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On the Multicast Capacity of
Unidirectional and Bidirectional

Packet-Switched WDM Ring Networks
Henryk Zähle, Michael Scheutzow, Martin Reisslein, and Martin Maier

Abstract— In this paper we examine the relationship between
the effective capacity (stability limit) of unidirectional and
bidirectional packet-switched wavelength division multiplexing
(WDM) ring networks for multicast traffic. We consider both
bidirectional rings with one packet copy transmission per wave-
length channel and two packet copy transmissions. We first
prove bounds for the ratio of the multicast capacity of the
bidirectional ring to the multicast capacity of the unidirectional
ring. Specifically, we show that this ratio is at least two for two
copy transmission in the bidirectional ring, and at most two for
one copy transmission. We derive closed form expressions of the
multicast capacity ratios for networks with a large number of
nodes and from these expressions show that the ratios tend to two
for a large number of multicast destinations. We demonstrate that
for the bidirectional ring with two copy transmission the ratio
becomes as large as 2.276. We also find that in the bidirectional
ring, the capacity gain with two copy transmission over one copy
transmission reaches 30.4%.

Index Terms— Destination stripping, multicast, ring network,
spatial wavelength reuse, throughput capacity, wavelength divi-
sion multiplexing.

I. INTRODUCTION

PACKET-switched ring wavelength division multiplexing
(WDM) networks have been emerging in recent years as

a promising solution to alleviate the capacity shortage in the
metropolitan area, which is commonly referred to as metro
gap. Packet-switched ring networks, such as the Resilient
Packet Ring (RPR [1], overcome many of the shortcomings
of circuit-switched ring networks, such as low provisioning
flexibility for packet data traffic [2]. In these packet-switched
ring networks, the destination nodes typically remove (strip)
the packets destined to them from the ring. This destination
stripping allows the destination node as well as other nodes
downstream to utilize the wavelength channel for their own
transmissions. With this so-called spatial wavelength reuse,
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multiple simultaneous transmissions can take place on any
given wavelength channel.

The packet-switched ring WDM networks come in two
main types: (i) unidirectional single-fiber rings, and (ii)
bidirectional dual-fiber rings. In the unidirectional rings, the
network nodes communicate over Λ, Λ ≥ 1, wavelength
channels that have the same light propagation direction. In the
bidirectional ring, the nodes communicate over Λb, Λb ≥ 1,
wavelength channels on which the light propagates in the
clockwise direction, and Λb additional wavelength channels on
which the light propagates in the counter clockwise direction.
For a fair comparison of the two types we set throughout Λb =
Λ/2, with this setting the same total number of wavelength
channels are operated in each network type. We consider two
transmission strategies in the bidirectional ring network: a
two copy transmission strategy where the source node sends
two multicast packet copies on a given wavelength channel
so as to minimize the travelled hop distance by the packet
copies, thus maximizing spatial wavelength reuse, and a one
copy transmission strategy where the source node sends one
multicast packet copy on a given wavelength channel in the
direction that reaches all destinations on the wavelength with
the smallest hop count. The one copy transmission strategy is
generally sub-optimal since the largest gap among the mul-
ticast destinations on a wavelength can lie anywhere around
the ring perimeter; in order to avoid traversing the largest gap
generally two packet copy transmissions are required which
approach the largest gap from opposite directions.

For unicast traffic, the uni- and bidirectional ring networks
have been extensively studied, see for instance [3]–[11]. It
was found—and we re-confirm in a corollary in this study—
that for uniform unicast traffic, the bidirectional ring network
can support in the long run average exactly twice the number
simultaneous transmissions than the unidirectional ring. Intu-
itively this is because in the unidirectional ring a packet travels
on average halfway around the ring to reach its destination
under the assumption of uniform traffic. In the bidirectional
ring, the packets are generally transmitted in the direction that
provides the shortest path to the destination. With this shortest
path routing a packet travels on average around a quarter of
the ring to reach its destination.

In this study, we examine arbitrary mixes of uniform uni-
cast, multicast, and broadcast traffic. Multi-destination traffic
is expected to account for a substantial portion of the metro
network traffic due to the increasing popularity of applications,

0733-8716/07$20.00 c© 2007 IEEE



106 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 4, APRIL 2007

such as content distribution, distributed computing, multi-site
tele-conferencing [12], and interactive distance learning. These
applications are expected to demand substantial bandwidths
due to the trend to deliver video and multimedia content in the
High-Definition Television (HDTV) format and the emergence
of video formats with resolutions higher than HDTV for digital
cinema and tele-immersion applications. In addition, virtual
private networks that combine an organization’s geographi-
cally distributed local area networks are expected to contribute
significantly to the multicast traffic volume in the metro area.
While there is presently scant quantitative information about
the multicast traffic volume there is ample anecdotal evidence
of the emerging significance of this traffic type [13]. As a
result, multicasting has been identified as an important service
in optical networks [14], [15] and has received significant
attention in circuit-switched WDM mesh and ring networks as
well as packet-switched single-hop star networks as detailed
in Section I-A.

In this paper we consider multicasting in packet-switched
WDM ring networks. For arbitrary mixes of uniform unicast,
multicast, and broadcast traffic, we formally prove the fol-
lowing bounds for the ratio of the multicast capacity of the
bidirectional ring to the multicast capacity of the unidirectional
ring: (A) with two copy transmission in the bidirectional
ring the ratio is at least two, whereas (B) with one copy
transmission it is at most two. For networks with a large
number of nodes we provide closed-form expressions for the
ratios of bidirectional to unidirectional multicast capacity as
well as the capacity gain achieved with two copy transmission
over one copy transmission in bidirectional ring networks.
Based on these closed-form expressions we prove that the
multicast capacity ratio of the bidirectional ring (both with two
and one copy transmission) to the unidirectional ring tends to
two for a large number of multicast destinations. Furthermore,
we demonstrate that the ratio of bidirectional (with two
copy transmission) to unidirectional multicast capacity reaches
11, 235/4, 936 ≈ 2.276, which is attained for multicasts with
six receivers in networks with a total of Λ = 2 wavelengths.
On the other hand, the ratio drops as low as 5/3 for the
bidirectional ring with one copy transmission. In bidirectional
rings, the capacity gain due to two copy transmission reaches
30.4% for multicasts with three receivers in networks with a
total of Λ = 2 wavelengths.

A. Related Work

Optical packet-switched WDM ring networks have been
experimentally demonstrated, see for instance [11], [16], and
studied for unicast traffic, see for instance [3]–[11]. Multi-
casting in packet-switched WDM ring networks has received
relatively little attention to date [8], [17]. The photonics level
issues involved in multicasting over ring WDM networks are
explored in [18], while a node architecture suitable for mul-
ticasting is studied in [19]. The general network architecture
and MAC protocol issues arising from multicasting in packet-
switched WDM ring networks are addressed in [16], [20]. The
fairness issues arising when transmitting a mix of unicast and
multicast traffic in a ring WDM network are examined in [21].

The multicast capacity of a unidirectional ring network
and a bidirectional ring network with one copy transmission

have been analyzed in [22] while the multicast capacity of
a bidirectional ring network with two copy transmission has
been analyzed in [23]. In this present study we make two
main original contributions over the existing studies [22],
[23]. First, for arbitrary mixes of unicast, multicast, and
broadcast traffic in networks with an arbitrary number of
nodes, we compare the capacities of the unidirectional and
bidirectional ring networks and derive bounds on the ratios of
the capacities. The existing studies [22], [23] examined each of
these different ring networks in isolation but did not address
the fundamental question as to how their capacities relate.
Second, we derive simple, closed-form characterizations of
the multicast capacities of the different ring networks for a
large number of network nodes. The existing studies [22], [23]
focused on expressing the multicast capacities as functions
of the number of network nodes. The derived functional
expressions are too complex for an insightful and detailed
analytical comparison, which is not attempted in [22], [23].
In contrast, the simple, closed-form capacity expressions for
a large number of nodes derived in this study facilitate the
capacity comparisons and form the basis for specifying the
ranges of the capacity ratio values.

