
Distributing Layered Encoded Video
through Caches

Jussi Kangasharju, Member, IEEE, Felix Hartanto, Member, IEEE,

Martin Reisslein, Member, IEEE, and Keith W. Ross, Senior Member, IEEE

AbstractÐThe efficient distribution of stored information has become a major concern in the Internet which has increasingly become a

vehicle for the transport of stored video. Because of the highly heterogeneous access to the Internet, researchers and engineers have

argued for layered encoded video. In this paper, we investigate delivering layered encoded video using caches. Based on the

stochastic knapsack theory, we develop a model for the layered video caching problem. We propose heuristics to determine which

videos and which layers in the videos should be cached in order to maximize the revenue from the streaming service. We evaluate the

performance of our heuristics through extensive numerical experiments. We find that, for typical scenarios, the revenue increases

nearly logarithmically with the cache size and linearly with the link bandwidth that connects the cache to the origin servers. We also

consider service models with request queuing and negotiations about the delivered stream quality and find that both extensions

provide only small revenue increases.

Index TermsÐProxy caching, streaming layered video, utility heuristics, stochastic knapsack.

æ

1 INTRODUCTION

IN recent years, the efficient distribution of stored
information has become a major concern in the Internet.

In the late 1990s numerous companiesÐincluding Cisco,
Microsoft, Netscape, Inktomi, and Network ApplianceÐ
began to sell Web caching products, enabling ISPs to deliver
Web documents faster and to reduce the amount of traffic
sent to and from other ISPs. More recently, the Internet has
witnessed the emergence of content distribution network
companies, such as Akamai and Sandpiper, which work
directly with content providers to cache and replicate the
providers' content close to the end users. In parallel to all of
this caching and content distribution activity, the Internet
has increasingly become a vehicle for the transport of stored
video. Many of the Web caching and content distribution
companies have recently announced new products for the
efficient distribution of stored video.

Access to the Internet is, of course, highly heterogeneous

and includes 28 Kbps modem connections, 64 Kbps ISDN

connections, shared-bandwidth cable modem connections,

xDSL connections with downstream rates in the 100 Kbps-

6 Mbps range, and high-speed switched Ethernet connec-

tions at 10 Mbps. Researchers and engineers have therefore

argued that layered encoded video is appropriate for the

Internet. When a video is layered encoded, the number of

layers that are sent to the end user is a function of the user's
downstream bandwidth.

An important research issue is how to efficiently
distribute stored layered video from servers (including
Web servers) to end users. As with Web content, it clearly
makes sense to insert intermediate caches between the
servers and clients. This will allow users to access much of
the stored video content from nearby servers, rather than
accessing the video from a potentially distant server. In
recent years, the area of web caching has received a great
deal of attention from the research community [1], [2].
However, as has been observed by a number of studies [3],
[4], [5], [6], there are fundamental differences between the
caching of conventional web objects (such as HTML pages
and images) and the caching of streaming media objects
(such as audio and video). First, streaming media objects
require orders of magnitude more storage space than
conventional web objects. This may 1) decrease the chances
of streaming media objects being cached by conventional
caching mechanisms and 2) increase the storage require-
ment at proxy caches. The emergence of streaming media
caching therefore motivates more complex caching mechan-
isms. Second, in contrast to the (ideally) instantaneous
retrieval of conventional web objects, streaming media
objects are not delivered at once. Instead, streaming media
objects are streamed over long durations and, thus,
consume bandwidth over extended periods of time. Also,
the bandwidth consumed is typically large, especially for
video. For these reasons, the caching mechanisms devel-
oped for conventional web objects cannot be directly
applied to streaming media objects. Instead, novel caching
mechanisms that take the special properties of streaming
media objects into consideration need to be developed.

Given the presence of a caching and/or content dis-
tribution network infrastructure and of layered video in
origin servers, a fundamental problem is to determine which

622 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 6, JUNE 2002

. J. Kangasharju and K.W. Ross are with the Institut Eurecom, 2229, routes
des Cretes, 06904 Sophia Antipolis, France.
E-mail: {kangasha, ross}@eurecom.fr.

. F. Hartanto is with Information Engineering, Chinese University of Hong
Kong, Shatin, N.T., Hong Kong. E-mail: felix@ie.cuhk.edu.hk.

. M. Reisslein is with the Telecommunications Research Center, Department
of Electrical Engineering, Arizona State University, Tempe, AZ 85287-
7206. E-mail: reisslein@asu.edu.

Manuscript received 16 Jan. 2001; revised 5 Dec. 2001; accepted 24 Jan. 2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 115748.

0018-9340/02/$17.00 ß 2002 IEEE

videos and which layers in the videos should be cached.
Intuitively, we will want to cache the more popular videos
and will want to give preference to the lower base layers,
rather than to the higher enhancement layers.

In this paper, we present a methodology for selecting
which videos and which layers should be stored at a finite-
capacity cache. The methodology could be used, for
example, by a cable or ADSL access company with a cache
at the root of the distribution tree. Specifically, we suppose
that the cache has limited storage capacity and a limited
bandwidth connection to the Internet at large. For example,
the ISP might have a terabyte cache with a 45 Mbps
connection to its parent ISP. Thus, the video caching
problem has two constrained resources, the cache size and
the transmission rate of the access link between the ISP and
its parent ISP. Our methodology is based on a stochastic
knapsack model (which we briefly review in Appendix A)
of the 2-resource problem. We suppose that the cache
operator has a good estimate of the popularities of the the
video layers. The problem, in essence, is to determine which
videos and which layers within the video should be cached
so that customer demand can best be met.

Our main contributions are two-fold. First, we formulate
a stochastic knapsack model for the caching and streaming
of layered encoded video. With the developed model, we
can efficiently calculate the expected blocking probability of
a streaming request and the long run revenue rate as a
function of the cached video layers. Second, we study the
problem of caching video layers so as to maximize the
revenue subject to given link bandwidth and cache space
constraints. We develop and evaluate efficient and accurate
heuristics that, given an estimate of the stream popularities,
select the video layers that should be cached in order to
maximize the revenue rate. Our extensive numerical
investigations indicate that, for typical scenarios, the
revenue rate increases logarithmically with the cache space
and linearly with the link bandwidth connecting the cache
to the origin servers. Thus, when there is a shortage of both
resources (cache space and link bandwidth), it is beneficial
to increase the cache space before increasing the link
bandwidth.

To make our model tractable, we make the following
simplifying assumptions: We assume that only complete
layers of video objects are cached in the proxy, i.e., we do
not consider the caching of partial segments of a layer. We
assume that the performance of the cache is constrained by
its storage capacity (i.e., cache space); we do not consider
the access bandwidth of the proxy storage (e.g., disc access
speed) as a bottleneck. We furthermore assume that the
bandwidth bottleneck is the link connecting the cache to the
origin servers; we assume that clients choose the appro-
priate number of encoding layers for their Internet access
speed (such that the client's local access network is not a
bottleneck).

This paper is organized as follows: In Section 2, we
present our layered video streaming model. In Section 3, we
present our utility heuristics and evaluate their perfor-
mance. Section 4 extends our caching model by adding the
possibility to negotiate the delivered stream quality.
Section 5 considers a queuing scheme for managing client

requests. Section 6 considers the usefulness of partial
caching. Section 7 presents an overview of related work
and Section 8 concludes the paper.

2 MODEL OF LAYERED VIDEO STREAMING WITH

PROXY

Fig. 1 illustrates our architecture for continuous media
streaming with proxy servers. We first give a rough
overview of our streaming architecture and then discuss
each component in detail. All available continuous media
objects are stored on the origin servers. Popular streams are
cached in proxy servers. The clients direct their streaming
requests to the appropriate proxy server. If the requested
stream is cached in the proxy, it is directly streamed over
the local access network to the client. If the requested
stream is not cached in the proxy, it is streamed from the
origin server over the wide area network (modeled as a
bottleneck link of capacity C) to the proxy. The proxy
forwards the stream to the client.

2.1 Layered Video

The continuous media objects available on the origin
servers are prerecorded audio and video objects, such as
CD-quality music clips, short video clips (e.g., news clips,
trailers or music videos) or full-length movies or online
lectures. Our focus in this study is on video objects that
have been encoded using layered (hierarchical) encoding
techniques [7], [8], [9], [10]. With hierarchical encoding,
each video object is encoded into a base layer and one or
more enhancement layers. The base layer contains the most
essential basic quality information. The enhancement layers
provide quality enhancements. A particular enhancement
layer can only be decoded if all lower quality layers are

KANGASHARJU ET AL.: DISTRIBUTING LAYERED ENCODED VIDEO THROUGH CACHES 623

Fig. 1. Architecture for caching and streaming of layered encoded video.

available. Therefore, an enhancement layer is useless for the
client if the corresponding lower quality layers are not
available.

Layered video allows service providers to offer flexible
streaming services to clients with vastly different reception
bandwidths and decoding capabilities. Typically, wireless
clients and clients with modem-speed wireline Internet
access will request only the base layer stream. Clients with
high-speed ADSL or cable modem access, on the other
hand, may wish to receive higher quality streams consisting
of a base layer as well enhancement layers. Furthermore,
layered video allows for flexible pricing structures. A
service provider may offer the base layer stream at a basic
rate and charge a premium for the enhancement layers. In
other words, clients are charged more when receiving more
layers (i.e., higher quality streams). Such a pricing structure
might prompt clients to request the cheaper base layer-only
stream of a news clip or talk show, say, while requesting the
more expensive high quality stream of an entertainment
movie.

