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Abstract

As the internet search evolves toward multimedia content based search and informa-
tion retrieval, audio content identification and retrieval will likely become one of the key
components of next generation internet search machines. In this paper we consider the
specific problem of identifying the classical music composition of an unknown perfor-
mance of the composition. We develop and evaluate a wavelet based methodology
for this problem. Our methodology combines a novel music information (audio content)
descriptor, the wavelet dispersion vector, with neural net assessment of the similarity
between unknown query vectors and known (example set) vectors. We define the
wavelet dispersion vector as the histogram of the rank orders obtained by the wavelet
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coefficients of a given wavelet scale among all the coefficients (of all scales at a given
time instant). We demonstrate that the wavelet dispersion vector precisely characterizes
the audio content of a performance of a classical music composition while achieving
good generalization across different performances of the composition. We examine
the identification performance of a combination of 39 different wavelets and three
different types of neural nets. We find that our wavelet dispersion vector calculated with
a biorthogonal wavelet in conjunction with a probabilistic radial basis neural net trained
by only three independent example performances correctly identifies approximately 78%
of the unknown performances.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Due to the immense and growing amount of audiovisual data that is avail-
able on the world wide web (WWW), techniques for multimedia content clas-
sification and retrieval are becoming increasingly important. Next generation
internet search machines are expected to be able to understand and process
multimedia information (content). More precisely, a user query can be a mix-
ture of multimedia data including text, audio, picture, and video content. The
search machine should give a reasonable answer providing content that is
highly related to the query and of relevance to the user. A music information
(audio content) description and retrieval methodology for implementation in
internet search machines should allow for a very compact content representa-
tion since there is an immense volume of audio data on the WWW. In addition,
the methodology should allow for an efficient computation of these descriptors.

In this paper we focus on the problem of music information retrieval for
classical music and in particular on the problem of identifying the classical mu-
sic composition of an unknown query performance (as well as the retrieval of
other performances of the composition), as described in more detail in Section
2. Our main contributions to this problem domain is to develop and evaluate a
wavelet transform based audio content description and retrieval methodology
that involves (i) a novel wavelet dispersion vector for describing the character-
istic audio content (classical music composition) features, and (ii) neural net
processing of these vectors to assess the similarities between the vector describ-
ing a classical music performance entered as query and the vectors describing
the performances in the search machine�s knowledge base. Our methodology is
based on the insight that the audio content of a performance of a classical mu-
sic composition corresponds to characteristic patterns in the wavelet coeffi-
cients. Our definition of the wavelet dispersion vector provides a compact
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representation of these characteristic patterns by directly combining wavelet
coefficients across scales and time instants (audio signal samples). More specif-
ically, the calculation of the wavelet dispersion vector from the wavelet coeffi-
cients (for a set of scales and time instants) of an audio piece proceeds in the
following main steps. We first determine the rank order of a coefficient for a
given wavelet scale and time instant among the coefficients from all wavelet
scales for the considered time instant. We then determine the histogram of
the number of times the coefficients of a given scale attain a given rank order
across all the time samples of the music piece. We finally obtain the wavelet dis-
persion vector from this histogram as detailed in Section 4. We find that the so
obtained wavelet dispersion vector efficiently describes the wavelet patterns
corresponding to the classical music composition, i.e., the dispersion vector
describes how the wavelet coefficients are scattered (dispersed) to form the
characteristic pattern. We also find that the wavelet dispersion vectors can
be processed in a computationally efficient manner by a neural net to assess
the similarities between a vector entered as query and the vectors of known per-
formances of the composition. We demonstrate that the proposed methodol-
ogy of combining wavelet dispersion vectors and neural net processing has
good generalization properties as it identifies performances that are not part
of the search machine�s knowledge base (example set) with a high success rate.

We examine the performance of our methodology for combinations of 39
different wavelets with three different types of neural nets. In our performance
evaluation, the search machine is provided with a performance of a classical
music movement (piece of a composition) and the task is to find the same
movement in a different performance/recording, whereby the performances dif-
fer in time, frequency, sound environments, and recording quality. We consider
four different performances/recordings of the same 32 movements in our eval-
uation. By combining the biorthogonal wavelet with the order numbers 3 (for
reconstruction) and 9 (for decomposition) with the scales 1, 3, 5, . . . , 47 with a
probabilistic radial network trained with three different performances, our
methodology achieves a mean success rate of 78% for identifying the move-
ments of a performance that is not in the search system�s knowledge base.
The identification success rate for a performance known to the system is
approximately 100%.