We note that multicasting in circuit-switched WDM rings,
which are fundamentally different from the packet-switched
networks considered in this paper, have been extensively
examined in the literature. The scheduling of connections
and cost-effective design of bidirectional WDM rings was
addressed, for instance in [24]. Cost-effective traffic grooming
approaches in WDM rings have been studied for instance
in [25], [26]. The routing and wavelength assignment in
reconfigurable bidirectional WDM rings with wavelength con-
verters was examined in [27]. The wavelength assignment
for multicasting in circuit-switched WDM ring networks has
been studied in [28]–[33]. For unicast traffic, the throughputs
achieved by different circuit-switched and packet-switched
optical ring network architectures are compared in [34].

We finally note for completeness that there has been increas-
ing research interest in recent years for multicasting in general
mesh circuit-switched WDM networks, see e.g., [35]–[39],
including their circuit-switching capacity [40]. Similarly, mul-
ticasting in packet-switched single-hop star WDM networks
has been intensely investigated, see for instance [41]–[44]

II. COMPARED WDM RING NETWORKS

A. Network Architecture

We compare optical wavelength division multiplexing
(WDM) ring networks which interconnect N network nodes.
We compare a single-fiber ring network where the nodes
are interconnected by one unidirectional fiber, as illustrated
in Fig. 1, with a bidirectional dual-fiber ring network. In
both networks we number (index) the nodes sequentially as
n = 1, 2, . . . , N in the clockwise direction.

We suppose that there are a total of Λ wavelength channels
in each network. In particular, we suppose that there is
one set of wavelength channels {1, . . . ,Λ} in the single-
fiber ring network, and furthermore we assume without loss
of generality that the propagation direction on the fiber is
the clockwise direction. In the bidirectional dual-fiber ring



SUPPLEMENT ON OPTICAL COMMUNICATIONS AND NETWORKING 107

λ3

λ4

λ2

λ1

Node 7

Node 8

Node 1

Node 2

Node 5 Node 3

Node 4

Node 6

Fig. 1. Unidirectional WDM ring network connecting N = 8 nodes with Λ = 4 wavelength channels; each wavelength channel homes ηu = N/Λ = 2
nodes. In the corresponding bidirectional ring there are Λb = Λ/2 = 2 wavelength channels operated in each direction, with each wavelength channel homing
ηb = N/Λb = 4 nodes.

network, Λb = Λ/2 wavelength channels, specifically the
set of the wavelength channels {1, . . . ,Λb}, operate in the
clockwise fiber direction, and an identical set {1, . . . ,Λb} of
wavelength channels operates in the counter clockwise fiber
direction. We consider the family of node structures where
each node (i) can transmit on any wavelength using either one
or multiple tunable transmitters (TTs) or an array of Λ fixed-
tuned transmitters (FTs), and (ii) receive on one wavelength
using a single fixed-tuned receiver (FR), which is a widely
considered node structure [3]–[11], [45]–[48].

For N = Λ (N = Λb in the bi-directional ring) each
node has its own separate home channel for reception. For
N > Λ each wavelength is shared by several nodes for the
reception of packets. We let ηu = N/Λ denote the number
of nodes that share a given wavelength as their home channel
in the unidirectional ring, and assume that ηu is an integer.
Correspondingly, we denote ηb = N/Λb = 2ηu for the number
of nodes that share a given wavelength as their home channel
in the bidirectional ring. In particular, in the unidirectional
ring the nodes n = λ+k ·Λ with k = 0, 1, . . . , (ηu −1) share
the same drop wavelength (home channel) λ, λ = 1, 2, . . . ,Λ,
i.e., have wavelength λ as their home channel. Analogously,
in the bidirectional ring the nodes n = λ + k · Λb with
k = 0, 1, . . . , (ηb − 1) share the same drop wavelength (home
channel) λ, λ = 1, 2, . . . ,Λb. For brevity we will use the
terminology that a node n is on wavelength λ if wavelength
λ is the drop wavelength (home channel) of node n.

B. Traffic Model and Transmission Strategies

We consider traffic with fanout (number of destination
nodes) F that is described by the distribution

µl := P (F = l), l = 1, . . . , N − 1, (1)

whereby 0 ≤ µl ≤ 1 and
∑N−1

l=1 µl = 1. This fanout
model accommodates arbitrary mixes of unicast, multicast,
and broadcast traffic. Throughout we assume that a multicast
is not sent to the source node, hence the maximum fanout is
N − 1. As is common for capacity evaluations, we consider
uniform traffic generation, i.e., all N nodes generate equivalent
amounts of traffic. We consider uniform traffic destinations,
i.e., the fanout set (set of destination nodes) for a given
multicast with given fanout F = l is drawn uniformly ran-
domly from among the other N −1 nodes. While our analysis
assumes that the source node, the fanout, and the fanout set are
drawn independently at random, this independence assumption
is not critical for the analysis. Our results hold also for
traffic patterns displaying correlations, as long as the long run
average segment utilizations are equivalent to the utilizations
with the independence assumption. For instance, our results
hold for a correlated traffic model where a given source node
transmits with a probability p < 1 to exactly the same set
of destinations as the previous packet sent by the node, and
with probability 1−p to a new set of destination nodes drawn
independently at random. We also note that uniform traffic
is a reasonable traffic model for metro core ring networks.
These core ring networks interconnect several metro edge ring
networks and typically experience any-to-any traffic between
all attached nodes [2].

To transmit a multicast packet, the source node generates a
copy of the multicast packet for each wavelength that is the
drop wavelength for at least one of the multicast destination
nodes. In the unidirectional ring, the multicast packet copy is
forwarded in the propagation direction on a given wavelength
until the multicast packet copy reaches the last destination
node on the wavelength; that node takes the packet off the
ring. For an illustrative example, consider the network depicted
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in Fig. 1 and suppose node 8 is the source node and has
a multicast packet destined to nodes 1, 2, 5, and 6. In the
unidirectional ring network, a copy of the multicast packet
travels on wavelength 1 in the clockwise direction from node
8 to node 5, and another copy travels on wavelength 2 from
node 8 to node 6.

In the bidirectional ring network we distinguish the two
copy and one copy transmission strategies for the multicast
packet copy transmission on a given wavelength. With the
two copy transmission strategy we consider the set of nodes
containing the source node of the multicast and all the multi-
cast destination nodes on the considered wavelength. Then we
find the largest gap between any two neighboring nodes in the
considered set. The multicast is served by (i) sending one copy
of the multicast packet in the clockwise direction from the
source node to the destination node that borders to the largest
gap, and (ii) sending another copy of the multicast packet
from the source node in the counter clockwise direction to the
node bordering on the largest gap. (If the largest gap borders
on the source node, then only one copy of the multicast packet
is transmitted, namely in the direction opposite of the largest
gap.) In the bidirectional ring network corresponding to the
unidirectional ring network depicted in Fig. 1 there are Λb = 2
wavelengths in each ring direction with wavelength 1 homing
nodes 1, 3, 5, and 7, while nodes 2, 4, 6, and 8 are homed on
wavelength 2. Continuing the illustrative example from above,
the largest gap on wavelength 1 is between nodes 1 and 5.
Consequently, on the clockwise wavelength 1, one packet copy
travels from node 8 to node 1, and another copy travels on
the counter clockwise wavelength 1 from node 8 to node 5.
Similarly, one packet copy travels on the clockwise wavelength
2 from node 8 to node 2, and another copy travels on the
counter clockwise wavelength 2 from node 8 to node 6.

The one copy transmission strategy in the bidirectional ring
transmits only one multicast packet copy per wavelength,
namely in the direction that reaches all the multicast desti-
nations on the wavelength with the smallest hop distance. We
define the hop distance that a given multicast packet copy
travels on a given wavelength λ as the number of nodes
that the packet copy visits, whereby each traversed node
(irrespective of whether the node is on the wavelength λ or
a different wavelength) as well as the last destination node
on the wavelength counts as a visited node. In the illustrative
example, one packet copy travels on clockwise wavelength 1
from node 8 to node 5. Destination nodes 2 and 6 can be
reached with six hops on both the clockwise and the counter
clockwise wavelength 2 and the source node 8 selects either
of the two with probability one half.

When a node receives a packet, it checks if there are
additional destinations downstream; if so, it forwards the
packet to the other destinations; otherwise, the node is the last
destination and removes the packet from the ring. With this
destination release (stripping), wavelengths can be spatially
reused by downstream nodes, leading to an increased network
capacity.

