized throughput as a function of the probability
of a low quality request g. The results show that if no overhead is incurred in
generating layered videos (i.e., Oy = 0), then pure layer caching is the best strategy
as suggested by Observation 3 above. Caching layers is also favorable when the
requests are non-homogeneous (0.1 < g < 1) and the overhead is low. We see that
the throughput for pure layer caching increases monotonically as more requests are
for low quality videos and decreases with increasing overhead. The throughput for

@ Springer

232 Multimed Tools Appl (2006) 31: 221-245
1
0.95
0.9
=
&
e 0.85
o)
Z
- 0.8
S
£ 075 _
g
Z
0.7 —e— Version m
—x=— Layer (0,=0.1)
0.65 —&— Mixed (O4=0.1) | |
: -- x - Layer (0,=0.5)
-- & - Mixed (0,=0.5)
0.6 | | | I
0.2 0.4 0.6 0.8 1
Probability of low quality request (q)
a. =1
1
0.95
0.9
=
£
e 0.85
o)
Z
- 0.8
S
g 075 F -
g
Z
0.7 —e— Version M
—»— Layer (O,=0.1)
0.65 —&— Mixed (O,=0.1) | |

0.6

-- » -- Layer (0,=0.5)

--& - Mixed (0;=0.5)
|

0.2

0.4

0.6

0.8

Probability of low quality request (q)

b.

s > T

Fig. 2 Static caching scenario with varying probability of low quality requests

@ Springer

Multimed Tools Appl (2006) 31: 221-245 233

pure layer caching is strongly affected when the base layer includes overhead (i.e.,
r, > r). This can be considered as the worst case and therefore, we always assume
ry > r in future plots.

Pure version caching is only favorable in case of homogeneous request quality,
i.e., all requests are either for low quality (¢ = 0) or for high quality streams (¢ = 1).
The largest throughput is achieved if all requests are for low quality streams. This
is expected because in this scenario more videos are cached and hence the cache hit
rate is higher compared to a scenario where all requests are for high quality streams.
The throughput is lowest when the requests are non-homogeneous as sometimes we
need to cache both the low- and the high-quality version.

The results indicate that mixed caching strikes a good balance between pure
layer caching and pure version caching for all cases and offers the best overall
performance. It performs as well as pure layer caching when the overhead is zero
and as well as pure version caching when Oy = 0.5. Since the smallest 7 is 0.5 x ry,
Oy = 0.5 is the largest overhead incurred in creating layered video while meeting
Rate Assumption 3.

Figure 3 gives the normalized throughput as a function of the overhead Oy of
layered encoding. We can clearly see that mixed caching gives better performance
than pure version caching and pure layer caching for the range of overhead. Its
performance is less sensitive to the overhead than pure layer caching.

The superiority of mixed caching is independent of the cache size and the link
capacity. In figure 4 we plot the normalized throughput as a function of the cache
size G and the link capacity C. The cache size is chosen between G = 45 and 900 GB
or between 2.5 and 50% of the total video data. Given the average video length Ty,
(in seconds), the average rate of a video r,y, (in bit/s), and the client request rate A (in
requests/second), we would need on average C = Tyyg X Fayg X A Mbps of bandwidth
to stream all the requested videos. We varied the link capacity between C = 10 and
160 Mbps or between 1 and 16% of the total requested video bit rate. Both figures
show that in all cases mixed caching offers the best overall performance. It shows that
mixed caching gives similar performance to pure layer caching for small overhead
and similar performance to the pure version caching for Oy = 0.5. In summary, the
results for the static caching model demonstrate that a mixed caching strategy can
strike a good balance between pure layer caching and pure version caching.

4 Adaptive caching

With the static caching model, the request distribution is assumed to be known
beforehand. However, in practice, the actual request distribution may not be known.
When the distribution is unknown, we need to make caching and replacement
decisions on-the-fly. Moreover, in most video distribution systems, new videos are
being continually released. As the video popularities change, providers replace the
least popular videos in their systems with new videos. In this section we will consider
adaptively caching and replacing videos when the request distribution is unknown
and new videos are being continuously released. We will compare the performance
differences of static caching (with known distributions) and adaptive caching, and
identify the factors causing the differences. We will also investigate whether the basic
observations of Section 2 still apply.