This paper is organized as follows. In the following subsection we review
related work. In Section 2 we describe in detail the problem setting. We also
present the classical music recordings, which we have used as the sample mu-
sic content throughout this study. In Section 3 we report our observation that
the audio content corresponds to characteristic patterns of the wavelet coeffi-
cients, which is the basis for our identification methodology. We also outline
the development path of our methodology on which we have considered
wavelet envelope descriptors and elementary summary statistics of wavelet
coefficients which in turn have led us to the novel wavelet dispersion vector
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for solving the considered problem. In Section 4, we present our novel wavelet
dispersion vector. We demonstrate that this vector efficiently describes the
wavelet patterns discovered in Section 3. In Section 5, we describe how the
wavelet dispersion data can be processed in a neural net to identify the clas-
sical music composition of an unknown performance in a computationally
effective manner. We examine the performance of our identification method-
ology employing the wavelet dispersion vector in conjunction with a neural
net for different wavelet families and wavelet scales. In Section 6, we summa-
rize our findings.

1.1. Related work

Audio content description, sound classification, and audio retrieval have
been studied extensively, see for instance [1–6]. Related to our research are
the lines of work on audio classification/indexing and audio fingerprinting/re-
trieval in this literature. The existing body of literature on audio classification/
indexing considers systems that are trained by a number of example sounds for
classification of novel sound segments into elementary content based classes or
genres, see for instance [7–15]. The system developed in [14], for instance, clas-
sifies sports audio data into one of the six sound classes applause, ball-hit,
cheering, music, speech, and speech with music. The systems developed in
[8,10] classify audio sounds into 16 sound classes, including the sounds animal,
bells, female, and telephone. There exist also systems for artist detection [16]
and music type detection [17–19].

While the goal of audio classification is to categorize audio pieces into a
relatively small number of classes/genres, the goal of audio fingerprinting
and retrieval is to identify a particular audio piece and/or audio pieces that
are very similar to a given piece. (Each audio piece or set of similar pieces
may thus be thought of as an individual class.) The existing approaches for
audio fingerprinting (which is also referred to as audio hashing) and retrieval
can be categorized according to their design goals into two main groups.
One group aims to identify and retrieve the ‘‘same’’ piece as the query piece,
whereby the query piece is typically ‘‘known’’, i.e., the query piece is contained
in the audio database (or the query piece is a somewhat distorted or noisy
version of the known piece in the database). The other group aims to identify
and retrieve pieces that are ‘‘similar’’ to the query piece, whereby the query
piece may be unknown, i.e., the query piece may not be contained in the audio
data base. The first area is relatively more mature and several approaches have
been developed employing a wide variety of audio signal transforms, feature
(fingerprint) extraction, and matching methods, see for instance [20–33]. The
second area of identifying similar audio pieces is relatively less mature and
relatively few feature extraction and matching methods have been explored.
A texture score representation which is based on Mel Cepstrum coefficients
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and a hidden Markov model is developed in [34]. A polyphonic binary feature
vector which is obtained through a band pass filter bank and beat tracking is
developed in [35]. The zero-crossing rates are extracted with an octave-band
filter bank in [36] and are used to characterize the audio content through the
dominant frequencies in each subband. The signal power and spectrogram
are used in [37,38] to develop characteristic sequences. The psycho-acoustic
perception of rhythm patterns is used in [39] to develop self-organizing maps
of the audio pieces. In [40], audio features are extracted from audio com-
pressed by the MPEG audio compression algorithm, which is based on a
psycho-acoustic model, and the audio features are then processed by a fuzzy
logic based clustering algorithm to identify the similar audio pieces. A charac-
teristic signature based on a sequence of fundamental frequencies, which are
based on the psycho-acoustic perception of the audio is developed in [41].
While these initial works have significantly advanced the fundamental under-
standing of identifying and retrieving audio, they have only explored a part
of the spectrum of approaches for the transformation and feature extraction
from the audio signal. In particular, the existing studies have focused primarily
of the feature extraction using various forms of the Fourier transform and
spectral filtering. In contrast to the existing studies, we explore the use of the
wavelet transform, which has many attractive properties for feature extraction,
and develop a wavelet based methodology for the identification of the classical
music composition of an unknown query performance.