C. Capacity Definition

Toward the definition of the multicast capacity we first
introduce the following terminology. We refer to the part

of a wavelength channel between two successive nodes as
wavelength channel segment, or in short as segment. A given
wavelength channel consists of N segments for a total of NΛ
segments in both the uni- and the bidirectional ring. Since
all nodes transmit traffic onto a given wavelength channel,
but only the nodes homed on the channel remove traffic, the
segments are typically non-uniformly loaded. In particular, the
segments leading directly to the nodes homed on a channel are
the most heavily utilized segments. We refer to these segments
that attain the maximum utilization as critical segments. In the
case of the unidirectional ring network depicted in Fig. 1, the
critical segments on wavelength 1 are the segments between
nodes 8 and 1, as well as the segment between nodes 4 and
5. The critical segments on wavelength 4 are the segment
between nodes 3 and 4, as well as the segment between nodes
7 and 8. We denote uu

max, ub
max, and ub1c

max for the maximum
segment utilization in the unidirectional ring, the bidirectional
ring with two copy transmission, and the bidirectional ring
with one copy transmission, respectively. In the unidirectional
ring there are ηu critical segments on each wavelength channel
for a total of Ληu critical segments in the unidirectional ring
network. In the bidirectional ring, on the other hand, there
are ηb = 2ηu critical segments on each wavelength channel
for a total of 2Ληu critical segments in the bidirectional ring
network.

We consider the effective multicast capacity, which gives
the maximum mean number of multicasts (stability limit) that
can simultaneously take place in the network1. The effective
multicast capacity, which we refer to henceforth as multicast
capacity for brevity, is limited by the utilization of the critical
segments. In particular, the multicast capacity is the reciprocal
of the utilization of the critical segments. We denote Cu

M =
1/uu

max for the multicast capacity of the unidirectional ring
network, Cb

M = 1/ub
max for the multicast capacity of the

bidirectional ring network with two copy transmission, and
Cb1c

M = 1/ub1c
max for the multicast capacity of the bidirectional

ring with one copy transmission.

III. BOUND ON MULTICAST CAPACITY RATIO Cb
M/Cu

M

Without loss of generality we consider the transmission of a
multicast packet by node N , which is homed on wavelength Λ,
to the destination nodes of the multicast on wavelength λ, λ =
1, . . . ,Λ, and suppose there are m multicast destinations on
wavelength λ. We distinguish the two cases 1) λ �= Λ, i.e.,
the destination nodes are on a different wavelength from the
source node, and 2) λ = Λ, i.e., the destination nodes are on
the same wavelength as the source node.

A. Case 1) λ �= Λ
We focus initially on case 1) λ �= Λ, in which there are

in the bidirectional ring m ≤ ηb destination nodes on the
considered wavelength. In particular, the potential destination
nodes that can be reached with multicast packet copy transmis-
sion(s) on wavelength λ in the bidirectional ring are the nodes

1We note that [22] introduces both a nominal multicast capacity and an
effective multicast capacity. The nominal capacity considers the hop distances
required to serve multicasts, whereas the effective capacity considers the
utilization of ring segments. Throughout the present study we consider the
effective multicast capacity, which represents the stability limit of the network.
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n = λ + k ·Λb with k = 0, 1, 2, 3 . . . , (ηb − 1). Now consider
these same nodes in the unidirectional ring. They are homed
on the wavelengths λ and λ + Λb. In particular, wavelength λ
homes the nodes n = λ + k · Λb with k = 0, 2, . . . , (ηb − 2)
and wavelength λ + Λb homes the nodes n = λ + k ·Λb with
k = 1, 3, . . . , (ηb − 1).

For convenience we renumber the nodes n = λ+k·Λb, k =
0, 1, 2, 3, . . . , (ηb − 1) such that they have sequential indices,
i.e., we renumber these nodes as q = 1, 2, 3, 4, . . . , ηb. Note
that in the bidirectional ring all these nodes are homed on
wavelength λ. In the unidirectional ring the odd numbered
nodes q = 1, 3, . . . , ηb − 1 are homed on wavelength λ, and
the even numbered nodes q = 2, 4, . . . , ηb are homed on
wavelength λ+Λb. We then consider the following (cardinality
preserving) bijective mapping f of the node indices q =
1, 2, 3, . . . , ηb:

1 → 1
2 → ηb

3 → 2 (2)

4 → ηb − 1
...

...

ηb − 1 → ηb

2
ηb → ηb

2
+ 1.

For a subset D ⊆ {1, 2, 3, . . . , ηb} of (destination) nodes let
f(D) denote the set {f(x), x ∈ D}. Every subset of nodes
is mapped to another set of the same cardinality.

Lemma 1: Suppose in the unidirectional ring, r critical
segments are traversed to reach all nodes in D, then the
number of critical segments traversed in the bidirectional ring
with two copy transmission to reach all nodes in f(D) is at
most r.

Proof: Let o denote the largest odd number (node index)
in D, and define o := −1 if there is no odd number in D.
Similarly, let e denote the largest even number in D, and
define e := 0 if there is no even number in D. In order to
reach all nodes in D in the unidirectional ring, (o+1)/2+e/2
critical segments are traversed. In particular, (o+1)/2 critical
segments are traversed on wavelength λ to reach the odd
numbered nodes in D and e/2 critical segments are traversed
on wavelength λ + Λb in order to reach the even numbered
nodes in D. The mapping of D is given by

f(D) ⊆ {f(1), f(3), . . . , f(o); f(2), f(4), . . . , f(e)} (3)

= {1, 2, . . . ,
o + 1

2
; ηb, ηb − 1, . . . , ηb − e

2
+ 1}. (4)

This set of nodes is reached in the bidirectional ring with
two copy transmission by traversing at most e/2 + (o + 1)/2
critical segments. In particular, the nodes can be reached by
transmitting the multicast copy in the clockwise direction to
node (o + 1)/2 (provided there is at least one odd numbered
node) and in the counter clockwise direction to node ηb −
e/2+1; possibly the nodes can be reached by traversing fewer
critical segments.

For an example of a multicast that can be served in the
bidirectional ring with two copy transmission while traversing

less than e/2+(o+1)/2 critical segments, consider a multicast
with the destination nodes D = {ηb − 1, ηb}, i.e., with o =
ηb−1 and e = ηb. In the unidirectional ring, (o+1)/2+e/2 =
(ηb−1+1)/2+ηb/2 = ηb critical segments must be traversed
to reach the two destination nodes. In the bidirectional ring,
the two mapped destinations f(D) = {ηb/2, ηb/2 + 1} can
be reached by transmitting one packet copy in the clockwise
direction to node ηb/2 + 1, which requires only the traversal
of ηb/2 + 1 critical segments.

For unicast traffic, for which there is m = 1 destination
node on the considered wavelength (i.e., D has one element),
and for broadcast traffic, for which there are m = ηb

destinations on the wavelength (i.e., D = {1, 2, 3, . . . , ηb}),
the number of critical segments that need to be traversed
in the bidirectional ring (irrespective of whether two or one
copy transmission is employed) is exactly equal to the number
required in the unidirectional ring.

Corollary 1: Suppose in the unidirectional ring, r critical
segments are traversed to reach the destination node of a
unicast or all the destination nodes of a broadcast, then the
number of critical segments traversed in the bidirectional
ring to reach the destination node of the unicast or all the
destination nodes of the broadcast is exactly r.

Proof: In the case of a unicast, the single destination node
has either an odd index o or even index e, which is mapped
into a corresponding index f(o) and served by a transmission
in the clockwise direction or mapped into the corresponding
index f(e) and served by a transmission in the counter
clockwise direction. In both the unidirectional ring and the
bidirectional ring the number of traversed critical segments is
(o + 1)/2 in case of a odd destination node index or e/2 in
case of an even destination node index.

In case of a broadcast, we have o = ηb − 1 and e = ηb.
In both the uni- and bidirectional ring, (o + 1)/2 + e/2 = ηb

critical segments are traversed to reach all destination nodes.

B. Case 2) λ = Λ

In the case 2) λ = Λ we renumber the nodes n = k ·
Λb, k = 1, 2, . . . , ηb − 1 as q = 1, 2, . . . , ηb − 1 and consider
the bijective mapping f :

1 → 1
2 → ηb − 1
3 → 2 (5)

4 → ηb − 2
...

...

ηb − 2 → ηb

2
+ 1

ηb − 1 → ηb

2
.