To make the notion of layered video objects more
precise, suppose that there are M video objects. Let
T �m�; m � 1; . . . ;M, denote the length (in seconds) of
video object m. Let N�m�; m � 1; . . . ;M, denote the
number of video frames in video object m. (For a typical
fixed frame rate of 25 frames per second, we have
N�m� � T �m� � 25 frames=sec.) We assume that the video
objects are encoded into L layers. (Our model extends to
video objects that differ in the number of layers in a
straightforward manner.) Video is typically encoded
1) without rate control (i.e., open-loop), which results in
constant video quality but highly variable traffic (bit rate) or
2) with rate control (i.e., closed-loop), which results in some
variations in the video quality but nearly constant bit rate
traffic [11], [12]. Video traffic smoothing techniques, e.g.,
[13], are expected to be widely employed for the streaming
of stored (prerecorded) video. (Note that all videos
distributed through caches are prerecorded.) These smooth-
ing techniques can 1) significantly reduce the traffic
variability of open-loop encodings or 2) further smooth
the traffic of closed-loop encodings. It is also expected that,
for layered encoding, rate control will typically be em-
ployed for most (if not all) layers [7]. Thus, the encoding
layers distributed through caches are expected to typically
have a constant bitrate or a variable bitrate with small
variations. Nevertheless, we outline how to accommodate
1) constant bit rate (CBR) video traffic, 2) variable bit rate
(VBR) video traffic with small to moderate variability, as
well as 3) highly variable VBR video traffic in our model.
Let ft�l;m� denote the size (in bits) of the video frame
t; t � 1; . . . ; N�m�, of layer l; l � 1; . . . ; L, of video object
m; m � 1; . . . ;M. For CBR traffic, the frame sizes are
constant, i.e., ft�l;m� � f�l;m� for all t � 1; . . . ; N�m�. For
the case of CBR traffic, let rl�m� denote the constant bit
rate (in bit/sec) of layer l of video object m. (With a
typical fixed frame rate of 25 frames per second, we have
rl�m� � f�l;m� � 25 frames=sec.) For VBR traffic, the frame
sizes ft�l;m� vary over time t. For the case of VBR traffic
with small or moderate variability, let rl�m� denote the
(additive) effective bandwidth [14], [15], [16], [17], [18] of

layer l of video object m. The additive effective bandwidth
rl�m� can be obtained in a straightforward manner from the
frame sizes ft�l;m�; t � 1; . . .N�m�, a limit � on the
probability of loss (i.e., buffer overflow or, equivalently,
delay bound violation) at the bottleneck link (e.g., typically,
� � 10ÿ6), and the size of the buffer in front of the
bottleneck link. The additive effective bandwidth does not
depend on the other streams sharing the bottleneck link.
The additive effective bandwidth approach is typically
accurate for traffic with small to moderate variability (and
large link buffers). For highly variable traffic (and/or
small link buffers), the additive effective bandwidth
approach may be overly conservative (and result in
overprovisioning of link bandwidth). In Appendix B, we
give a method for efficiently accommodating highly
variable VBR traffic in our model. We define a j-quality
stream as a stream consisting of layers 1; 2; . . . ; j. Let
R�j;m� denote the revenue accrued from providing a j-
quality stream of object m.

2.2 Proxy Server

The proxy server is located close to the clients. It is
connected to the origin servers via a wide area network
(e.g., the Internet). We model the bandwidth available for
streaming continuous media from the origin servers to the
proxy server as a bottleneck link of fixed capacity C (bit/
sec). The proxy is connected to the clients via a local access
network. The local access network could be a LAN running
over Ethernet or a residential access network using xDSL or
HFC technologies. We assume that each client selects the
stream quality (i.e., the number of encoding layers)
according to the speed that can be accommodated by its
Internet access network. In other words, each client makes
sure that its Internet access speed is sufficient to support the
requested stream quality (such that the local access network
is not a bottleneck). We model the proxy server as having a
storage capacity of G (bytes). We assume that the proxy's
storage bandwidth (for reading from storage) is not a
bottleneck. We note that the proxy storage is typically a disk
array with limited storage bandwidth due to the limited
disk bandwidths and seek and rotational overheads. Our
focus in this study, however, is on gaining a fundamental
understanding of the impact of the two basic streaming
resources (bottleneck bandwidth C and cache space G) on
the proxy performance. We refer the interested reader to [5],
[19], [20] for a detailed discussion of the disk array
limitations as well as discussions on replication and striping
techniques to mitigate these limitations.

We consider a caching scenario where the cache contents
are updated periodically, say every few hours, daily, or
weekly. The periodic cache updates are based on estimates
of the request pattern of the proxy's client community. A
service provider may estimate the request pattern from
observations over the last couple of hours, days, or weeks.
The periodic cache update policy is motivated by two
important findings about the typical client request pattern
for streaming media [4]: 1) Objects that are requested by
more than one client are typically requested by many clients
and thus account for a large fraction of the streaming traffic.
2) Many objects (roughly 84 percent in the workloads
studied in [4]) are requested only once, i.e., are so-called

624 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 6, JUNE 2002

one-timers. Given the large size of the video objects and the
need to utilize the cache space efficiently, a sensible caching
strategy avoids one-timers and, instead, tries to fill the
cache with objects that are requested multiple times. The
periodic cache update policy strives to achieve this by
basing caching decisions on the request pattern observed
over the recent past.

Suppose that the requests for video streams arrive
according to a Poisson process with rate � (requests/sec).
Let p�j;m� denote the popularity of the j-quality stream of
object m, that is, p�j;m� is the probability that a request is
for the j-quality stream of object m. These popularities could
be estimated from the observed requests using an expo-
nential weighted moving average. As a proper probability
mass distribution, the p�j;m�s satisfy

XM
m�1

XL
j�1

p�j;m� � 1:

Also note that the arrival rate of requests for the j-quality
stream of object m is given by �p�j;m�.

Our focus in this study is on caching strategies that cache
complete layers of video objects in the proxy. Our goal is to
cache object layers so as to maximize the revenue accrued
from the streaming service. When updating the cache, our
heuristics give layers of very popular objects priority over
layers of moderately popular objects. Moreover, lower
quality layers are given priority over higher quality layers
(as these require the lower quality layers for decoding at the
clients).

To keep track of the cached object layers, we introduce a
vector of cache indicators c � �c1; c2; . . . ; cM�, with 0 � cm �
L for m � 1; . . . ;M. The indicator cm is set to i if layers 1
through i of object m are cached. Note that cm � 0 indicates
that no layer of object m is cached. With the cache indicator
notation the cache space occupied by the cached object
layers is given by

S�c� �
XM
m�1

Xcm
l�1

XN�m�
t�1

ft�l;m�: �1�

2.3 Stream Delivery

The client directs its request for a j-quality stream of a video
object m to its proxy server (for instance, by using the Real
Time Streaming Protocol (RTSP) [21]). If all the requested
layers are cached in the proxy (cm � j), the requested layers
are streamed from the proxy over the local access network
to the client. If layers are missing in the proxy �cm < j�, the
proxy attempts to establish a connection to the appropriate
origin server for the streaming of the missing layers cm �
1; . . . ; j over the bottleneck link. The proxy relays these
layers to the client in addition to the layers streamed from
the cache. In the remainder of this section, we focus on the
cases of CBR layers and VBR layers with small or moderate
variability which are modeled using the additive effective
bandwidth approach. (For the case of highly variable
VBR layers, we refer the reader to Appendix B.) If there is
sufficient bandwidth available on the bottleneck link, the
connection is established and the stream occupies the link
bandwidth

Pj
l�cm�1 rl�m� over the lifetime of the stream.

(The layers 1; . . . ; cm are streamed from the proxy directly to
the client.) We assume that the client watches the entire
stream without interruptions, thus the bandwidthPj

l�cm�1 rl�m� is occupied for T �m� seconds. In the case
where there is not sufficient bandwidth available on the
bottleneck link, we consider the request as blocked. (In
Section 4, we study a refined model where clients may settle
for a lower quality stream in case their original request is
blocked.)

Formally, let Bc�j;m� denote the blocking probability of
the request for a j-quality stream of object m, given the
cache configuration c. Clearly, there is no blocking when all
requested layers are cached, that is, Bc�j;m� � 0 for cm � j.
If the request requires the streaming of layers over the
bottleneck link (cm < j), blocking occurs with a nonzero
probability Bc�j;m�. We calculate the blocking probabilities
Bc�j;m� using results from the analysis of multiservice loss
models [22]. An overview of the relevant loss modeling is
provided in Appendix A. In summary, we model the
bottleneck link as a stochastic knapsack of capacity C.
Requests for j-quality streams (j � 1; . . . ; L) of object
m; m � 1; . . . ;M, are modeled as a distinct class of
requests, thus, there are a total of ML distinct classes of
requests. The load offered by requests for j-quality streams
of object m is �p�j;m�T �m�. The blocking probabilities
Bc�j;m� for the request classes can be calculated using the
recursive Kaufman-Roberts algorithm [22, p. 23] with a time
complexity of O�CML�. The expected blocking probability
of a client's request is given by

B�c� �
XM
m�1

XL
j�1

p�j;m�Bc�j;m�:

The service provider should strive to keep the expected
blocking probability acceptably small, say, less than
5 percent. The throughput of requests for j-quality streams
of object m, that is, the long run rate at which these requests
are granted and serviced, is �p�j;m��1ÿBc�j;m��. The long
run rate of revenue accrued from the serviced j-quality
streams of object m is the revenue per served request,
R�j;m�, multiplied by the throughput. Thus, the long run
total rate of revenue of the streaming service is

R�c� � �
XM
m�1

XL
j�1

R�j;m�p�j;m��1ÿBc�j;m��: �2�

Our goal is to cache object layers so as to maximize the total
revenue rate.