@ Springer

234 Multimed Tools Appl (2006) 31: 221-245
1 I T I T T T T | |
—— Version
—x— Layer (r,=r)
—8— Mixed (r,=r))
-- % - Layer (r,>1)
0.95 H -- & - Mixed (r,>1)) -
5
a.
=
o0
=]
=
S
= 09 - —
Q
X
=
g
S
Z
0.85
0.8
0 005 01 015 02 025 03 035 04 045 05
Overhead in creating layered video (Oy)
a. ¢q=04
1 | | | | | | | | |
095 -
5
2.
=
)
=
2
<
=
Q
N
=
g
S
Z

0.85

0.8

—e— Version

—>— Layer (r,=r))

—&— Mixed (r=r))

-- x - Layer (r,>1r)

-- & - Mixed (r,>1))
| | |

0

0.05 0.1 0.15

0.2

025 03 035 04 045

Overhead in creating layered video (Oy)

b. ¢q=0.7

Fig. 3 Static caching with varying amount of overhead of layered encoding

@ Springer

0.5

Multimed Tools Appl (2006) 31: 221-245 235

1
0.95
09 -
‘é_ 0.85 [~
5o
g 0.8 -
=
= 075 |
S
El 0.7 | ®y
Z 065
x —e— Version
0.6 —=— Layer (O;=0.1) H
—&— Mixed (0,=0.1)
0.55 -- x -- Layer (0;=0.5)
-- & -- Mixed (0,=0.5)
05 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
Cache size (%total)
a. varying cache size G
0.9 T T T T T T T
0.85
2
= 0.8 —
on
=
S
S
- 075 |
8
E
5 07
Z
—e— Version
—»— Layer (0;=0.1)
0.65 [~ —&— Mixed (0,=0.1) []
-- x - Layer (0,=0.5)
-- 8 -- Mixed (0,=0.5)
0.6 | | | | | | 1
0 2 4 6 8 10 12 14 16

Link capacity (%total)
b. wvarying link capacity C

Fig. 4 Static caching with varying cache size G and link capacity C (g = 0.4)

@ Springer

236 Multimed Tools Appl (2006) 31: 221-245

In order to allow for direct comparison with the static caching scenario, we model
the dynamic request distribution as follows. We start with the same 1,000 videos and
generate requests in a similar fashion as in the static caching scenario. However,
in this adaptive model, we assume that a fresh set of videos is made available
periodically and the least popular videos are replaced by this new set of videos. We
assume that 1-50 new videos are released every week and that the exact number
of new videos is uniformly distributed between 1 and 50. The characteristics of these
new videos follow the same distribution as used in Section 3.2. Once the least popular
videos are replaced by these new videos, the popularity of all videos in the system
are re-shuffled and requests are generated based on the new popularity distribution.
Upon re-shuffling, we also evict all currently cached objects from the videos that have
been replaced. If at least one stream is currently using the objects, then we remove
the objects as soon as the ongoing stream(s) finishes.

Now, we explain the caching strategies. We start with an empty cache and cache
the layer or version of a video as it is requested and streamed to the client. If the
cache is full, then we replace the video in the cache following a least recently used
(LRU) replacement strategy. We replace videos in the cache until enough space is
obtained. In all strategies, we do not replace a video object from the cache if the
object is currently being used for streaming the video. In the following we describe
the three caching strategies identified in Section 3.

With pure version caching, we cache the high-quality version if the high quality
video is requested and that version is not in the cache regardless of whether we have
the low version in the cache or not. Likewise, we cache the low-quality version if the
low quality video is requested and that version is not in the cache. Again, we do it
regardless of whether we have the high-quality version in the cache or not. Therefore,
we can have both high- and low-quality versions in the cache (which we know from
Theorem 1 is suboptimal).