Similar to the notation for case 1) we denote D ⊆
{1, 2, 3, . . . , ηb − 1}, e for the largest even number in D, and
o for the largest odd number in D. The lemma statement
and proof are analogous to case 1). In particular, in the
unidirectional ring the nodes in D are reached by traversing
e/2 + (o + 1)/2 critical segments. The nodes in the mapped
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set

f(D) ⊆ {f(1), f(3), . . . , f(o); f(2), f(4), . . . , f(e)} (6)

= {1, 2, . . . ,
o + 1

2
; ηb, ηb − 1, . . . , ηb − e

2
} (7)

are reached in the bidirectional ring by traversing at most
e/2 + (o + 1)/2 critical segments.

The result proven in Lemma 1 leads us to the following
bound on the multicast capacity ratio Cb

M/Cu
M .

Theorem 1: The multicast capacity of the bidirectional ring
with two copy transmission Cb

M is at least twice the multicast
capacity of the unidirectional ring Cu

M , i.e., Cb
M/Cu

M ≥ 2.

Proof: Lemma 1 states that there is a one-to-one corre-
spondence between the sets of multicast destination nodes
in the unidirectional ring network and the bidirectional ring
network with the following property: The number of traversed
critical segments for a given realization of the set of multicast
destination nodes in the bidirectional ring network is no
larger than the number of traversed critical segments for the
corresponding realization of the set of multicast destination
nodes in the unidirectional ring network. This correspondence
between the sets of multicast destinations in the unidirectional
and bidirectional ring networks is given through the bijective
mappings f given by (2) and (5). Note that for the considered
uniform traffic model each of the corresponding sets of
multicast destinations in the unidirectional and bidirectional
ring networks has the same probability of being realized.
Also, recall from Section II that there are twice as many
critical segments in the bidirectional ring compared to the
unidirectional ring. Hence, the mean utilization of a critical
segment in the bidirectional ring is at most half as large as
in the unidirectional ring. As a consequence the multicast
capacity, which is the reciprocal of the utilization of the critical
segments, is at least twice as large in the bidirectional ring
compared to the unidirectional ring.

IV. BOUND ON MULTICAST CAPACITY RATIO Cb1c
M /Cu

M

As in the preceding section, we consider without loss
of generality a multicast from source node N , which is
homed on wavelength Λ. As above the potential multicast
destinations are in the set D ⊆ {1, . . . , ηb} in case λ �= Λ
and correspondingly in the set D ⊆ {1, . . . , ηb − 1} in case
λ = Λ.

A. Case 1) λ �= Λ

Lemma 2: Suppose in the unidirectional ring, r critical
segments are traversed to reach all nodes in D, then the
number of critical segments traversed in the bidirectional
ring with one copy transmission to reach all nodes in f(D),
whereby the bijective mapping f given by (2), is at least r.

Proof: Let o denote the largest odd number (node index)
in D, and define o := −1 if there is no odd number in D.
Similarly, let e denote the largest even number in D, and define
e := 0 if there is no even number in D.

If o = −1 or e = 0, then the number of traversed critical
segments to reach the nodes in D in the unidirectional ring
is exactly equal to the number of traversed critical segments

to reach the nodes in f(D) (with f(·) given by (2)) in the
bidirectional ring.

Now consider o ≥ 1 and e ≥ 2. In this case (o +
1)/2+e/2 critical segments are traversed in the unidirectional
ring. Let g(·) denote the bijective mapping g(j) := ηb +
1 − j, j ∈ {1, . . . , ηb}. Then it follows that the mapping
f ◦ g : {1, . . . , ηb} → {1, . . . , ηb} is bijective, and when D
contains both odd and even numbers, then f ◦ g(D) contains
both numbers that are smaller than (ηb+1)/2 and numbers that
are larger than (ηb + 1)/2. Since o is the largest odd number
in D, g(o) is the smallest even number in g(D). Similarly,
since e is the largest even number in D, g(e) is the smallest
odd number in g(D). Hence, the number of traversed critical
segments in the bidirectional ring which reaches all multicast
destinations on a wavelength by transmitting one copy of the
multicast packet in the direction that reaches all the destination
nodes f(g(D)) homed on the wavelength with the shortest hop
count is given by(

ηb + 1 − g(o)
2

)
∧

(
ηb − g(e) − 1

2

)
(8)

=
(

ηb − ηb − o − 1
2

)
∧

(
ηb − ηb − e

2

)
(9)

=
(

ηb

2
+

o + 1
2

)
∧

(ηb

2
+

e

2

)
(10)

=
ηb

2
+

(o + 1) ∧ e

2
(11)

≥ (o + 1) ∨ e

2
+

(o + 1) ∧ e

2
(12)

=
(o + 1)

2
+

e

2
, (13)

where we denote x ∧ y := min(x, y) and x ∨ y := max(x, y)
and (12) follows by noting that ηb/2 is larger than or equal
to both e/2 and (o + 1)/2.

B. Case 2) λ = Λ

The lemma statement and proof in this case are analogous to
the statement and proof in the preceding section. We employ
the mappings f(·) defined in (5) and g(j) := ηb − j, j ∈
{1, . . . , ηb − 1}. As before we denote D ⊆ {1, . . . , ηb − 1}
for the set of potential destination nodes as well as o, o =
−1, 1, . . . , ηb−1, for the largest odd and e, e = 0, 2, . . . , ηb−
2, for the largest even number in D. The case when o = −1
or e = 0 is the same as in the preceding section.

When o ≥ 1 and e ≥ 2 then (o+1)/2+e/2 critical segments
are traversed in the unidirectional ring. Since o is the largest
odd number in D, g(o) is the smallest even number in g(D).
Similarly, g(e) is the smallest odd number in g(D). Hence,
the number of traversed critical segments in the bidirectional
ring is (

ηb − g(o) + 1
2

)
∧

(
ηb − g(e)

2

)
(14)

=
(

ηb − ηb + 1 − o

2

)
∧

(
ηb − ηb − e

2

)
(15)

=
ηb + [(o − 1) ∧ e]

2
(16)
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≥ 2 + [(o − 1) ∨ e] + [(o − 1) ∧ e]
2

(17)

=
2 + o − 1 + e

2
(18)

=
(o + 1)

2
+

e

2
, (19)

where the inequality (17) follows by noting that o ≤ ηb − 1
and e ≤ ηb − 2.

Based on Lemma 2 we obtain with a proof that mirrors that
of Theorem 1 the following bound on the multicast capacity
ratio Cb1c

M /Cu
M .

Theorem 2: The multicast capacity of the bidirectional ring
with one copy transmission Cb1c

M is at most twice the multicast
capacity of the unidirectional ring Cu

M , i.e., Cb1c
M /Cu

M ≤ 2.
For bidirectional ring networks, we immediately obtain

from Theorems 1 and 2 that the multicast capacity with two
copy transmission is larger or equal to the capacity with
one copy transmission, i.e., Cb

M ≥ Cb1c
M . Furthermore, from

Corollary 1 we have that Cb
M = Cb1c

M for unicast traffic and
broadcast traffic. Moreover, we directly obtain from Theo-
rem 2 that Cb1c

M /(2Cu
M ) ≤ 1 = Cb

M/Cb
M . Consequently, we

obtain a lower bound on the relative capacity increase obtained
with two copy transmission over one copy transmission in
terms of the capacities of the unidirectional ring and the
bidirectional ring with two copy transmission as

Cb
M

Cb1c
M

≥ Cb
M

2Cu
M

. (20)

Note that our analysis of the bounds on the multicast
capacity ratios applies to uniform traffic, which is typical
for metro core ring networks [2]. Metro edge ring networks
that interconnect individual access networks with the metro
core ring, on the other hand, experience typically non-uniform
traffic. We remark that the derived capacity ratios do not hold
for non-uniform traffic. For an illustrative counterexample
consider rings with N = 6 nodes and Λb = 1 and suppose that
only one (hotspot) node sends unicast traffic uniformly to all
other nodes. Then we obtain Cb

M = Cb1c
M = 2 and Cu

M = 5/3.
In general, the study of non-uniform traffic in packet-switched
ring networks is largely an open area for future research
and we believe the present analysis for uniform traffic is an
important stepping stone toward examining that open area. For
an initial investigation of non-uniform traffic with a single
hotspot in a single-wavelength bidirectional packet-switched
ring we refer the interested reader to [49].