We note that the use of the wavelet transform for classification as well as for
the identification of a known query audio piece has been studied in a few
works. The statistical properties of the wavelet coefficients, such as mean, stan-
dard deviation, and zero-crossing rate, are exploited by the schemes developed
in [17,29]. The scheme developed in [42] forms feature vectors from the wavelet
approximation coefficients and a subset of the wavelet detail coefficients. The
scheme developed in [43] forms feature vectors from the covariances between
the original audio signal and the various wavelet detail signals. Our proposed
wavelet dispersion vector differs from these approaches in that it does not ex-
tract the statistical properties of the wavelet coefficients, but rather captures the
pattern formed by the wavelet coefficients. The scheme proposed in [44] is sim-
ilar in spirit to ours in that it captures a part of the relationship between the
wavelet coefficients across the wavelet scale dimension and across the time
dimension in the fingerprints. The main difference between the fingerprints in
[44] and our wavelet dispersion vector is that the fingerprints in [44] include
information for the relationships across the time dimension for each individual
time sample of the audio signal, resulting in fingerprints with a size on the
order of the number of time samples in an audio segment. In contrast, our
wavelet dispersion vector aggregates the wavelet coefficient relationships across
the time dimension into a histogram with a bin for each wavelet scale. The
number of wavelet scales is typically over two or more orders of magnitude



1634 S. Rein, M. Reisslein / Information Sciences 176 (2006) 1629–1655
smaller than the number of samples in an audio segment, resulting in a corre-
spondingly more compact audio content characterization with our wavelet
dispersion vector, which as we demonstrate allows for highly precise audio
piece identification. Overall, our work complements the existing literature on
wavelet transform based techniques for audio identification in that we examine
wavelet transform based techniques specifically for the identification of similar
unknown classical music pieces. We demonstrate that the classical music com-
positions are represented by characteristic patterns in the wavelet domain,
which allow for accurate content description and at the same time good gener-
alization to unknown pieces.

We note for completeness that a hardware implementation of a wavelet
based classifier which categorizes audio files into either a voice class or a music
class has been studied in [45]. Wavelets have also been employed to reconstruct
audio recordings [46], to observe the timing and frequency characteristics of
cardiac cycles [47], and for audio transcription [48]. In addition, several studies
have employed wavelets for classifying the texture of images, see for instance
[49,50] and the shot structure of video, see for instance [51].
2. Problem setting and audio data base

In this section we describe the specific identification problem considered in
this paper as well as the example classical music pieces used in this study. We
begin by reviewing the generally desirable properties of content description for
next generation internet search machines. First, due to the immense amount of
audio data available on the world wide web, the descriptors should have a very
compact representation. Secondly, the methodology should provide an efficient
computation scheme for the construction of these descriptors. In addition, the
methodology should provide an efficient procedure for determining—based on
the descriptors—the similarities between query input and the knowledge base
of the search machine to allow for a fast user-oriented search and retrieval
service.

2.1. Identification problem

The problem setting that we consider in this paper is illustrated in Fig. 1.
Suppose the user has a performance of unknown classical music composition
and would like to find the title of the composition and to find other perfor-
mances of the composition. In our example the unknown composition is the
movement iv of Sonata No. 1 of Bach�s Sonatas and Partitas performed by
N. Milstein (which the user does not know). The user feeds the audio piece into
the next generation internet search machine. We suppose the search machine
‘‘knows’’ the performance (recording) by Y. Menuhin of Bach�s Sonatas and



Fig. 1. Next generation audio identification and retrieval scenario. The search machine identifies
an unknown performance of a classical music composition by generalizing the descriptor of a
known performance of the composition.
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Partitas, i.e., it has the content descriptors of the individual pieces of the Menu-
hin performance in its knowledge base (example set). However, we also sup-
pose that the search machine does not know the Milstein performance. The
problem for the search machine now is to identify the audio piece entered by
the user as movement iv of Sonata No. 1 of Bach�s Sonatas and Partitas and
provide the user with a link to the performance by Menuhin of this piece.

To solve this problem, the feature extraction component of the audio iden-
tification and retrieval methodology has to solve a demanding problem. On one
hand, a very precise content description has to be extracted because we need to
distinguish different pieces within the classical music genre. On the other hand,
the extracted feature descriptors should allow for a generalization. That is, the
feature descriptors should not describe the content too precisely, because if the
description is too precise, then it would not be possible to identify a perfor-
mance that is not part of the example set of the system.

2.2. Example classical music performances

Generally, a data base of example audio pieces is required for the experi-
mental evaluation and study of audio content description schemes. Some stud-
ies use audio data bases that contain examples of different elementary sounds,
including sounds of birds, telephone, or laughter (e.g., see http://www.muscle-
fish.com). Other studies use audio data bases constructed from popular music
charts.