With pure layer caching, we cache both base and enhancement layer if the high
quality video is requested and the video is not in the cache. If we already have the
base layer, then we only stream the enhancement layer from the origin server and
cache it. We stream the base layer from the origin server and cache it if the request
is for low quality video and the base layer is not cached. During replacement, we
remove the enhancement layer before the base layer.

With mixed caching, we have a similar objective as in the static caching model.
We basically want to reduce the resource usage by mixing layers and versions in the
cache. Here, we consider two simple heuristics to illustrate our findings.

The first heuristic corresponds exactly to mixed caching in the static model. Its
objective is to replace the caching of both high- and low-quality version of a video
with the layers of the video since they use less resources as r, (m) + re(m) < rn(m) +
ri(m). The caching proceeds as follows. For the first request we stream and cache
the version of the video. So, if the request is for high-quality video, we stream and
cache the high-quality version of the video. If the request is for the low-quality video,
then we stream and cache the low-quality version if r,(m) > r(m), or the base layer
if r,(m) = ri(m). If there is a second request for a different quality level of the same
video, then we try to satisfy the request with layers and remove the version from
the cache. Otherwise, we proceed with pure version caching. In replacing the version
by layers, we reject the request and keep the version if we do not have enough link
capacity to stream the layers. Moreover, since we do not want to interrupt ongoing
streams, we cannot remove the version if it is being used, but we still cache the layers.

@ Springer

Multimed Tools Appl (2006) 31: 221-245 237

Once we have cached the layers, the version will be removed as soon as the ongoing
streams using that version are terminated. If both the base and enhancement layers
of a video are removed from the cache (by LRU replacement), then we will start
again with the streaming and caching of versions for the next request. The motivation
is that if a video object can be removed from the cache, then the video object is
probably not very popular. So, it is better to start again with versions.

The second heuristic is similar to the first heuristic, except that for the first request
we stream the version of the video but we do not cache it. So, if the request is for high
quality video, then we stream the high-quality version of the video but do not cache it,
and if it is for low-quality video, then we stream the low-quality version of the video
but do not cache it. If there is a second request for the same video then we cache the
layers of the video. If the second request is for high-quality video then we stream and
cache both base and enhancement layers. If it is for low-quality video, then we stream
and cache the base layer only. In this way, we stream versions but never cache them.
Instead, we cache only layers. The motivation of this heuristic is to avoid caching
objects for videos which are requested once only. Moreover, for videos which are
requested more than once, caching video layers can serve requests of different quality
while using less resources. This caching strategy requires the proxy to keep track of
videos that have been previously streamed. If all layers of a video are removed from
the cache, then we will start again, streaming but not caching versions, and caching
layers upon second requests.

4.1 Numerical results

We now present simulation results for adaptive caching. We use the same distri-
butions for the layer and version rates as well as the video lengths as were used
in Section 3.2. While we evaluated the normalized throughput with the stochastic
knapsack analysis in Section 3.2, we now obtain the normalized throughput from
simulations of the cache operation. We use sequential simulation [6] to stop a
simulation run automatically once the 95% confidence interval is reached or the
simulation has run for 10% s. We then repeat the simulation by using different seeds.
This ensures a different mixture of videos and hence cache composition. The final
results are obtained by averaging the values from all runs. The simulation runs are
repeated until the final results with 95% confidence intervals across different video
mixtures are reached.

Figure 5 gives the normalized throughput as a function of the probability of a
low quality request g. The figure shows that pure version caching is only favorable
in case of homogeneous requests. For heterogeneous requests, pure layer caching
offers better performance than pure version caching, especially when the layering
overhead is low and no overhead is incurred in creating the base layer. As with the
static model, we see that mixed caching—using both heuristics 1 and 2—provides
a good balance between pure layer and pure version caching. It performs better
than pure layer caching for small overhead and as well as pure version caching for
large overhead. We also observe that heuristic 2 gives excellent results for a small
layered encoding overhead. Note that heuristic 2 can be considered a variation of
pure layer caching where we require to see two requests before caching layers of a
video. Throughout, heuristic 2 performs much better than pure layer caching. This
demonstrates the importance of weeding out the one-timer requests.