V. MULTICAST CAPACITY RATIOS FOR LARGE NUMBER

OF NODES N

In this section we consider the case of uniform traffic for
a large number of network nodes N → ∞, and keep the
number of wavelength channels Λ fixed (independent of N ).
We derive relatively simple, closed-form characterizations of
the multicast capacity ratios, which allow for an insightful
study of the ratios. We first derive characterizations of the
maximum segment utilization and multicast capacity for each
of the considered networks, and subsequently examine the
resulting multicast ratios.

Formally, let µN
l , l = 1, . . . , N − 1, denote the multicast

fanout distribution and suppose that this fanout distribution

has a nondegenerate limit distribution µl, l ≥ 1, that sat-
isfies, limN→∞ µN

l = µl, l ≥ 1, as well as µl ≥ 0 and∑∞
l=1 µl = 1. (The case of a degenerate “escaping” fanout

mass is considered in Appendix B.) Throughout this section
we adopt the following notational convention: Notations with
the superscript N refer to quantities in a network with a
specific number of nodes N , whereas notations without the
superscript N refer to quantities in a network with N → ∞.

A. Maximum Segment Utilization and Multicast Capacity of
Unidirectional Ring

Let uu,N
max denote the largest segment utilization (probability)

on the unidirectional ring with N nodes and note that Cu,N
M =

1/uu,N
max is the corresponding effective multicast capacity. Note

that uu,N
max is given by the probability that a fixed critical

segment is utilized by a sender (node) that is uniformly
randomly chosen from among the N nodes of the ring. This
probability coincides with the probability that a fixed sender
(node) utilizes a critical segment which is uniformly randomly
chosen from among the set of all critical segments. We
pursue the evaluation of this latter probability. Without loss of
generality we suppose node N to be the sender. The (random)
critical segment is given by Wu+KuΛ, where Wu is a uniform
random variable on the set {1, . . . ,Λ} of all wavelengths and
Ku is a uniform random variable on the set {0, . . . , ηu − 1}
being independent of Wu. Denoting by M(N ;λ, k) the event
that a multicast generated by node N utilizes segment λ+kΛ
on wavelength λ we obtain (21) through (24) (shown on the
next page).

Now letting Su,N
λ be a random variable denoting the number

of critical segments that are utilized in a network with N nodes
on wavelength λ during the transmission of the multicast
generated by node N to all of its destination nodes on λ,
we have P[M(N ;λ, k)] = P[Su

λ ≥ k + 1] and thus (25) and
(26) (shown on the next page). Conditioning on the number
of multicast destinations l we obtain

uu,N
max =

1
N

Λ∑
λ=1

N−1∑
l=1

E[Su,N
λ |F = l] µN

l (27)

=
N−1∑
l=1

uu,N
max(l) µN

l , (28)

with

uu,N
max(l) :=

1
N

Λ∑
λ=1

E[Su,N
λ |F = l] (29)

denoting the largest utilization probability with fixed fanout
F = l.

We proceed to derive the utilization probability uu,N
max(l) in

the limit for a large number of nodes N → ∞ and denote
uu

max(l) = limN→∞ uu,N
max(l). Toward this goal we rewrite

(29) with (i) Ru,N
λ := Su,N

λ /ηu being a random variable
that denotes the relative number of traversed critical segments
on λ, and (ii) P(Fλ = m|F = l) denoting the conditional
probability for having Fλ = m destinations on wavelength λ
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uu,N
max = P[M(N ;Wu,Ku)] (21)

=
Λ∑

λ=1

ηu−1∑
k=0

P[M(N ;Wu,Ku)|Wu = λ,Ku = k] P[Wu = λ,Ku = k] (22)

=
Λ∑

λ=1

ηu−1∑
k=0

P[M(N ;λ, k)]
1
Λ

1
ηu

(23)

=
1
N

Λ∑
λ=1

ηu−1∑
k=0

P[M(N ;λ, k)] (24)

uu,N
max =

1
N

Λ∑
λ=1

ηu−1∑
k=0

P[Su,N
λ ≥ k + 1] =

1
N

Λ∑
λ=1

ηu∑
k=1

P[Su,N
λ ≥ k] (25)

=
1
N

Λ∑
λ=1

E[Su,N
λ ] (26)

given a total of F = l multicast destinations to obtain

uu,N
max(l) =

1
Λ

Λ∑
λ=1

l∑
m=0

E[Ru,N
λ |Fλ = m]·P(Fλ = m|F = l).

(30)
Now we observe the following two main points in the limit
N → ∞:

1) For λ = 1, . . . ,Λ − 1 the random variable Ru,N
λ

may take on the values 0, 1
ηu

, 2
ηu

, . . . , ηu−1
ηu

, ηu

ηu
= 1,

whereby Ru,N
λ := 0 if there is no destination node

on λ. For m > 0 the destinations on λ are uniformly
randomly distributed (without resampling) on the nodes
homed on λ which correspond to the relative distances
{ 1

ηu
, 2

ηu
, . . . , ηu−1

ηu
, ηu

ηu
} (or distance 0 if m = 0).

The largest (index) of those destinations provides the
realization of Ru,N

λ . In particular, the distribution of
Ru,N

λ given that there are m > 0 destinations on λ
coincides with the distribution of the maximum (index)
of m destinations that are chosen randomly (without
resampling) from among { 1

ηu
, 2

ηu
, . . . , ηu−1

ηu
, ηu

ηu
}. The

larger N , the tighter these relative distances are fitted
into the interval [0, 1]. As N → ∞ the random vari-
able Ru,N

λ approximates a random variable, Ru
λ, which

may take on any value from [0, 1]. In particular, the
distribution of Ru

λ given that there are m destinations
on λ coincides with the distribution of Tm:m where
T1:m, . . . , Tm:m is the so-called order statistics of m
independently uniformly distributed random variables
on [0, 1].2 Hence, the expectation of Ru

λ given Fλ = m
is given by

E[Ru
λ|Fλ = m] =

m

m + 1
. (31)

For λ = Λ the setting considered above must be slightly
modified since at most ηu − 1 critical segments are
traversed on the wavelength homing the source node N .
We omit the details of this modification, which results
in the limit N → ∞ also in (31).

2Let T1, . . . , Tm be m independent uniformly distributed random variables
on [0, 1]. The order statistics T1:m, . . . , Tm:m of T1, . . . , Tm is defined to
be a permutation of T1, . . . , Tm such that T1:m ≤ · · · ≤ Tm:m.

2) The hypergeometric distribution of P(Fλ = m|F =
l) approaches a binomial distribution as N → ∞.
Specifically, the value of P(Fλ = m|F = l) is specified
in (32) and (33) (shown on the next page), whereby we
employ the definition 00 = 1 to accommodate the case
Λ = 1.

Thus, overall (34), (35), (36), and (37) (shown on the next
page) are true.

B. Maximum Segment Utilization and Multicast Capacity of
Bidirectional Ring with Two Copy Transmission

Similar to the unidirectional case we let ub,N
max denote the

probability that a given critical segment is utilized by a sender
(node) that is uniformly randomly chosen from among the
N nodes of the ring, and note that the effective multicast
capacity is given by Cb,N

M = 1/ub,N
max. As above, we observe

that ub,N
max coincides with the probability that a fixed sender

(node) utilizes a critical segment which is uniformly randomly
chosen from among the set of all critical segments. To specify
the latter probability we assume without loss of generality
node N to be the sender. Let Wb be a uniform random
variable on the set {1, . . . ,Λb} of all wavelengths and Kb

be a uniform random variable on the set {0, . . . , ηb−1} being
independent of Wb. Denote by M(N ;λ, k; +), respectively
M(N ;λ, k;−), the event that a multicast generated by node
N utilizes segment λ+kΛb on λ in direction “+”, respectively
segment (N − Λb + 1) + λ − kΛb on λ, λ �= Λb in direction
“−”. (The case λ = Λ requires some adjustment for the
− direction, which vanishes in the limit N → ∞ as noted
below.) Moreover, we write Sb

λ,+, Sb
λ,− and Sb

λ for the random
variables that denote the numbers of critical segments that are
utilized on wavelength λ during the transmission in direction
“+”, in direction “−” and in either directions, respectively,
of the multicast generated by node N to all of its destination
nodes on λ. In particular, Sb