3 OPTIMAL CACHING

In this section, we study optimal caching strategies.
Suppose that the stream popularities (p�j;m�) and the
stream characteristics (layer rates rl�m� and lengths T �m�)
are given. The question we address is how to best utilize the
streaming resourcesÐbottleneck bandwidth C and cache
space GÐin order to maximize the revenue. Our focus in
this study is on optimal caching strategies, that is, we focus
on the question: Which objects and which layers thereof
should be cached in order to maximize the revenue?
Formally, we study the optimization problem maxc R�c�

KANGASHARJU ET AL.: DISTRIBUTING LAYERED ENCODED VIDEO THROUGH CACHES 625

subject to S�c� � G. Throughout this study, we assume the
complete sharing admission policy for the bottleneck link,
that is, a connection is always admitted when there is
sufficient bandwidth. We note that complete sharing is not
necessarily the optimal admission policy. In fact, the
optimal admission policy may block a request (even when
there is sufficient bandwidth) to save bandwidth for more
profitable requests arriving later. We refer the interested
reader to [22, chapter 4] for a detailed discussion on optimal
admission policies. Our focus in this study is on the impact
of the caching policy on the revenue; we assume complete
sharing as a baseline admission policy that is simple to
describe and administer.

The maximization of the long run revenue rate R�c� over
all possible caching strategies (i.e., cache configurations c) is
a difficult stochastic optimization problem, thatÐto the best
of our knowledgeÐis analytically intractable. To illustrate
the problem, consider a scenario where all video layers
have the same rate r and length T , i.e., rl�m� � r and
T �m� � T for all l � 1; . . . ; L and all m � 1; . . . ;M. In this
scenario, all object layers have the size rT . Thus, we can
cache up to G=�rT � object layers (which we assume to be an
integer for simplicity). Suppose that, during the observation
period used to estimate the stream popularities, the proxy
has recorded requests for M distinct objects from its client
community. Thus, there are a total of ML object layers to
choose from when filling the cache (with ªhotº new
releases, there might even be more objects to consider).
Typically, the cache can accommodate only a small subset
of the available object layers, i.e., G=�rT � �ML. For an
exhaustive search, there are

ML
G=�rT �

� �
possibilities to fill the cache completely; a prohibitively
large search space even for small ML.

Recall that, with layered encoded video, a particular
enhancement layer can only be decoded if all lower quality
layers are available. Therefore, a reasonable restriction of
the search space is to consider a particular enhancement
layer for caching only if all lower quality layers of the
corresponding object are cached. Even the ªreasonableº
search space, however, is prohibitively large for moderate
ML; with M � 50, L � 2, G=�rT � � 20, for instance, there
are 2:929 � 1016 possibilities to fill the cache completely.

Because the maximization problem maxc R�c� subject to
S�c� � G is analytically intractable and exhaustive searches
over c are prohibitive for realistic problems, we propose
heuristics for finding the optimal cache composition c.

3.1 Utility Heuristics

The basic idea of our utility heuristics is to assign
each of the ML object layers a cache utility
ul;m; l � 1; . . . ; L; m � 1; . . . ;M. The object layers are then
cached in decreasing order of utility, that is, first we cache
the object layer with the highest utility, then the object layer
with the next highest utility, and so on. If, at some point (as
the cache fills up), the object layer with the next highest
utility does not fit into the remaining cache space, we skip
this object layer and try to cache the object layer with the

next highest utility. Once a layer of an object has been
skipped, all other layers of this object are ignored as we
continue ªpackingº the cache. We propose a number of
definitions of the utility ul;m of an object layer; see Table 1
for an overview.

The popularity utility is based exclusively on the stream
popularities; it is defined by

ul;m � p�l;m� � p�l� 1;m� � � � � � p�L;m�:
This definition is based on the decoding constraint of
layered encoded video, that is, an object layer l is required
(i.e., has utility) for providing l-quality streams (consisting
of layers 1 through l), (l + 1)-quality streams, . . . , and L-
quality streams. Note that ul;m is the probability that a
request involves the streaming of layer l of object m. Also
note that, by definition, ul;m � ul�1;m for l � 1; . . . ; Lÿ 1.
This, in conjunction with our packing strategy, ensures that
a particular enhancement layer is cached only if all
corresponding lower quality layers are cached.

3.2 Evaluation of Heuristics

In this section, we present some numerical results from
experiments to evaluate various aspects of the heuristics
algorithms. We ran two different types of experiments. The
bulk of the experiments was carried out analytically by
calculating the revenue according to (2) and calculating the
blocking probabilities as described in Appendix A. All of
the results presented in this section are obtained in this
fashion. We refer to these experiments as analytical
experiments.

We also implemented a cache simulator in order to study
the queuing of requests and partial caching. These results
are presented in Sections 4, 5, and 6. We refer to these
experiments as simulation experiments.

We assume that there are M � 1; 000 different videos,
each encoded into L � 2 constant bit rate layers. The
characteristics of each video are defined by the rate for
each layer and its length. The rate for each layer is drawn
randomly from a uniform distribution between 0.1 and
3 Mbps, while the length of the video is drawn from an
exponential distribution with an average length of �T �
3; 600 seconds.

In all of our experiments, client requests arrive according
to a Poisson process. The average request arrival rate is
� �M=�3 � �T � � 10:8 requests per second. The client can
request either a base layer only or a complete video
(consisting of a base layer and an enhancement layer).
The request type and the video requested are drawn
randomly from a Zipf distribution with a parameter of
� � 1:0. The revenue for each video layer is uniformly

626 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 6, JUNE 2002

TABLE 1
Utility Definitions

distributed between 1 to 10 to reflect a flexible pricing
structure.

The results of interest will be the revenue per hour and
the blocking probabilities. To obtain the results with
99 percent confidence intervals, we run the experiments
with different random seeds and we require a minimum of
10,000 runs before calculating the confidence intervals. In
each run, we randomly assign the popularities of videos
from the Zipf distribution, the rates, and the lengths of the
video layers. The results are calculated as the average value
of the revenue per hour from all the runs until the
confidence intervals are reached.

We first tested the performance of our heuristics in small
problems in order to be able to compare the heuristics
against the ªreasonableº exhaustive search. For the small
problems, we set M � 10, with each video having two
constant bit rate layers. We varied the link bandwidth C
between 3 and 15 Mbit/s and the cache capacity between 3
and 7 Gbytes. The cache could therefore store, on average,
between 3.5 and 7.6 layers out of the total 20 layers or
between 23.1 and 41.7 percent of the total video data.

The results of the small problems are shown in Table 2.
In Table 2, we show the average error obtained with each
heuristic compared to the ªreasonableº exhaustive search
for four different cache configurations. The Small Link and
Large Link refer to link capacities of 3 Mbit/s and 15 Mbit/s,
respectively, and Small Cache and Large Cache refer to
3 Gbyte and 7 Gbyte caches, respectively.

As we can see, our heuristics achieve performance very
close to the optimum in most cases. Only when both the link
and the cache are small is there any marked difference in
performance. This is largely due to the small link capacity,
only 3 Mbit/s, which allows us to stream only one video on
average. As both the link and cache grow in size, we can
achieve essentially the same performance as the optimal
caching strategy.

To test the performance of our heuristics in real-world
size problems, we ran the heuristics for 1,000 videos. We
varied the cache size between 12 and 560 Gbytes. The cache
could therefore hold, on average, between 13.9 and
625 layers or between 0.9 and 41.7 percent of the total
video data. Given the average length of a video Tavg, the
average rate of a video ravg, and the client request rate �, we
would need, on average, Tavgravg� Mbit/s of bandwidth to
stream all the requested videos. We varied the link capacity
between 10 and 150 Mbit/s or between 1 and 15 percent of
the total bandwidth required.

Because running the exhaustive search was not feasible
for problems this large, we approximated the best possible
performance by calculating the revenue when the blocking
probability was zero. This means that all client requests are

always satisfied and it provides us with an upper limit on
the achievable revenue. In reality, this upper limit is not
reachable unless the link and cache capacities are suffi-
ciently large to ensure that no client requests are ever
blocked. In our tests, the smallest observed blocking
probabilities were around 0.005 percent.

In Fig. 2, we show the revenue relative to the no blocking
case obtained with three different cache sizes as a function
of the link capacity. We can see that the revenue density
heuristic performs the best overall and that the performance
difference is biggest when the link capacity is small. As the
link capacity increases, the performance difference disap-
pears. We also see that the popularity heuristic has the
worst overall performance.

In Fig. 3, we show the revenue obtained with two
different link capacities as a function of the cache size. Here,
the difference between the revenue density heuristic and
the others is clearer. For example, with a 1 percent link and
a 20 percent cache (10 Mbit/s link and a cache of 250 Gbytes
in our case), the revenue density heuristic achieves 87
percent of the upper limit, while the revenue heuristic
achieves only 79 percent. Again, as in Fig. 2, when we have
enough link and cache capacity, the difference between the
heuristics disappears. To illustrate the tight confidence
intervals we observed, we plot the revenue density heuristic
in the 1 percent link case with the 99 percent confidence
intervals.