@ Springer

238 Multimed Tools Appl (2006) 31: 221-245

1 T I 1 |
—e— Version
095 H —>— Layer (O,=0.1) —
: —&— Mixed 1 (0=0.1)
—a— Mixed 2 (0,=0.1) i
0.9 |1 --x - Layer (0,=0.5) *
= -- 8 - Mixed 1 (0,=0.5)
..% -- & - Mixed 2 (thos)
S 0.85 |
3
£
Z 08 |
S
=
E 0T |
Z. =
0.7 B -4]
- >
e %
0.65 - 4ot i
A- X_‘X‘ _X_—x’
0.6 £ ' : : I
0 0.2 0.4 0.6 0.8 1
Probability of low quality request (q)
a. ™ =T
1 I T I I
—e— Version
095 L —— Layer (O,=0.1) —
. —&— Mixed 1 (0,=0.1)
—a— Mixed 2 (0,=0.1)
0.9 H --x - Layer (0,=0.5)
= -- & - Mixed 1 (0=0.5)
& -- & - Mixed 2 (0,=0.5) 4
S 0.85 7]
3
£
- 08 “
S
=
E 0 |
Z a oy
0.7 |
0.65 |- |
3
0.6
0 0.2 0.4 0.6 0.8 1
Probability of low quality request (q)
b. 7, >m

Fig. 5 Adaptive caching for varying probability of low quality request

@ Springer

Multimed Tools Appl (2006) 31: 221-245 239

Comparing the plots with figure 2 we notice that in general the throughput for
adaptive caching is smaller than the throughput for static caching. This is mainly
because the request pattern is not known a priori in the adaptive caching model.
In adaptive caching, videos are (a) cached as requests arrive, and (b) evicted from
the cache when there is not enough space for new video objects. Thus, the order
of the request arrivals has a strong impact on the cache composition, whereas the
cache composition is exclusively based on the stream popularities in the static caching
model. The difference in performance between static caching and adaptive caching
widens as the average request arrival rate A increases, as is illustrated in figure 6. This
can be explained as follows. Consider a cache with a large request arrival rate and
suppose that a “mistake” has been made by caching a moderately popular object.
With a large request arrival rate even a moderately popular object could receive
enough requests to have continuously one or more ongoing streams. These ongoing
streams, however, keep the object in the cache and prevent more popular objects
(which would have been cached in the known request distribution scenario) from
entering the cache.

Figure 7 gives the normalized throughput as a function of the amount of overhead
incurred in layered encoding. We observe that heuristic 2 offers the best overall
performance. However, similar to pure layer caching, it is highly sensitive to the
overhead. On the other hand, heuristic 1 behaves similar to pure version caching
and is hence less sensitive to the overhead.

The effects of varying the cache size and link capacity on the normalized through-
put are shown in figure 8. Comparing figures 8a and b with figures 2a and b we see

U N Sona T T T I I I I
B —e— Version
Y —x<— Layer (0,=0.1)
5 L —B5— Mixed 1 (0,=0.1)
S 095 - VX % - Layer (0,=0.5) H
S . -- & - Mixed 1 (0,=0.5)
c X)
k=
.2
g 09}
»n
=
=
o
=
=
z 085 [
£
o
2
g 08
<
075 L L L L L L L L L

0 50 100 150 200 250 300 350 400 450 500
Average request arrival rate (requests/hour)

Fig. 6 Differences in throughput between adaptive and static caching (g = 0.4)
@ Springer

240 Multimed Tools Appl (2006) 31: 221-245

0.8 T T T T T T I I I
—e— Version

—>— Layer (r,=r))
—&— Mixed 1 (r,=r)
—&— Mixed 2 (r=r))
-- % - Layer (r,>1)