λ = Sb
λ,+ + Sb

λ,−. We have

ub,N
max = P[M(N ; Wb, Kb; +)] = P[M(N ; Wb, Kb;−)] (38)

=
1

2

(
P[M(N ; Wb, Kb; +)] + P[M(N ; Wb, Kb;−)]

)
. (39)
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P(Fλ = m|F = l) =

(
ηu

m

)(
N−1−ηu

l−m

)
(
N−1

l

) (32)

−→
(

l

m

)( 1
Λ

)m(Λ − 1
Λ

)l−m

, as N → ∞ (33)

uu
max(l) = lim

N→∞
1
Λ

Λ∑
λ=1

l∑
m=0

E[Ru,N
λ |Fλ = m]P(Fλ = m|F = l) (34)

= lim
N→∞

l∑
m=0

E[Ru,N
1 |F1 = m]P(F1 = m|F = l) (35)

=
l∑

m=1

m

m + 1

(
l

m

)( 1
Λ

)m(Λ − 1
Λ

)l−m

(36)

lim
N→∞

Cu,N
M =

1∑∞
l=1

( ∑l
m=1

m
m+1

(
l
m

)(
1
Λ

)m(
Λ−1
Λ

)l−m
)

µl

(37)

Proceeding analogously to the unidirectional ring analysis
we obtain

ub,N
max =

1
2

( 1
N

Λb∑
λ=1

E[Sb
λ,+] +

1
N

Λb∑
λ=1

E[Sb
λ,−]

)
(40)

=
1

2N

Λb∑
λ=1

E[Sb
λ] (41)

=
N−1∑
l=1

ub,N
max(l) µN

l (42)

with

ub,N
max(l) =

1

2Λb

Λb∑
λ=1

l∑
m=0

E[Rb,N
λ |Fλ = m] · P(Fλ = m|F = l),

(43)

where Rb,N
λ := Sb,N

λ /ηb denotes the relative number of
traversed critical segments on λ (in comparison to the number
ηb of all critical segments on λ).

In the limit N → ∞ the m, m ≥ 1, destinations on
λ, λ = 1, . . . ,Λb, are (independently) uniformly randomly
chosen from the interval [0, 1]. The realization of Rb

λ is defined
to be “1 − maximal gap between any two neighboring destina-
tion nodes (indices)”. This reflects the two copy transmission
mechanism according to which one copy of the multicast
is sent in the clockwise direction to the destination node
that borders to the largest gap, and another copy is sent in
the counter clockwise direction to the destination node that
borders to the largest gap. In particular, the distribution of
Rb

λ given that there are m destinations on λ coincides with
the distribution of “1 − largest gap in the order statistics
T1:m, . . . , Tm:m of m independently uniformly distributed
random variables on [0, 1]”. More precisely, the distribution
of Rb

λ given that there are m destinations on λ coincides with
the one of 1−T gap

(m), where T gap
(m) := max{Ti:m−Ti−1:m : i =

1, . . . ,m} ∨ (1 − Tm:m), T0:m := 0 and a ∨ b := max{a, b}.
The distribution of T gap

(m) is given in [50, p. 81], from which
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Fig. 2. Multicast capacity of bidirectional ring with two copy transmission:
Comparison of exact Cb,N

M with limN→∞ Cb,N
M ; Λb = 2, fixed

we deduce the expectation of T gap
(m) as

1 − E[Rb
λ|Fλ = m] = E[T gap

(m)]

=
1

m + 1

m+1∑
i=1

(
m + 1

i

)
(−1)i+1 1

i
. (44)

We note that this expectation can be conveniently expressed in
terms of the Digamma function Ψ(x) := d

dx log(Γ(x)), x > 0,
with Γ denoting the well-known Gamma function Γ(x) :=∫ ∞
0

e−ttx−1dt, x > 0, and the Euler-Mascheroni constant
γ ≈ 0.5772156649 as

E[Rb
λ|Fλ = m] = 1 − 1

m + 1
(Ψ(m + 2) + γ). (45)

Thus, we obtain (46) and (47) (shown on the next page).
To illustrate the convergence of the actual multicast capacity

Cb,N
M for a network with N nodes to the multicast capacity

limN→∞ Cb,N
M we compare in Fig. 2 the actual (exact) multi-

cast capacity Cb,N
M evaluated with the computational procedure

derived in [23] with limN→∞ Cb,N
M given in (47).
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ub
max(l) =

1
2

{
1 −

l∑
m=0

1
m + 1

[
Ψ(m + 2) + γ

](
l

m

)( 1
Λb

)m(Λb − 1
Λb

)l−m
}

(46)

lim
N→∞

Cb,N
M =

2

1 − ∑∞
l=1

( ∑l
m=0

1
m+1

{
Ψ(m + 2) + γ

}(
l
m

)(
1
Λb

)m(
Λb−1
Λb

)l−m
)

µl

(47)

We consider a bidirectional ring with Λb = 2 wavelength
channels in each direction and plot curves for unicast traffic
with µ1 = 1, µl = 0 for l ≥ 2 (UC), multicast traffic with
a fixed fanout with µ8 = 1, µl = 0 for l �= 8 (MCf),
multicast traffic with a distributed fanout with µl = 1/15 for
l = 1, . . . , 15 and µl = 0 for l ≥ 16 (MCd), and mixed traffic
with µ1 = 0.75 and µl = 0.25/41 for l = 2, . . . , 42 and
µl = 0 for l ≥ 43 (Mix). We observe from the figure that
the exact multicast capacity quickly converges to the limit
capacity limN→∞ Cb,N

M as the number of nodes N increases.
For N = 40 nodes, i.e., 20 nodes homed on a wavelength with
the considered Λb = 2 wavelengths in each ring direction, the
exact capacity is within less than 10% of the limit capacity.
Comparing the Mix with the UC results, we observe that a
moderate amount of 25% of multicast traffic cuts the capacity
approximately in half compared to a network serving no
multicast traffic, illustrating that multicast traffic has a very
significant impact on the overall network performance.

C. Maximum Segment Utilization and Multicast Capacity of
Bidirectional Ring with One Copy Transmission

The main difference of the one copy transmission from
the two copy transmission analyzed in the preceding sec-
tion is that with the one copy transmission the realization
of the relative distance Rb1c

λ is defined to be the min-
imum of the largest destination node (index) and “1 −
smallest destination node (index)”. This reflects the one copy
transmission mechanism according to which one packet copy
is sent in the direction that minimizes the hop distance. In
particular, the distribution of Rb1c

λ given that there are m des-
tinations on λ, λ = 1, . . . ,Λb, coincides with the distribution
of T(m) := min{Tm:m, 1 − T1:m}, where T1:m, . . . , Tm:m is
the order statistics of m independently uniformly distributed
random variables on [0, 1]. The distribution of T(m) is given by
(48) through (52) (shown on the next page), where 1y≥1/2 :=
1 for y ≥ 1/2, and 1y≥1/2 := 0 otherwise. Then elementary
analytic arguments yield E[Rb

λ|Fλ = m] = E[T(m)] =
2m−1

2(m+1) . Thus, we obtain

ub1c
max(l)

=
1
2

l∑
m=1

2m − 1
2(m + 1)

(
l

m

)( 1
Λb

)m(Λb − 1
Λb

)l−m

(53)

and

lim
N→∞

Cb1c,N
M

=
2∑∞

l=1

∑l
m=1

2m−1
2(m+1)

(
l
m

)(
1
Λb

)m(
Λb−1
Λb

)l−m

µl

. (54)

D. Multicast Capacity Ratios

From the analyses in the preceding three subsections we
immediately obtain the following values for the bidirectional
(with two and one copy transmission) to unidirectional multi-
cast capacity ratios.

Theorem 3: See (55) (shown on the next page).
Theorem 4: See (56) (shown on the next page).

We employ the relatively simple closed-form expressions in
(55) and (56) to further investigate the behaviors of the
multicast ratios.

Letting Cu,N
M (l), Cb,N

M (l), and Cb1c,N
M (l) refer to the mul-

ticast capacities of the unidirectional ring, the bidirectional
ring with two copy transmission, and the bidirectional ring
with one copy transmission, respectively, for a fixed fanout
F = l (that is, µl = 1 and µl′ = 0 ∀ l′ �= l), we obtain the
following corollaries, which are proven in Appendix A.