Overall, we can conclude that the revenue density utility
heuristic has the best performance of the three heuristics
studied. This is especially true in situations where we have
a shortage of one of the resources, link capacity, or cache
size. This implies that the revenue density heuristic predicts

KANGASHARJU ET AL.: DISTRIBUTING LAYERED ENCODED VIDEO THROUGH CACHES 627

TABLE 2
Average Error of Heuristics in Small Problems

Fig. 2. Revenue as function of link capacity for three different cache

sizes.

the usefulness of a layer more accurately than the other two
heuristics.

In Fig. 4, we show the revenue obtained with the revenue
density heuristic as a function of both link capacity and
cache size. We observe that if we have a shortage of both
resources, we should first increase the cache before
increasing the link capacity. We see that, when the cache
size is around 20 percent of the total video data (250 Gbytes
in our case), further increases in the cache size provide only
small gains in revenue. At this point, increasing the link
capacity provides larger gains in revenue. This behavior can
also be observed in Figs. 2 and 3, where we can see that the
revenue increases roughly linearly with the link capacity
and roughly logarithmically with the cache size.

In Fig. 5, we show the expected blocking probability
for the revenue density heuristic. Note that the plot
shows 1ÿB�c� and the smallest expected blocking
probability is therefore obtained when the curve is close
to 1. This plot reflects the typical blocking probabilities
we obtained in all of our experiments, including the
experiments in Sections 4, 5, and 6.

We also studied the effects of varying the parameter � in
the Zipf-distribution and varying the client request rate, �.
Previous studies in Web caching and server access

dynamics have found that � can vary from 0.6 in Web
proxies [23] up to 1.4 in popular Web servers [24]. We
studied four different values of �, namely, 0.6, 0.8, 1.0, and
1.3. In Fig. 6, we show the revenue obtained with each of the
four parameter values for three different link capacities as a
function of the cache size (using the revenue density
heuristic). We can see that the curves corresponding to
one value of � are close together and that there is a
significant difference in groups of curves belonging to
different values of �. This implies that a decrease in �
(videos become more equally popular) requires significant
increases in link capacity and cache size to keep the revenue
at the same level. On the other hand, should � increase
(small number of videos become very popular), we can
achieve the same revenue with considerably less resources.

In Fig. 7, we show the effects of varying the client request
rate. We plot curves for a low request rate (� � 3:6
requests/sec), a medium request rate (� � 10:8 requests/
sec), and a high request rate (� � 18 equests/sec) for two
different link capacities (using the revenue density heur-
istic). The curves for ªLow � at 6 percent linkº and
ªMedium � at 10 percent linkº fall on top of each other.
We can clearly see that the client request rate has much less
effect on the revenue than the Zipf-parameter. In some
cases, it is possible to counter the changes in request rate by
increasing the link capacity or cache size. For example, if the

628 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 6, JUNE 2002

Fig. 3. Revenue as function of cache size for two different link

capacities.

Fig. 4. Revenue as function of cache size and link capacity.

Fig. 5. 1ÿB�c� as function of cache size and link capacity.

Fig. 6. Effect of Zipf-parameter � on revenue.

request rate goes from Low to Medium, increasing the link
capacity from 6 percent to 10 percent (60 Mbit/s to
100 Mbit/s in this case) keeps the relative revenue the same.

In conclusion, all three of our heuristics perform well
under many different link and cache size combinations. The
revenue density heuristic achieves the best performance
under constrained conditions.

4 NEGOTIATION ABOUT STREAM QUALITY

In this section, we study a negotiation scheme where, in
case the client's original request is blocked, the service
provider tries to offer a lower quality stream of the
requested object. The client may then settle for this lower
quality stream. The question we address is: How much
additional revenue is incurred with this ªnegotiation.º As
we shall demonstrate, this intuitively quite appealing
approach adds very little to the revenue in most situations.
For simplicity, we focus in this section on video objects that
are encoded into L � 2 layers: a base layer and one
enhancement layer. (Our arguments extend to the case of
more encoding layers in a straightforward manner.)
Suppose that a client requests a 2-quality stream (consisting
of a base layer and an enhancement layer) of object m.
Suppose that the cache configuration is given by c. Clearly,
the original request can only be blocked if not all requested
layers are cached, that is, if cm < 2. If the client's original
request for a 2-quality stream of object m is blocked, the
service provider tries to offer a 1-quality (i.e., base layer)
stream of the object. The service provider is able to make
this offer if the base layer stream is not blocked.

Note that the negotiations increase the arrival rates of
requests for base layer streams. This is because the blocked
2-quality stream requests ªreappearº as base layer stream
requests. With negotiations, the arrival rates of base layer
stream requests depend on the blocking probabilities of
2-quality stream requests, that is, the system becomes a
generalized stochastic knapsack [22, chapter 3]. Calculating
the blocking probabilities of the generalized stochastic
knapsack, however, is quite unwieldy. Therefore, we
approximate the blocking probabilities of the streaming
system with negotiations. In typical streaming systems the

blocking probabilities are small, typically less than 5 percent.
The increase in the arrival rates of base layer stream
requests is therefore relatively small. We approximate the
blocking probabilities of the system with negotiations by the
blocking probabilities of the system without negotiations.
The probability that the client's original request for a 2-quality
stream of object m is blocked is approximately Bc�2;m�. The
probability that the corresponding base layer stream is not
blocked is approximately 1ÿBc�1;m�. Suppose that the
client accepts the quality degradation with probability
Pacc�m�. If the client does not accept the offer, the negotiation
terminates. Thus, given that the negotiation is entered, it ends
in a success (i.e., service provider and client settle for a base
layer stream) with probability �1ÿBc�1;m��Pacc�m�. The
long run rate (successful negotiations per hour) at which
negotiations settle for a base layer stream of object m is
�p�2;m�Bc�2;m��1ÿBc�1;m��Pacc�m�. Suppose that each
successful negotiation resulting in the delivery of a base
layer stream of object m incurs a revenue of Rneg�1;m�
(which may be different from R�1;m� as the service
provider may offer the base layer at a discount in the
negotiation). Thus, the long run total rate of revenue
incurred from successful negotiations is

Rneg�c� � �
XM
m�1

Rneg�1;m�p�2;m�Bc�2;m�

�1ÿBc�1;m��Pacc�m�:
The long run total rate of revenue of the streaming
service with negotiations is R�c� �Rneg�c�, where R�c�,
the revenue rate incurred from serving first-choice
requests, is given by (2).

4.1 Numerical Results

We experimented with adding the renegotiation revenue to
our tests. We first tested the quality of the approximation
used in calculating the blocking probability of the system
with renegotiation against the results obtained from our
cache simulator. We varied the link capacities between 10 to
120 Mbps. Our results show a close approximation of the
analytical experiments to the simulation experiments with
an average error of 0.4-0.5 percent for the 12 Gbyte cache
and 0.7-1.1 percent for the 560 Gbyte cache. The results
presented here are from the analytical experiments.

Fig. 8 shows how much extra revenue renegotiation
could bring relative to the baseline revenue R�c� (using the
revenue density heuristic). The revenue in Fig. 8 is based on
the assumption that the client will always accept the lower
quality version if one is available, i.e., Pacc�m� � 1 for
m � 1; . . . ;M. We also assumed that Rneg�1;m� � R�1;m�
for m � 1; . . . ;M, i.e., the revenue from the renegotiated
stream is the same as if the client had requested the lower
quality stream in the first place. These two assumptions
give us the maximum possible gain from renegotiation.

As we can see from Fig. 8, the largest gains from
renegotiation are achieved when the cache size is extremely
small, only 1-2 percent of the total amount of data. The
renegotiation gains are almost insensitive to link capacity
with the exception of very small link capacities, where the
gains are slightly smaller. The maximum gain we observed
is around 20 percent and the gain drops sharply as the

KANGASHARJU ET AL.: DISTRIBUTING LAYERED ENCODED VIDEO THROUGH CACHES 629

Fig. 7. Effect of client request rate on revenue.

cache size increases. The maximum gain would decrease as
the client acceptance probability Pacc decreases. Also, if the
cache size and link capacity are large, the potential gain
from renegotiation is typically well below 1 percent. We can
therefore conclude that renegotiation, although intuitively
appealing, does not provide any significant increase in
revenue in most situations (although it might help to avoid
a situation where customers that get blocked repeatedly
stop using the streaming service, which could result in a
potentially significant loss of revenue). We note that
renegotiation is only applicable to blocked requests and
one of the goals of a cache operator would be to keep the
expected blocking probability as low as possible.

5 QUEUING OF REQUESTS

In this section, we study a request queuing scheme where,
in case the client's request is blocked, the service provider
queues the request. With the queuing strategies, we expect
that the queued requests make use of the resources released
by currently served requests. This has the potential of
increasing the resource utilization and, thus, bringing
additional revenue. The question is how much additional
revenue does it bring.

We use simulation experiments to answer this question.
To align the experiments with real-world practice, we
assume that a client will cancel its request after waiting for
some time, referred to as the request timeout period. We
model the timeout period using an exponential distribution
with an average of five minutes.

We assume that the queue is of a finite size and it can
hold up to 100 requests. An incoming request finding a full
buffer will be blocked. We consider three different
strategies for ordering the requests in the queue, i.e., based
on the order of request arrivals, their required resources and
the potential revenues.