5 -- & - Mixed 1 (r,>1)
b2y -- & - Mixed 2 (r,>1)
) i:8
=]
e
S
ho] 07 h
Q
N I
= h
£ ‘
5 X -
Z TT X

0.65 T~

0.6 | | | | | | | | |
0 005 01 015 02 025 03 035 04 045 05

Overhead in creating layered video (Oy)

Fig. 7 Adaptive caching with varying amount of overhead for layered encoding

that the normalized throughput in the adaptive caching model does not grow as fast
as in the static caching model for small cache sizes and small link capacities. This
is again due to the fact that without a priori knowledge of the request distribution
the order of the request arrivals has a strong impact on the cache composition. Also,
moderately popular objects tend to keep the few extremely popular objects from
being cached. Note again that by weeding out one-timer requests, heuristic 2 achieves
a higher throughput than the other strategies.

5 Transcoding

In this section we discuss transcoding (see for instance [14] and references therein),
that is, creating lower quality versions of high quality versions that are already
present in the cache. Transcoding has been studied in the context of image caching
[5, 11], but its applicability to video caching is unknown because of the much higher
resource requirements needed to re-encode the video objects. We consider two
possibilities for transcoding: real-time, or online transcoding, where we can create
the lower quality version from the high quality version in real-time and stream it to
a client, and non-real-time, or offline transcoding, where the transcoding operation
takes longer than the duration of the video.

The online transcoding scenario is particularly attractive, because it would allow
us to cache only the highest quality versions and derive any lower quality versions
as they are requested. However, this scenario may be expensive because of the high

@ Springer

Multimed Tools Appl (2006) 31: 221-245 241

1 T

095

0.85

0.75

Version
—>— Layer (0,=0.1)
—&— Mixed 1 (0,=0.1)
—a— Mixed 2 (0,=0.1)
-- % - Layer (0,=0.5)

-- 8 - Mixed 1 (0,=0.5)
-- & -- Mixed 2 (0,=0.5)
05 X1 | | | | | | | |

0 5 10 15 20 25 30 35 40 45 50

Cache size (%total)
a. varying cache size

0.9 T T T T T T T
—e— Version

—x— Layer (0,=0.1)
—&— Mixed 1 (0,=0.1)
—a— Mixed 2 (0,=0.1)
-- % - Layer (0,=0.5)

-- 8 - Mixed 1 (0,=0.5)
0.8 H -- & - Mixed 2 (0,=0.5) -

Normalized throughput

0.65

0.55 =

0.85 H

0.75

0.7

Normalized throughput

0.65

0.6

Link capacity (%total)

b. varying link capacity

Fig. 8 Adaptive caching with varying cache size and link capacity (g = 0.4)

@ Springer

242 Multimed Tools Appl (2006) 31: 221-245

processing requirements and specialized hardware needed to perform real-time re-
encoding in a proxy where we might have several transcoding operations in progress
at any time.

Offline transcoding can take advantage of available processing capacity when the
proxy is not so busy, but this would require us to predict the need for lower quality
versions in advance. This is similar to prefetching the lower quality versions and, in
order to be effective, would require efficient prefetching prediction algorithms. Any
wrong prediction would mean that a significant amount of resources had been wasted
on the now useless lower quality version. Prefetching has been studied in the Web
(see for instance [3]), but the results can, at best, be described as a mixed success, with
wrong predictions using almost as much resources as have been saved with correct
predictions.

In summary, while transcoding seems like an attractive method for improving the
performance of the cache, both possible approaches have their problems. Online
transcoding is expensive to implement in current hardware and software and offline
transcoding risks to waste more resources than it saves.

6 Conclusion

In this paper we have studied pure versions, pure layers, and mixed distribution
strategies. We found that mixed distribution strikes a good balance to offer the best
overall performance. Our study leads to the following guidelines for distributing
multi-quality video in the Internet:

1. Caches and CDN servers should be partially pre-filled with the most popular
videos. If there are requests for both quality levels of a popular video, than the
server should cache both the base and the enhancement layer of the video (rather
than use versions). It is important to pre-fill the cache with the popular videos;
otherwise, continuously streaming moderately-popular videos may prevent pop-
ular videos from getting stored in the cache.