Corollary 2: liml→∞
{

limN→∞
Cb,N

M (l)

Cu,N
M (l)

}
= 2.

Corollary 3: liml→∞
{

limN→∞
Cb1c,N

M (l)

Cu,N
M (l)

}
= 2.

The intuitive explanation for the results in these corollaries
is as follows. With an increasing number of multicast desti-
nations l in a network with a large number of nodes N it
becomes increasingly likely that (i) there are destinations on
all home wavelengths ({1, . . . ,Λ} in the unidirectional ring
and {1, . . . ,Λb} in the bidirectional ring), and (ii) that there
are multicast destinations all around the ring perimeter on each
wavelength requiring each packet copy to make essentially a
full round trip around the ring. As a consequence, at most one
multicast can take place at a time on the one set of wavelengths
channels {1, . . . ,Λ} in the unidirectional ring, whereas two
simultaneous multicasts can take place on the two identical
sets of wavelength channels {1, . . . ,Λb} in the bidirectional
ring.

In summary, we have found so far that the multicast capacity
ratio Cb

M/Cu
M (with two copy transmission in the bidirectional

ring) is bounded from below by two (see Theorem 1) and tends
to two when there is a large number of multicast destinations
(see Corollary 2). A remaining question to ask is how large
can the multicast capacity ratio Cb

M/Cu
M get? Analogously, we

have found that the multicast capacity ratio Cb1c
M /Cu

M (with
one copy transmission in the bidirectional ring) is bounded
from above by two (see Theorem 2) and tends to two for a
large number of multicast destinations (see Corollary 3), but
it remains to characterize how small this ratio can get.

Before we further pursue the question of the how large
(small) the multicast capacity ratio with two (one) copy
transmission in the bidirectional ring gets we plot the ratio
limN→∞ Cb,N

M /Cu,N
M in Fig. 3 to obtain further insights into

its behavior.
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P[T(m) ≤ y] = P[Tm:m ≤ y or T1:m ≥ 1 − y] (48)

= P[Tm:m ≤ y] + P[T1:m ≥ 1 − y] − P[Tm:m ≤ y, T1:m ≥ 1 − y] (49)

= P[T1 ≤ y, . . . , Tm ≤ y] + P[T1 ≥ 1 − y, . . . , Tm ≥ 1 − y]
−P[T1 ∈ [1 − y, y], . . . , Tm ∈ [1 − y, y]] (50)

= ym + (1 − (1 − y))m − (y − (1 − y))m 1y≥1/2 (51)

= 2 ym − (2y − 1)m 1y≥1/2 (52)

lim
N→∞

Cb,N
M

Cu,N
M

= 2

∑∞
l=1

(∑l
m=1

m
m+1

(
l
m

)(
1
Λ

)m(
Λ−1
Λ

)l−m
)

µl

1 − ∑∞
l=1

( ∑l
m=0

1
m+1

{
Ψ(m + 2) + γ

}(
l
m

)(
1
Λb

)m(
Λb−1
Λb

)l−m
)

µl

(55)

lim
N→∞

Cb1c,N
M

Cu,N
M

= 2

∑∞
l=1

( ∑l
m=1

m
m+1

(
l
m

)(
1
Λ

)m(
Λ−1
Λ

)l−m
)

µl∑∞
l=1

(∑l
m=1

2m−1
2(m+1)

(
l
m

)(
1
Λb

)m(
Λb−1
Λb

)l−m
)

µl

(56)

7.1 

8.1 

9.1 

2 

1.2 

2.2 

3.2 

0 01 02 03 04 05 06 07 08 09 001 

M
ul

tic
as

t C
ap

ac
ity

 R
at

io

d tnuoC noitanitseD

xif ,.rt owt
sid ,.rt owt
xim ,.rt owt
xif ,.rt eno
sid ,.rt eno
xim ,.rt eno

Fig. 3. Multicast capacity ratios limN→∞ Cb,N
M /Cu,N

M (with two copy
transmission in bidir. ring) and limN→∞ Cb1c,N

M /Cu,N
M (with one copy

transmission in bidir. ring) as a function of maximum destination count d;
Λb = 2, fixed.

We plot these ratios for fixed fanout µd = 1 and µl = 0 for
l �= d (fix), for distributed fanout µl = 1/d for l = 1, . . . , d
and µl = 0 for l > d (dis), and mixed fanout µ1 = 0.75 and
µl = 0.25/(d−1) for l = 2, . . . , d, and µl = 0 for l > d (mix)
as a function of the destination count d for networks with a
total of Λ = 4 wavelengths. We observe that the multicast
capacity ratios reach the largest (respectively, smallest) values
for the fixed fanout. With the distributed fanout, which in a
sense averages across all fixed fanouts that are less or equal
to d, the ratio is “smoothed” out. Similarly, the mixed fanout
combines a unicast (F = 1) component with a distributed
fanout component; whereby the unicast component (for which
the ratio is two) keeps the overall ratio closer to two.

We further plot the multicast capacity ratio
limN→∞ Cb,N

M (l)/Cu,N
M (l) (with two copy transmission

in bidir. ring) for fixed fanout F = l as a function of the
number of multicast destinations l for different numbers of
wavelength channels in each direction Λb in Fig. 4.
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Fig. 4. Multicast capacity ratio limN→∞ Cb,N
M (l)/Cu,N

M (l) (with two copy
transmission in bidirectional ring) for fixed fanout F = l as a function of
number of wavelengths Λb and destinations l.

We observe that with increasing number of
wavelength channels Λb, the maximum of the plot of
limN→∞ Cb,N

M (l)/Cu,N
M (l) decreases and is reached for

an increasing number of multicast destinations. For larger
numbers of multicast destinations l (beyond the range of the
plot) the multicast capacity ratio drops to two, as expected
from Corollary 2.

We proceed to examine the question how large the ratio
limN→∞ Cb,N

M /Cu,N
M gets, i.e., what is the maximum of this

ratio for all numbers of wavelengths Λb = 1, 2, . . . and fanout
distributions µl, l ≥ 1? First, we note that it suffices to
consider the maximum ratio for all Λb = 1, 2, . . . and all
fixed fanouts F = l, l = 1, 2, . . . . To see this, observe from
the fixed fan out plots in Fig. 4 that for a given Λb there is
exactly one lΛb

that attains the maximum ratio, i.e.,

lim
N→∞

Cb,N
M (l)

Cu,N
M (l)

≤ lim
N→∞

Cb,N
M (lΛb

)

Cu,N
M (lΛb

)
∀ l = 1, 2, . . . (57)
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lim
N→∞

Cb,N
M

Cu,N
M

= 2

∑∞
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( ∑l
m=1

m
m+1

(
l
m

)(
1
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)m(
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Λ

)l−m
)
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m=0
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m+1

{
Ψ(m + 2) + γ
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l
m

)(
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)m(
Λb−1
Λb

)l−m
)

µl

(58)

=: 2
∑∞

l=1 al µl∑∞
l=1 bl µl

(59)
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Fig. 5. Capacity ratio (gain) with two copy transmission over one copy
transmission in bidiretional ring network limN→∞ Cb,N

M (l)/Cb1c,N
M (l) for

fixed fanout F = l as a function of number of wavelengths Λb and
destinations l.