Fig. 9 shows how much extra revenue queuing of
requests could bring relative to the baseline revenue R�c�
for the revenue density heuristic. We observe from the
figure that the gain from introducing the queue is very
small. Higher gains can be achieved by changing the
request service strategies, for example, by serving the
requests according to the potential revenue or the amount
of resources required. In general, request queuing is most

beneficial when the resources are scarce. For example, the
figure indicates that the gain for a 4 percent cache is larger
than for a 40 percent cache. Similarly, the gain for a 4 percent
cache initially increases with increasing link capacity up to
a 10 percent link. The gain drops off with further increases
in the link capacity.

Plotting the potential gain against the average length of
the videos at 15 percent link capacity in Fig. 10, we observe
that the gain also increases as the video length increases.
This is expected since longer videos hold onto the available
resources longer and, hence, resource becomes rare.
Queuing allows a request to make use of the resources as
soon as they are available and, hence, increases the
utilization and revenue.

Overall, the results indicate that the queuing of requests
has a limited gain as compared to the additional complexity
that it introduces.

6 IS PARTIAL CACHING USEFUL?

Consider a streaming system where clients are only interested
in complete streams (consisting of all L layers) and no revenue

630 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 6, JUNE 2002

Fig. 8. Increased revenue from renegotiation.
Fig. 9. Increased revenue from queuing requests for varying link size.

(The average video length is fixed at 3,600 seconds.)

Fig. 10. Increased revenue from queuing requests for varying video

length. (The link capacity is fixed at 15 percent of the total requested

bandwidth.)

is incurred for partial streams (consisting of less than L
layers). The question we address is: In such a system, is
caching of partial streams (e.g., base layers) beneficial?
Interestingly, the answer appears to be no.

We focus on the homogeneous two-layer case where the
video objects are encoded into L � 2 layers: a base layer of
rate r1�m� and one enhancement layer of rate r2�m�. For
simplicity, we assume that 1) all videos have the same layer
rates, i.e., r1�m� � rb and r2�m� � re for m � 1; . . . ;M, and
2) all videos have the same length T . We study a system
where clients request only complete streams (consisting of
both base layer and enhancement layer), i.e., p�1;m� � 0 for
m � 1; . . . ;M. For ease of notation, we write p�m� for
p�2;m� and note that

PM
m�1 p�m� � 1. We order the video

objects from most popular to least popular; thus,
p�m� � p�m� 1�; m � 1; . . . ;M ÿ 1. In the considered
system no revenue is incurred for streams consisting of
only the base layer, i.e., R�1;m� � 0. We assume that all
complete streams incur the same revenue, i.e., R�2;m� � R
for m � 1; . . . ;M.

We investigate a caching strategy that caches both base
and enhancement layer of very popular video objects. For
moderately popular objects, only the base layer is cached
(and the enhancement layer is streamed upon request over
the bottleneck link of capacity C). For relatively unpopular
objects, neither base nor enhancement layer is cached. Let
N1 denote the number of completely cached objects.
Clearly, 0 � N1 � bG=��rb � re�T �c :� Nmax

1 . Let N2 denote
the number of cached base layers. The N1 completely
cached objects take up the cache space N1�rb � re�T . Hence,
0 � N2 � b�GÿN1�rb � re�T �=�rbT �c :� Nmax

2 . The investi-
gated caching strategy caches the base and enhancement
layer of the N1 most popular objects, that is, objects
1; . . . ; N1. It caches the base layers of the N2 next most
popular objects, that is, of objects N1 � 1; . . . ; N1 �N2.

The probability that a request is for a completely cached

object is P1 �
PN1

m�1 p�m�. The probability that a request is

for an object for which only the base layer has been cached

is P2 �
PN1�N2

m�N1�1 p�m�. Note that the probability that a

request is for an object which has not been cached at all is

P3 � 1ÿ P1 ÿ P2.
We model the bottleneck link connecting the cache to the

wide area network again as a stochastic knapsack [22]. The
bottleneck link is modeled as a knapsack of capacity C. We
refer to streams of completely cached video objects as class 1
streams. Class 1 streams consume no bandwidth on the
bottleneck link, that is, b1 � 0. The arrival rate of class 1
streams is �1 � �P1. Streams of video objects for which only
the base layer is cached are referred to as class 2 streams.
Class 2 streams consume the bandwidth b2 � re. The arrival
rate for class 2 streams is �2 � �P2. Streams of video objects
which have not been cached at all are referred to as class 3
streams. Class 3 streams consume the bandwidth b3 �
rb � re and have an arrival rate of �3 � �P3. All streams
have a fixed holding time T .

Our objective is to maximize the total long run
revenue rate or, equivalently, the long run throughput
of requests (i.e., the long run rate at which requests are
granted and serviced). Toward this end, let THk denote

the long run throughput of class k requests. Also, let TH
denote the long run total throughput of requests. Clearly,
TH � TH1 � TH2 � TH3. Let Bk denote the probability that
a request for a stream of class k is blocked. Obviously, B1 �
0 since class 1 streams do not consume any bandwidth.
Thus, TH � ��P1 � P2�1ÿB2� � P3�1ÿB3��.
6.1 Numerical Results

We used our cache simulator to study partial caching. All
the results in this section are obtained from the simulator.
We used the same experiment setup (layer rates, video
lengths, and Zipf-parameter) as for evaluating the perfor-
mance of the utility heuristics in Section 3.2. In fact, we can
consider the partial caching case as a special case of the
utility heuristics. Note that, for the partial caching case, the
utilities of the base and enhancement layer of a given video
are the same and, thus, base layer and enhancement layer
are cached together.

In our experiments, we question the usefulness of partial
caching where a portion of the cache is reserved for caching
base layers only. Doing so allows us to cache (at least the
base layers of) a larger number of videos for the same cache
size. An intuitive question to follow is whether trunk
reservation is beneficial. With trunk reservation, a portion of
the link bandwidth, say C2 � x% of C, 0 � x � 100, is
reserved for streaming the enhancement layers of the class 2
videos which have base layers in the cache. We naturally
expect that a combination of these two strategies may give
us the best throughput.

Figs. 11 and 12 show the normalized throughput as a
function of the percentage of cache space used for caching
complete videos (the remaining fraction of the cache is used
for caching base layers). Fig. 11 shows the throughput for
different levels of link reservation for enhancement layer
streaming and different cache sizes. Fig. 12 shows the
throughput for different levels of link reservation and
different Zipf parameters of the request distribution. A link
reservation of 0 percent implies a complete sharing of the
link bandwidth between class 2 and class 3 streams. This
case can be analyzed using the stochastic knapsack formula-
tion, see Section 2.3, which gives us the blocking prob-
abilities B2 and B3 and, hence, the throughput. On the other
hand, the link reservation of 100 percent implies a total
blocking of class 3 streams. The link is solely used for
streaming enhancement layers for class 2 streams which
have base layers cached. As we have only one traffic class,
this case can be analyzed using the Erlang-B formula with
the number of trunks being C=re. For the other cases with
link reservations between 0 to 100 percent, we use
simulations to obtain the throughput.

The results confirm our intuition that, once we reserve
some fraction of the link for enhancement layer streaming,
it is beneficial to reserve some fraction of the cache for base
layers (and vice versa). We observe from Fig. 11 for the
4 percent cache, for instance, that the ª50 percent of Cº and
ª100 percent of Cº link reservation curves give the highest
throughput when reserving roughly 22 percent of the cache
for complete videos (i.e., when 78 percent of the cache are
allocated to base layers). However, we observe from Fig. 11
(Fig. 12) that, for a given cache size (Zipf parameter of the
request distribution), the maximum throughput is always

KANGASHARJU ET AL.: DISTRIBUTING LAYERED ENCODED VIDEO THROUGH CACHES 631

obtained at the right edge of the plot, that is, when the
entire cache is reserved for caching complete videos (and no
link reservation is employed). In this case, there are no
class 2 streams and, thus, the link is used exclusively for
streaming the class 3 streams. The results presented here, as
well as our more detailed investigations [25], indicate that
partial caching is not beneficial.

7 RELATED WORK

In this paper, we have developed and evaluated an
analytical model for the caching and streaming of multi-
layered encoded video. This topic has received only a little
attention so far. Rejaie et al. propose a proxy caching
mechanism [6] in conjunction with a congestion control
mechanism [26], [27] for layered-encoded video and
evaluate their mechanisms through simulations. (Feamster
et al. [28] develop a refinement of the congestion control
mechanism by considering generalized additive-increase-
multiplicative-decrease algorithms. Zink et al. [29] develop
a variation of the congestion control mechanism which
strives to keep the streaming to the cache TCP friendly and
obtain the fair share of the streaming bandwidth at the same
time.) The basic idea of the caching mechanism of Rejaie
et al. is to cache segments of layers according to the objects'
popularities and the dynamics of the congestion control
mechanism. The more popular an object (and the less
congestion), the more complete are the individual layers
cached and the more layers are cached (partially). When
streaming an object to a client, the layer segments that are
not cached at the proxy are obtained from the origin server.
Our work is complementary to the layered video caching
work [6] of Rejaie et al. in that we focus on a simplified
system (only complete layers are cached) to make the
system model mathematically tractable and to gain a
fundamental understanding of the impact of the two key
resources (cache space and link bandwidth).

The streaming of layered encoded video (without caching
at proxies) has been studied in a variety of contexts.
Optimal streaming strategies for the encoding layers are
proposed in [30], [31], [32], [33]. Several studies have

investigated the streaming of layered encoded video in the
context of multicast distribution [34], [35], [36], [37], [38].