2. For a first-time request of a video with unknown popularity, the origin server
should stream the requested quality level as a version, and the proxy should not
cache the version. If the video experiences multiple requests, then layers should
be streamed and stored in the cache.

3. Although we should use versions to stream first-time requests from origin server
to client, we should not cache versions (unless all the requests for a specific video
are for one quality level).

Acknowledgements This material is based upon work supported by the National Science Founda-
tion under Grant No. Career ANI-0133252 and Grant No. ANI-0136774.

References

1. Abdelzaher T, Bhatti N (1999, May) Web server QoS management by adaptive content delivery.
In: Proc. of International Workshop on QoS, London, UK

2. Chandra K, Reibman A (1999, June) Modeling one- and two-layer variable bit rate video.
IEEE/ACM Trans Netw 7(3):398-413

@ Springer

Multimed Tools Appl (2006) 31: 221-245 243

3. Crovella M, Barford P (1998, March) The network effects of prefetching. In: Proc. of IEEE
Infocom, San Francisco, California, pp 1232-1239
4. DeCuetos P, Saparilla D, Ross K (2001, April) Adaptive streaming of stored video in a TCP-
friendly context: multiple versions or multiple layers? In: Proc. of international packet video
workshop, Kyongju, Korea
5. Fox A, Brewer EA (1996, May) Reducing WWW latency and bandwidth requirements by real-
time distillation. In: Proc. 5Sth WWW conference, Paris, France
6. Hartanto F, Pawlikowski K, Sirisena H, Kreutzer W (1996, December) Quantitative simulation
of telecommunication networks in DESC++. Comput Electr Eng 22(6):367-381
7. Kangasharju J., Hartanto F, Reisslein M, Ross K (2002, June) Distributing layered encoded video
through caches. IEEE Trans Comput 51(6):622-636
8. Kim T, Ammar MH (2001, June) A comparison of layering and stream replication video multi-
cast schemes. In: Proc. of NOSSDAYV 2001, Port Jefferson, New York
9. Kimura J, Tobagi F, Pulido J, Emstad P (1999, September) Perceived quality and bandwidth
characterization of layered MPEG-2 video encoding. In: SPIE international symposium on voice,
video and data communications, Boston, Massachusetts
10. Ma W, Bedner I, Chang G, Kuchinsky A, Zhang HJ (2000, January) A framework for adaptive
content delivery in heterogeneous network environments. In: Proc. of MMCN 2000, San Jose,
California
11. Ortega A, Carignano F, Ayer S, Vetterli M (1997, June) Soft caching: web cache management
techniques for images. In: Proc. of MMSP, Princeton, New Jersey
12. Real Networks. www.realnetworks.com
13. Ross KW (1995) Multiservice loss models for broadband telecommunication networks. Springer,
Berlin Heidelberg New York
14. Shanableh T, Ghanbari M (2000, June) Heterogeneous video transcoding to lower spatio-
temporal resolutions and different encoding formats. IEEE Trans Multimedia 2(2):101-110

Felix Hartanto received his B.E. and Ph.D. in Electrical and Electronic Engineering from the
University of Canterbury, New Zealand, in 1990 and 1994, respectively. From 1994 to 1996, he was a
postdoctoral researcher at the University of Canterbury. Next he was employed at Digital Equipment
Corporation (now Compaq), New Zealand, as a software developer and project leader from 1996
to 1998. There he led a number of mobile service provisioning and billing projects. From 1998 to
2000 he was a scientist with the German National Research Center for Information Technology
(GMD FOKUS) in Berlin, Germany. He is currently an Assistant Professor in the Department
of Information Engineering, The Chinese University of Hong Kong. His research interests include
multimedia communications, Internet quality of service, service and network management.