Based on this observation we can show that for a fixed Λb,
the ratio limN→∞ Cb,N

M /Cu,N
M for any arbitrary distribution

µl, l ≥ 1, is at most limN→∞ Cb,N
M (lΛb

)/Cu,N
M (lΛb

). In
particular, we can rewrite (55) as shown in (58) and (59)
(shown on this page). The observation (57) implies in the al

and bl notation that

al

bl
≤ alΛb

blΛb

∀ l = 1, 2, . . . (60)

For an arbitrary fanout distribution µl, l ≥ 1, and the
corresponding ratio limN→∞ Cb,N

M /Cu,N
M we have then (61)

through (65) (shown on the next page). Based on our above
observation, (60) holds, and we have thus shown that it suffices
to consider only fixed fanouts in the maximization. Hence,
our maximization problem is expressed in (66) (shown on
ther next page). We have not been able to formally solve this
maximization problem. However, from numerically evaluating

2

∑l
m=1

m
m+1

(
l

m

)(
1
Λ

)m(
Λ−1
Λ

)l−m

1 − ∑l
m=0

1
m+1

{
Ψ(m + 2) + γ

}(
l

m

)(
1
Λb

)m(
Λb−1
Λb

)l−m
(67)

as a function of Λb and l we obtained the ratios plot-
ted in Fig. 4. We observe that the multicast capacity ratio
limN→∞ Cb,N

M (l)/Cu,N
M (l) reaches 11, 235/4, 936 ≈ 2.27613

for Λb = 1 and a fanout of l = 6 multicast destinations.
Analogous evaluations show that the multicast capacity ratio
limN→∞ Cb1c,N

M (l)/Cu,N
M (l) drops to 5/3 for Λb = 1 and a

fanout of l = 2 multicast destinations.
For bidirectional ring networks, we obtain from the value

2.27613 reached by limN→∞ Cb,N
M (l)/Cu,N

M (l) with (20) that

the relative advantage of two copy transmission is larger than
13.8% in the Λb = 1, l = 6 scenario. More specifically,
from (47) and (54) we obtain (68) (shown on the next page)
and plot the corresponding capacity gain with a fixed fanout
limN→∞ Cb,N

M (l)/Cb1c,N
M (l) in Fig. 5. We find that the gain

reaches 30/23 ≈ 1.30435 for Λb = 1 wavelength and a fanout
of l = 3 multicast destinations.

VI. CONCLUSION

We have examined the effective multicast capacity (stability
limit) of packet-switched ring wavelength division multiplex-
ing (WDM) networks. In particular, we have compared the
capacities of bidirectional ring networks (both with two and
one copy transmission per wavelength) with the capacity of
a unidirectional ring, whereby all networks have the same
total number of wavelength channels. With an elementary
analysis of the number of traversed critical segments which
attain the highest utilization and govern the capacity we have
proven fundamental bounds on the ratios of the multicast
capacities of the bidirectional ring to the multicast capacity of
the unidirectional ring: The bidirectional ring with two copy
transmission to unidirectional ring capacity ratio Cb

M/Cu
M

is bounded by two from below, whereas the corresponding
capacity ratio with one copy transmission in the bidirectional
ring Cb1c

M /Cu
M is bounded by two from above. The bounds

are generally valid for arbitrary mixes of uniform unicast,
multicast, and broadcast traffic.

For networks with a large number N of network nodes
(formally, N → ∞) we have derived simple closed-form
characterizations of the utilization of the critical segments
and the effective multicast capacities Cu

M of the unidirectional
ring, Cb

M of the bidirectional ring with two copy transmission,
and Cb1c

M of the bidirectional ring with one copy transmission.
Our numerical work demonstrates that these characterizations
are in close agreement with the exact capacities for finite N for
networks with 20 or more nodes homed on one wavelength.
From these characterizations we have formally proven that
both capacity ratios Cb

M/Cu
M and Cb1c

M /Cu
M approach two

for multicasts with a large number of destinations.
We have quantified the capacity gain achieved by two copy

transmission over one-copy transmission in bidirectional ring
networks and found that this gain is most pronounced for a
small number of wavelengths and small to moderate numbers
of multicast destinations. These results can form the basis for
assessing the trade-offs between increased transmission effort
with two-copy transmission and the corresponding capacity
gains.
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lim
N→∞

Cb,N
M

Cu,N
M

≤ lim
N→∞

Cb,N
M (lΛb

)

Cu,N
M (lΛb

)
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∑∞
l=1 al µl∑∞
l=1 bl µl

≤ alΛb

blΛb

(61)

⇐⇒ blΛb

∞∑
l=1

al µl ≤ alΛb

∞∑
l=1

bl µl (62)

⇐⇒
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(
blΛb

al − alΛb
bl

)
µl ≤ 0 (63)

⇐=
(
blΛb

al − alΛb
bl

)
≤ 0 ∀l ≥ 1 (64)

⇐⇒ Inequality (60) holds (65)
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=
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(68)

the drawing of the figures.

APPENDIX

APPENDIX A: PROOF OF COROLLARIES 2 AND 3
For the proof of Corollary 2 we first note that according to

(55) we have (69) (shown on the next page). So the claim of
Corollary 2 follows from

lim
l→∞

l∑
m=1

m

m + 1

(
l

m

)( 1

Λ

)m(Λ − 1

Λ

)l−m

= 1, (70)

and (71) (shown on the next page).
To prove (70), we write (for the sake of clarity) pu and pb

in place of 1/Λ and 1/Λb, respectively, and note that

∣∣∣ l∑
m=1

m

m + 1

(
l

m

)
pm

u (1 − pu)l−m − 1
∣∣∣ (72)

=
∣∣∣ l∑

m=1

( m

m + 1
− 1

)(
l

m

)
pm

u (1 − pu)l−m − (1 − pu)l
∣∣∣ (73)

≤
l∑

m=1

1

m + 1

(
l

m

)
pm

u (1 − pu)l−m + (1 − pu)l (74)

=
p−1

u

l + 1

l∑
m=1

(
l + 1

m + 1

)
pm+1

u (1 − pu)l+1−(m+1) + (1 − pu)l

(75)

≤ p−1
u

l + 1

l+1∑
m=0

(
l + 1

m

)
pm

u (1 − pu)l+1−m + (1 − pu)l (76)

=
p−1

u

l + 1
+ (1 − pu)l. (77)

To prove (71), we notice that Ψ increases logarithmically:
limx→∞ Ψ(x)/ log x = 1. In particular, limx→∞ Ψ(x +
2)/(x + 1) = 0. So we obtain (for l sufficiently large),

l∑
m=1

1

m + 1
{Ψ(m + 2) + γ}

(
l

m

)
pm

b (1 − pb)
l−m (78)

≤ p−1
b

l + 1

l∑
m=1

{Ψ(l + 2) + γ}
(

l + 1

m + 1

)
pm+1

b (1 − pb)
l+1−(m+1)

(79)

≤ p−1
b

l + 1
{Ψ(l + 2) + γ}

l+1∑
m=0

(
l + 1

m

)
pm

b (1 − pb)
l+1−m (80)

≤ p−1
b

l + 1
{Ψ(l + 2) + γ} −→ 0 as l → ∞. (81)

For the proof of Corollary 3 we first observe that according
to Theorem 4 we have

lim
N→∞

Cb,N
M (l)

Cu,N
M (l)

= 2

∑l
m=1

m
m+1

(
l
m

)(
1
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)m(
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2m−1
2(m+1)

(
l
m

)(
1
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)m(
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.

(82)
So the claim of Corollary 3 follows from (70) and

lim
l→∞

l∑
m=1

2m − 1

2(m + 1)

(
l

m

)( 1

Λb

)m(Λb − 1

Λb

)l−m

= 1, (83)

which is proven similarly to (70).

APPENDIX B: THE CASE OF “ESCAPING” FANOUT MASS

So far we assumed that the approximating fanout distri-
bution µN

l , l = 1, . . . , N − 1 has a nondegenerate limit
distribution µl, l ≥ 1, that satisfies limN→∞ µN

l = µl, l ≥ 1
as well as µl ≥ 0 and

∑∞
l=1 µl = 1. The question remains

how the ratios of the multicast capacities behave if the mass
of the approximating fanout distribution escapes to infinity,
that is, if

lim
N→∞

µN
l = 0 ∀ l ≥ 1. (84)
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lim
N→∞
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m
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(
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)(
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1
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lim
l→∞

l∑
m=1

1
m + 1

{Ψ(m + 2) + γ}
(

l

m

)( 1
Λb

)m(Λb − 1
Λb
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= 0 (71)

Informally, (84) means that with increasing N the mass of
µN

l , l = 1, . . . , N −1 more and more concentrates on large l,
that is, small fanout sets are becoming more and more unlikely.
One simple illustrative example for an approximating fanout
distribution (µN

l )N−1
l=1 satisfying (84) is:

µN
�p(N−1)� := 1 and µN

l := 0
for all l ∈ {1, . . . , N − 1} \ {�p(N − 1)�},

where p is some constant in the half-open interval (0, 1]. In
view of Corollary 3 and Corollary 2, it is straightforward to
prove the following theorem.

Theorem 5: Assume (84) holds. Then,

lim
N→∞

Cb,N
M

Cu,N
M

= 2, and lim
N→∞

Cb1c,N
M

Cu,N
M

= 2. (85)
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