Several studies have investigated the caching of single-
layer encoded video. Zhang et al. [39] propose a video staging
scheme where the part of the single-layer VBR encoded
video stream that exceeds a certain cut-off rate (i.e., the
bursts of a VBR stream) is cached at the proxy, while the
lower (now smoother) part of the video stream is stored at
the origin server. Sen et al. [40] propose caching a prefix
(i.e., the initial frames) of video streams at the proxy and to
employ work-ahead smoothing while streaming the object
from the proxy to the client. The cached prefix hides the
potentially large initial start-up delay of the work-ahead
transmission schedule from the client. Similar ideas are
explored by Ma and Du [41] and Rexford et al. [42], where
the proxy cache is used as staging space that enables the
delivery of smoothed video over the local access network
(from the proxy to the clients). Rexford and Towsley [43]
extend this idea to smoothing video in a multihop delivery
scenario; they stage the stream at several intermediate
gateways along the origin server to client path. Miao and
Ortega [44] propose mechanisms that cache some video
frames (i.e., perform selective caching) depending on the
network congestion with the goal of maximizing the video
quality. In [45], they develop selective caching mechanisms
for the video streaming over 1) networks with QoS support,
and 2) best-effort networks. In [46], Ma and Du study
related ideas, where certain segments (chunks) of the video
streams are cached. Verscheure et al. [47] combine the
caching of parts of videos with the scheduling of batches of
requests at the streaming server. Tewari et al. [48] propose a
Resource-Based Caching (RBC) scheme for video objects
encoded into one CBR layer. They consider caching certain
segments (runs) of the video stream and model the cache as
a two resource (storage space and bandwidth) constrained
(deterministic) knapsack. They study replacement policies
that take the sizes of the object segments as well as their
CBR bandwidth into account. The replacement policies are
evaluated through simulations. In a related work, Ma and
Du [49] formulate a family of segment caching policies as a
(deterministic) knapsack problem and propose heuristics to

632 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 6, JUNE 2002

Fig. 11. Normalized throughput for partial caching and trunk reservation

with different cache sizes (C � 150 Mbps, fixed).

Fig. 12. Normalized throughput for partial caching and trunk reservation

with different Zipf parameters.

solve it. The dynamic caching of segments of a video stream
is also analyzed by Andrews and Munagala [50]. Hofmann
et al. [51] and Bommaiaha et al. [52] study integrated
designs for streaming single-layer encoded multimedia
over the Internet; they incorporate several techniques, such
as prefix caching, request aggregation, and cooperative
dynamic caching, into their designs.

We finally note that the storage management aspects of
video proxy servers have been studied by Brubeck and
Rowe [53]. They developed the concept of multiple
cooperating video servers housing different parts of a video
stream. Jiang and Elmagarmid [54] study a comprehensive
design for a web-based video database which incorporates
semantic video content characterization and user profiling.

8 CONCLUSION

In this paper, we have formulated an analytical stochastic
knapsack model for the layered video caching problem. We
have proposed three different heuristics for determining
which layers of which videos to cache. Through extensive
numerical experiments, we have found that all our
heuristics perform well and that the best performance is
obtained with the revenue density heuristic. Our heuristics
are useful for cache operators in both provisioning the
caching system as well as deciding online the gain from
caching a given layer of a given video. To the best of our
knowledge, this is the first study to consider an analytical
model of this 2-resource problem.

We also considered two intuitive extensions, renegotia-
tion and queuing of requests, but found that they provide
little extra gain to the cache operator. As a special case,
we considered a situation where clients only request
complete video streams. Our results indicate that, in this
special case, best performance is obtained if videos are
cached completely.

There are also a number of avenues for future research,
such as considering dynamically changing request patterns.
Furthermore, there are a number of special scenarios where
theoretical results may be obtainable.

APPENDIX A

CALCULATION OF BLOCKING PROBABILITIES

Bc�j;m�
In this appendix, we first give a brief general overview of
the stochastic knapsack model and then outline the
calculation of the blocking probabilities Bc�j;m� in our
caching and streaming model. In general, a stochastic
knapsack consists of C resource units. Objects of K different
classes arrive at the knapsack according to K independent
Poisson processes. Class k; k � 1; . . . ; K, objects are char-
acterized by their size bk, their Poisson arrival rate �k, and
their mean holding time 1=�k. In the most basic setting, the
knapsack always admits an arriving object if there is
sufficient room, i.e., an arriving class k object is admitted
if at least bk resource units are unoccupied. Once admitted,
the object holds the bk resource units for a holding time with
mean 1=�k. At the end of the holding time, the bk resource
units are released. If an arriving object of size bk finds less

than bk resource units unoccupied, the object is blocked. The
dynamics of the stochastic knapsack have been modeled as
a Markov process and expressions for the equilibrium
distribution of the number of class-k objects, k � 1; . . . ; K, in
the knapsack and the blocking probability of class-k objects
have been derived [22]. We conclude this brief general
overview of the stochastic knapsack by noting that these
expressions depend on the objects' holding time distribu-
tions only through their means. Thus, the expressions also
hold for the fixed (deterministic) stream lifetimes consid-
ered in our caching and streaming model.

We now outline the calculation of the blocking prob-

abilities Bc�j;m� using the stochastic knapsack theory. Note

that we have to go through the following calculation only

for the nonzero blocking probabilities, i.e., for cm < j. We

model the bottleneck link for continuous media streaming

from the origin servers to the proxy server as a stochastic

knapsack of capacity C. We model requests for j-quality

streams of object m as a distinct class of requests. Let

bc � �bc�j;m��; m � 1; . . . ;M; j � 1; . . . ; L, be the vector of

the sizes of the requests. Note that this vector has ML

elements. Recall that a request for a j-quality stream of

object m of which the cm-quality stream is cached

requires the bandwidth
Pj

l�cm�1 rl�m� on the bottleneck

link; hence, bc�j;m� �
Pj

l�cm�1 rl�m� for cm < j and

bc�j;m� � 0 for cm � j. Without loss of generality, we

assume that C and all bc�j;m�s are positive integers.

Let n � �n�j;m��, m � 1; . . . ;M; j � 1; . . . ; L, be the

vector of the numbers of bc�j;m�-sized objects in the

knapsack. The n�j;m�s are nonnegative integers. Let

Sc � fn : bc � n � Cg be the state space of the stochas-

tic knapsack, where bc � n �
PM

m�1

PL
j�1 bc�j;m�n�j;m�.

Furthermore, let Sc�j;m� be the subset of states in which

the knapsack (i.e., the bottleneck link) admits an object of

size bc�j;m� (i.e., a stream of rate
Pj

l�cm�1 rl�m�). We have

Sc�j;m� � fn 2 Sc : bc � n � C ÿ bc�j;m�g The blocking

probabilities can be explicitly expressed as

Bc�j;m� � 1ÿP
n2Sc�j;m�

QM
m�1

QL
j�1���j;m��n�j;m�=�n�j;m��!P

n2Sc

QM
m�1

QL
j�1���j;m��n�j;m�=�n�j;m��!

;

where ��j;m� � �p�j;m�T �m�. Note that ��j;m� is the load

offered by requests for j-quality streams of object m. The

blocking probabilities can be efficiently calculated using the

recursive Kaufman-Roberts algorithm [22, p. 23]. The time

complexity of the algorithm is O�CML�. The complexity is

linear in the bandwidth C of the bottleneck link and the

number of objects M, which can be huge. The complexity is

also linear in the number of encoding layers L, which is

typically small (2-5).

KANGASHARJU ET AL.: DISTRIBUTING LAYERED ENCODED VIDEO THROUGH CACHES 633

APPENDIX B

BLOCKING PROBABILITY B�c� FOR HIGHLY VARIABLE

VBR TRAFFIC

In this appendix, we give a method for obtaining the
expected blocking probability B�c� and the long run total
rate of revenue R�c� for the case of highly variable VBR
layers, i.e., when the additive effective bandwidth approach
becomes overly conservative. Our method relies on the
extensive literature on refined loss calculations at multi-
plexers, e.g., [55], [56], [57], [58], [59], [60]. With these
refined loss calculations, we perform admission control to
enforce a limit � on the probability of loss (i.e., buffer
overflow) at the bottleneck link, where, typically, � � 10ÿ6.
The refined loss calculations give very accurate estimates of
the loss probability, even for highly variable traffic.
However, these refined loss calculations are not ªadditiveº
in that the link bandwidth (and buffer) resources required
for a particular stream depend not only in the statistics of
this particular stream, but also on the statistics of all the
other streams that share the bottleneck link. Hence, we
cannot directly employ the stochastic knapsack analysis to
obtain the blocking probability. Instead, we give the
following efficient and accurate simulation approach to
obtain the expected blocking probability B�c� and
revenue R�c� as a function of the cache configuration c.
Suppose we are given the stream popularities
p�j;m�; j � 1; . . . ; J ; m � 1; . . . ;M, the Poisson request
arrival rate � (in requests per second), and the stream life
times T �m�. To obtain the blocking probability and revenue
for a fixed cache configuration c, we conduct a discrete
event simulation of the streaming system at the call level
(i.e., we simulate the arrival of streaming requests and the
termination of streams; we do not simulate the transmission
of individual video frames or packets). In the simulation,
we keep track of the numbers of ongoing streams N �
�N�j;m�� for all video objects m � 1; . . . ;M and quality
levels j � 1; . . . ; L (where a j-quality stream consists of
layers 1; . . . ; j). Given the numbers of ongoing streams N
and the cache configuration c, we obtain the vector
k � �k�j;m��; j � 1; . . . ; L; m � 1; . . . ;M, where k�j;m� in-
dicates how many simultaneous transmissions of layer j of
video object m are currently ongoing over the bottleneck
link. Clearly, k�j;m� � 0 for j � cm and k�j;m� �PL

l�j N�l;m� for j > cm. When a new request for a j-quality
stream of video object m arrives, we proceed as follows: If
all the requested layers are cached (cm � j), there is no
blocking and we update N (note that k remains un-
changed). If layers are missing in the proxy (cm < j), we
check whether the loss probability on the bottleneck link
would exceed the prespecified limit � when the layers cm �
1; . . . ; j of video object m are added to the current link
load k. Given the frame sizes ft�j;m� of the prerecorded
videos, this is straightforward by applying the techniques in
[55], [56], [57], [58], [59], [60]. If the loss probability limit �
continues to be met with the additional layer(s), there is no
blocking. We increment the earned revenue by R�j;m� and
update N and k. Otherwise, i.e., if the loss probability limit
would be exceeded with the additional layer(s), we count a
blocking event and N, as well as k, remain unchanged.
When a stream terminates, we update N and k. Using, for

instance, the method of batch means [61], we obtain reliable

estimates of the expected blocking probability B�c� and the

long run total revenue rate R�c�.