@ Springer

www.realnetworks.com

244 Multimed Tools Appl (2006) 31: 221-245

Jussi Kangasharju is a post-doctoral researcher in the Telecooperation group in the department of
computer science at the Darmstadt University of Technology, Germany. He received his Master
of Science in Technology from the Department of Computer Science and Engineering in Helsinki
University of Technology, Finland, in 1998. He received his DEA from the University of Nice
(Sophia Antipolis), France in 1998. He conducted his Ph.D. research in the Multimedia Communi-
cations Department of Institut Eurecom and received his Ph.D. from the University of Nice (Sophia
Antipolis) in 2002. His research interests include web content distribution, peer-to-peer networking,
and Internet protocols.

Martin Reisslein is an Associate Professor in the Department of Electrical Engineering at Arizona
State University, Tempe. He is affiliated with the Wireless Integrated Nano Technology (WINTech)
center at ASU. He received the Dipl.-Ing. (FH) degree from the Fachhochschule Dieburg, Germany,
in 1994, and the M.S.E. degree from the University of Pennsylvania, Philadelphia, in 1996. Both
in electrical engineering. He received his Ph.D. in systems engineering from the University of
Pennsylvania in 1998. During the academic year 1994-1995 he visited the University of Pennsylvania
as a Fulbright scholar. From July 1998 through October 2000 he was a scientist with the German
National Research Center for Information Technology (GMD FOKUS), Berlin, and lecturer at
the Technical University Berlin. He is editor—in—chief of the IEEE Communications Surveys and
Tutorials and has served on the Technical Program Committees of /EEE Infocom, IEEE Globecom,
and the [EEE International Symposium on Computer and Communications. He has organized
sessions at the IEEE Computer Communications Workshop (CCW). He maintains an extensive
library of video traces for network performance evaluation, including frame size traces of MPEG—4
and H.263 encoded video, at http://trace.eas.asu.edu. He is co-recipient of the Best Paper
Award of the SPIE Photonics East 2000—Terabit Optical Networking conference. His research
interests are in the areas of Internet Quality of Service, video traffic characterization, wireless
networking, and optical networking.

@ Springer

Multimed Tools Appl (2006) 31: 221-245 245

Keith W. Ross joined Polytechnic University as the Leonard Shustek Chair Professor of Computer
Science in January 2003. Before joining Polytechnic University, he was a professor for 5 years in the
Multimedia Communications Department at Eurecom Institute in Sophia Antipolis, France. From
1985 through 1997, he was a professor in the Department of Systems Engineering at the University of
Pennsylvania. He received a B.S.E.E from Tufts University, a M.S.E.E. from Columbia University,
and a Ph.D. in Computer and Control Engineering from The University of Michigan. Professor
Ross has worked in stochastic modeling, QoS in packet-switched networks, video streaming, video
on demand, multi-service loss networks, web caching, content distribution networks, peer-to-peer
networks, application-layer protocols, voice over IP, optimization, queuing theory, optimal control
of queues, and Markov decision processes. He is an associate editor for I[EEE/ACM Transactions
on Networking. Professor Ross is co-author (with James F. Kurose) of the best-selling textbook,
Computer Networking: A Top-Down Approach Featuring the Internet, published by Addison-
Wesley. He is also the author of the research monograph, Multiservice Loss Models for Broadband
Communication Networks, published by Springer. From July 1999 to July 2001, Professor Ross
founded and led Wimba, an Internet startup which develops asynchronous voice products.

@ Springer

	Caching video objects: layers vs versions? [Misc]A shorter version of this work has appeared in Proc. of IEEE International Conference on Multimedia and Expo (ICME), Vol. 2, pages 45--48, Lausanne, Switzerland, August 2002.
	Abstract
	Introduction
	Related work

	Model and notation
	Proxy server
	Versions
	Layers
	Basic properties

	Known request distribution
	Video caching model
	Numerical results

	Adaptive caching
	Numerical results

	Transcoding
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialUnicodeMS
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