ACKNOWLEDGMENTS

The authors are grateful to the three anonymous

reviewers, whose thoughtful comments greatly helped in

improving the quality of the paper. Part of this work

appeared in the Proceedings of IEEE Infocom 2001,

Anchorage, Alaska, April 2001.

REFERENCES

[1] J. Wang, ªA Survey of Web Caching Schemes for the Internet,º
ACM Computer Comm. Rev., vol. 29, no. 5, pp. 36-46, Oct. 1999.

[2] G. Barish and K. Obraczka, ªWorld Wide Web Caching: Trends
and Techniques,º IEEE Comm. Magazine, vol. 38, no. 5, pp. 178-184,
May 2000.

[3] S. Acharya and B. Smith, ªMiddleMan: A Video Caching Proxy
Server,º Proc. 10th Int'l Workshop Network and Operating System
Support for Digital Audio and Video (NOSSDAV), June 2000.

[4] M. Chesire, A. Wolman, G.M. Voelker, and H.M. Levy, ªMeasure-
ment and Analysis of a Streaming Media Workload,º Proc. Usenix
Symp. Internet Technologies & Systems (USITS), Mar. 2001.

[5] M. Reisslein, F. Hartanto, and K.W. Ross, ªInteractive Video
Streaming with Proxy Servers,º Information Sciences, An Int'l J.,
special issue on interactive virtual environment and distance
education, vol. 140, nos. 1-2, pp. 3-31, Dec. 2001, a shorter version
appeared in Proc. First Int'l Workshop Intelligent Multimedia
Computing and Networking (IMMCN), pp. II-588-591, Feb. 2000.

[6] R. Rejaie, H. Yu, M. Handley, and D. Estrin, ªMultimedia Proxy
Caching Mechanism for Quality Adaptive Streaming Applications
in the Internet,º Proc. IEEE INFOCOM 2000, Mar. 2000.

[7] K. Chandra and A.R. Reibman, ªModeling One- and Two-Layer
Variable Bit Rate Video,º IEEE/ACM Trans. Networking, vol. 7,
no. 3, pp. 398-413, June 1999.

[8] S. McCanne and M. Vetterli, ªJoint Source/Channel Coding for
Multicast Packet Video,º Proc. IEEE Int'l Conf. Image Processing,
pp. 776-785, Oct. 1995.

[9] J. Lee, T. Kim, and S. Ko, ªMotion Prediction Based on Temporal
Layering for Layered Video Coding,º Proc. Int'l Conf. Circuits/
Systems Computers and Comm. (ITC-CSCC), vol. 1, pp. 245-248, July
1998.

[10] M. Vishwanath and P. Chou, ªAn Efficient Algorithm for
Hierarchical Compression of Video,º Proc. IEEE Int'l Conf. Image
Processing, Nov. 1994.

[11] I. Dalgic and F.A. Tobagi, ªCharacterization of Quality and Traffic
for Various Video Encoding Schemes and Various Encoder
Control Schemes,º Technical Report CSL-TR-96-701, Stanford
Univ., Depts. of Electrical Eng. and Computer Science, Aug. 1996.

[12] F. Fitzek and M. Reisslein, ªMPEG-4 and H.263 Video Traces for
Network Performance Evaluation,º IEEE Network, vol. 15, no. 6,
pp. 40-54, Nov./Dec. 2001, video traces available at http://
www.eas.asu.edu/trace.

[13] J. Salehi, Z. Zhang, J. Kurose, and D. Towsley, ªSupporting Stored
Video: Reducing Rate Variability and End-to-End Resource
Requirements through Optimal Smoothing,º IEEE/ACM Trans.
Networking, vol. 6, no. 4, pp. 397-410, Aug. 1998.

[14] E. Knightly and N. Shroff, ªAdmission Control for Statistical QoS:
Theory and Practice,º IEEE Network, vol. 13, no. 2, pp. 20-29,
Mar./Apr. 1999.

[15] C. Courcoubetis and R. Weber, ªEffective Bandwidths for
Stationary Sources,º Probability in Eng. and Information Sciences,
vol. 9, no. 2, pp. 285-294, 1995.

[16] A. Elwalid and D. Mitra, ªEffective Bandwidth of General
Markovian Traffic Sources and Admission Control on High-Speed
Networks,º IEEE/ACM Trans. Networking, vol. 1, no. 3, pp. 329-343,
June 1993.

[17] R. Guerin, H. Ahmadi, and M. Naghshineh, ªEquivalent Capacity
and Its Application to Bandwidth Allocation in High-Speed
Networks,º IEEE J. Selected Areas in Comm., vol. 9, no. 7, pp. 968-
981, Sept. 1991.

634 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 6, JUNE 2002

[18] G. Kesidis, J. Walrand, and C.-S. Chang, ªEffective Bandwidth for
Multiclass Markov Fluids and Other ATM Traffic Sources,º
IEEE/ACM Trans. Networking, vol. 1, no. 4, pp. 424-428, Aug. 199.3

[19] Y. Birk, ªRandom RAIDs with Selective Exploitation of Redun-
dancy for High Performance Video Servers,º Proc. Int'l Workshop
Network and Operating System Support for Digital Audio and Video
(NOSSDAV '97), May 1997.

[20] D.J. Gemmel, H.M. Vin, D.D. Kandalur, P.V. Rangan, and L.A.
Rowe, ªMultimedia Storage Servers: A Tutorial,º IEEE Multi-
Media, vol. 28, no. 5, pp. 40-49, May 1995.

[21] H. Schulzrinne, A. Rao, and R. Lanphier, ªReal Time Streaming
Protocol (RTSP),º Request for Comments (Proposed Standard)
2326, Internet Eng. Task Force, Apr. 1998.

[22] K.W. Ross, Multiservice Loss Models for Broadband Telecommunica-
tion Networks. Springer-Verlag, 1995.

[23] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, ªWeb
Caching and Zipf-Like Distributions: Evidence and Implications,º
Proc. IEEE Infocom '99, pp. 126-134, Mar. 1999.

[24] V.N. Padmanabhan and L. Qiu, ªThe Content and Access
Dynamics of a Busy Web Site: Findings and Implications,º Proc.
ACM SigComm 2000, Aug. 2000.

[25] J. Kangasharju, F. Hartanto, M. Reisslein, and K.W. Ross,
ªDistributing Layered Encoded Video through Caches,º technical
report, Dept. of Electrical Eng., Arizona State Univ., Nov. 2001.

[26] R. Rejaie, M. Handley, and D. Estrin, ªQuality Adaptation for
Congestion Controlled Video Playback over the Internet,º Proc.
ACM SIGCOMM, Sept. 1999.

[27] R. Rejaie, M. Handley, and D. Estrin, ªRAP: An End-to-End Rate-
Based Congestion Control Mechanism for Real Time Streams in
the Internet,º Proc. IEEE Infocom '99, Mar. 1999.

[28] N. Feamster, D. Bansal, and H. Balakrishnan, ªOn the Interactions
between Layered Quality Adaptation and Congestion Control for
Streaming Video,º Proc. 11th Int'l Packet Video Workshop (PV2001),
Apr. 2001.

[29] M. Zink, C. Griwodz, J. Schmitt, and R. Steinmetz, ªExploiting the
Fair Share to Smoothly Transport Layered Encoded Video into
Proxy Caches,º Proc. SPIE Multimedia Computing and Networking
(MMCN '02), Jan. 2002.

[30] S. Bajaj, L. Breslau, and S. Shenker, ªUniform versus Priority
Dropping for Layered Video,º Proc. ACM SIGCOMM, Sept. 1998.

[31] S. Nelakuditi, R.R. Harinath, E. Kusmierek, and Z.-L. Zhang,
ªProviding Smoother Quality Layered Video Stream,º Proc. 10th
Int'l Workshop Network and Operating System Support for Digital
Audio and Video (NOSSDAV), June 2000.

[32] M. Podolsky, M. Vetterli, and S. McCanne, ªLimited Retransmis-
sion of Real-Time Layered Multimedia,º Proc. IEEE Second
Workshop Multimedia Signal Processing, pp. 591-596, 1998.

[33] D. Saparilla and K.W. Ross, ªOptimal Streaming of Layered
Video,º Proc. IEEE INFOCOM 2000, Mar. 2000.

[34] S. McCanne, M. Vetterli, and V. Jacobson, ªLow-Complexity
Video Coding for Receiver-Driven Layered Multicast,º IEEE J.
Selected Areas in Comm., vol. 16, no. 6, pp. 983-1001, Aug. 1997.

[35] R. Gopalakrishnan, J. Griffoen, G. Hjalmtysson, C. Sreenan, and S.
Wen, ªA Simple Loss Differentiation Approach for Layered
Multicast,º Proc. IEEE Infocom 2000, Mar. 2000.

[36] S. Gorinsky and H. Vin, ªThe Utility of Feedback in Layered
Multicast Congestion Control,º Proc. 11th Int'l Workshop Network
and Operating System Support for Digital Audio and Video (NOSS-
DAV), June 2001.

[37] X. Li, S. Paul, and M. Ammar, ªLayered Video Multicast with
Retransmissions (LVMR): Evaluation of Hierarchical Rate Con-
trol,º Proc. IEEE Infocom, pp. 1062-1072, Mar. 1998.

[38] L. Wu, R. Sharma, and B. Smith, ªThin Streams: An Architecture
for Multicasting Layered Video,º Proc. Seventh Int'l Workshop
Network and Operating System Support for Digital Audio and Video
(NOSSDAV), May 1997.

[39] Z.-L. Zhang, Y. Wang, D.H.C. Du, and D. Su, ªVideo Staging: A
Proxy-Server-Based Approach to End-to-End Video Delivery over
Wide-Area Networks,º IEEE/ACM Trans. Networking, vol. 8, no. 4,
pp. 429-442, Aug. 2000.

[40] S. Sen, J. Rexford, and D. Towsley, ªProxy Prefix Caching for
Multimedia Streams,º Proc. IEEE Infocom '99, pp. 1310-1319, Mar.
1999.

[41] W. Ma and D. Du, ªProxy-Assisted Video Delivery Using Prefix
Caching,º technical report, Dept. of Computer Science and Eng.,
Univ. of Minnesota, Mar. 1999.

[42] J. Rexford, S. Sen, and A. Basso, ªA Smoothing Proxy Service for
Variable-Bit-Rate Streaming Video,º Proc. Global Internet Symp.,
Dec. 1999.

[43] J. Rexford and D. Towsley, ªSmoothing Variable-Bit-Rate Video in
an Internetwork,º IEEE/ACM Trans. Networking, vol. 7, no. 6,
pp. 1127-1144, June 1999.

[44] Z. Miao and A. Ortega, ªProxy Caching for Efficient Video
Services over the Internet,º Proc. Ninth Int'l Packet Video Workshop,
1999.

[45] Z. Miao and A. Ortega, ªScalable Proxy Caching of Video under
Storage Constraints,º submitted, May 2001.

[46] W. Ma and D. Du, ªFrame Selection for Dynamic Caching
Adjustment in Video Proxy Servers,º technical report, Dept. of
Computer Science and Eng., Univ. of Minnesota, Mar. 1999.

[47] O. Verscheure, C. Venkatramani, P. Frossard, and L. Amini, ªJoint
Server Scheduling and Proxy Caching for Video Delivery,º Proc.
Sixth Int'l Workshop Web Caching and Content Distribution, May
2001.

[48] R. Tewari, H.M. Vin, A. Dan, and D. Sitaram, ªResource-Based
Caching for Web Servers,º Proc. SPIE/ACM Conf. Multimedia
Computing and Networking, 1998.

[49] W. Ma and D. Du, ªDesign a Multiple-Level Video Caching Policy
for Video Proxy Servers,º technical report, Dept. of Computer
Science and Eng., Univ. of Minnesota, Mar. 1999.

[50] M. Andrews and K. Munagala, ªOnline Algorithms for Caching
Multimedia Streams,º Proc. ESA '00, 2000.

[51] M. Hofmann, T.S. Ng, K. Guo, S. Paul, and H. Zhang, ªCaching
Techniques for Streaming Multimedia over the Internet,º Bell Labs
Technical Memorandum, Apr. 1999.

[52] E. Bommaiaha, K. Guo, M. Hofmann, and S. Paul, ªDesign and
Implementation of a Caching System for Streaming Media over
the Internet,º Proc. of IEEE Real-Time Technology and Applications
Symp. (RTAS), June 2000.

[53] D.W. Brubeck and L.A. Rowe, ªHierarchical Storage Management
in a Distributed VoD System,º IEEE Multimedia, vol. 3, no. 3,
pp. 37-47, Fall 1996.

[54] H.T. Jiang and A.K. Elmagarmid, ªWVTDBÐA Semantic Content-
Based Video Database System on the World Wide Web,º IEEE
Trans. Knowledge and Data Eng., vol. 10, no. 6, pp. 947-966,
Nov./Dec. 1998.

[55] D. Botvich and N. Duffield, ªLarge Deviations, the Shape of the
Loss Curve, and Economies of Scale in Large Multiplexers,º
Queueing Systems, vol. 20, pp. 293-320, 1995.

[56] J. Choe and N.B. Shroff, ªA Central Limit Theorem Based
Approach for Analyzing Queue Behavior Inf High-Speed Net-
works,º IEEE/ACM Trans. Networking, vol. 6, no. 5, pp. 659-671,
Oct. 1998.

[57] C. Courcoubetis, V.A. Siris, and G.D. Stamoulis, ªApplication of
the Many Sources Asymptotic and Effective Bandwidths to Traffic
Engineering,º Telecomm. Systems, vol. 12, pp. 167-191, 1999.

[58] F.P. Kelly, ªNotes on Effective Bandwidths,º Stochastic Networks:
Theory and Applications, Royal Statistical Society Lectures Note Series
4, F.P. Kelly, S. Zachary, and I.B. Ziedins, eds., pp. 141-168, Oxford
Univ. Press, 1996.

[59] M. Reisslein and K.W. Ross, ªCall Admission for Prerecorded
Sources with Packet Loss,º IEEE J. Selected Areas in Comm., vol. 15,
no. 6, pp. 1167-1180, Aug. 1997.

[60] N.B. Shroff and M. Schwartz, ªImproved Loss Calculations at an
ATM Multiplexer,º IEEE/ACM Trans. Networking, vol. 6, no. 4,
pp. 411-422, Aug. 1998.

[61] G.S. Fishman, Principles of Discrete Event Simulation. Wiley, 1991.

Jussi Kangasharju received the MS degree in
technology from the Department of Computer
Science and Engineering, Helsinki University of
Technology, Finland, in 1998. He received the
DEA from the University of Nice (Sophia Anti-
polis), France in 1998. He is currently pursuing
PhD studies at the University of Nice (Sophia
Antipolis) on Internet content distribution in the
Multimedia Communications Department of In-

stitut Eurecom. His research interests include web content distribution,
peer-to-peer networking, and Internet protocols. He is a member of the
IEEE.

KANGASHARJU ET AL.: DISTRIBUTING LAYERED ENCODED VIDEO THROUGH CACHES 635

Felix Hartanto received the BE and PhD
degrees in electrical and electronic engineering
from the University of Canterbury, New Zealand,
in 1990 and 1994, respectively. From 1994 to
1996, he was a postdoctoral researcher at the
University of Canterbury. Next, he was em-
ployed at Digital Equipment Corporation (now
Compaq), New Zealand, as a software devel-
oper and project leader from 1996 to 1998.
There, he led a number of mobile service

provisioning and billing projects. From 1998 to 2000, he was a scientist
with the German National Research Center for Information Technology
(GMD FOKUS) in Berlin, Germany. He is currently an assistant
professor in the Department of Information Engineering, the Chinese
University of Hong Kong. His research interests include multimedia
communications, Internet quality of service, service, and network
management. He is a member of the IEEE.

Martin Reisslein received the Dipl.-Ing. (FH)
degree from the Fachhochschule Dieburg, Ger-
many, in 1994, and the MSE degree from the
University of Pennsylvania, Philadelphia, in
1996, both in electrical engineering. He received
the PhD degree in systems engineering from the
University of Pennsylvania in 1998. He is an
assistant professor in the Department of Elec-
trical Engineering at Arizona State University,
Tempe. He is affiliated with ASU's Telecommu-

nications Research Center. During the academic year 1994-1995, he
visited the University of Pennsylvania as a Fulbright scholar. From July
1998 through October 2000, he was a scientist with the German
National Research Center for Information Technology (GMD FOKUS),
Berlin, and a lecturer at the Technical University Berlin. He has served
on the technical program committees of IEEE Infocom and IEEE
Globecom. He maintains an extensive library of video traces for network
performance evaluation, including frame size traces of MPEG-4 and
H.263 encoded video, at http://www.eas.asu.edu/trace. His research
interests are in the areas of Internet quality of service, video traffic
characterization, wireless networking, and optical networking. He is a
member of the IEEE and the IEEE Computer Society.

Keith Ross has been a professor at the
Eurecom Institute (Sophia Antipolis, France)
since 1997. Before joining Eurecom, he was a
professor in the Department of Systems Engi-
neering at the University of Pennsylvania from
1985 through 1997. Professor Ross's principle
research interests are in the theory and practice
of computer networking. He has published more
than 60 papers and has supervised 13 PhD
students. He was written two books, including a

best-selling textbook, Computer Networking: A Top-Down Approach
Featuring the Internet (with Jim Kurose), which was published by
Addison-Wesley in 2000. He is also the principle founder of Wimba,
an Internet startup specializing in integrated asynchronous voice
technologies for the Internet and wireless phones. He is a senior
member of the IEEE.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

636 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 6, JUNE 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