Our goal is to identify classical music compositions. We have chosen the
Sonatas and Partitas composed by Johann Sebastian Bach for the Solo Violin,
Bachwerkeverzeichnis (BWV) 1001–1006, as example pieces for our experi-
ments. The Sonatas and Partitas composition consists of three sonatas and
three partitas, each containing between four to seven distinct movements.
The entire composition consists of 32 distinct movements. We denote Pa1i
for the movement i of Partita 1, and denote the other movements analogously.
Especially the sonatas have a very similar structure, thus posing a particular
challenge. We consider four different performances of these 32 movements;

http://www.musclefish.com
http://www.musclefish.com
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namely the performances Menuhin 1934–6 (Men36), Menuhin 1957 (Men57),
Heifetz 1952 (Hei52), and Milstein 1973 (Mil75). We denote Men36Pa1i for
the Men36 recording of Pa1i and denote the other movement recordings
analogously.

Our music data base meets the requirements for a good test data base in that
it contains music of consistent relevance, manuscripts are available for the
music, and the pieces represent a wide range of quality, ranging from the
Men36 performance recorded with the studio technique of 1934 to the Mil75
recording which can be considered as up-to-date audio quality. Importantly,
the audio pieces in the data base should contain polyphonic and not separable
phenomena. Bach�s Sonatas and Partitas demand the player to concurrently
use different cords. Although there is only one solo violin, a sound comparable
to the performance of several violin players is present. This is a particular chal-
lenge for the compactness of the descriptors. In addition, the recordings used in
this study are available on the publicly available music CDs specified in [52].

For our studies we down sampled the recordings to 8 kHz using the software
cooledit 2.3 (see http://www.syntrilium.com).
3. Characteristic wavelet coefficient pattern for classical music identification

In this section we report on the characteristic patterns in the wavelet trans-
form coefficients which correspond to the audio content in the performances of
a classical music composition and explore compact representations of the char-
acteristic patterns. The wavelet transform decomposes a signal into a weighted
sum of wavelet functions. The weights are called wavelet coefficients. A wavelet
coefficient is calculated for a scale s and a position s. The scale s describes how
the mother wavelet function is scaled. It can either be dilated or compressed.
The position s describes the shift of the wavelet function. The wavelet coeffi-
cients are calculated as

Cðs; sÞ ¼
Z 1

�1
sðtÞ 1ffiffi

s
p w

t � s
s

� �
dt. ð1Þ

When performing a wavelet decomposition, the s-scaled mother wavelet func-
tion is slid along the entire signal s(t). For each shift s, a wavelet coefficient is
calculated. This procedure is repeated for each scale. The higher the scale, the
more dilated is the mother function. Similarly, the lower the scale the more
compressed is the mother function. Therefore, a high scale refers to a low fre-
quency, whereas a low scale refers to a high frequency. A wavelet transform
that only uses scales and shifts of powers of two is called a dyadic wavelet
transform.

For illustration of the characteristic pattern in the wavelet transform coeffi-
cients, we plot in Fig. 2 the Meyer wavelet transform of the first 13 seconds of

http://www.syntrilium.com


Fig. 2. Meyer wavelet transform of two different performances of So1iv. The sharply delimited
patterns indicate the wavelet�s ability to describe highly complex audio signals In addition, the two
performances have similar wavelet patterns, indicating the wavelet�s generalization ability.
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the performances Men57 and Mil75 of So1iv. We observe sharp and clearly
delimited patterns in the plots, which indicates that the wavelet coefficients de-
scribe very specific details of the audio signals. Wavelets can reveal very small
discontinuities which would be very difficult to describe by sinusoids. Each
individual musical event is resolved by very sharp and bounded patterns.
The remaining challenge is to find a compact description for these patterns
to solve the problem posed in Section 2. Importantly, the patterns for the
two different performances are very similar, despite the differences between
the individual interpretations by Menuhin and Milstein of Bach�s manuscript.
The similarities of the patterns in Fig. 2 indicate that a wavelet transform based
characterization allows for good generalization across different performances
(recordings) and thus the identification of unknown classical music
performances.

From now on we consider a non-dyadic wavelet transform. Recall that a
dyadic wavelet transform employs powers of two for the shifts and scales.
A dyadic wavelet transform results in a more compact representation of the
content, however, the extracted features are of lower precision. For our con-
tinued development of a technique for identifying classical music composi-
tions we initially need all the details that can be resolved by the wavelet
technique.

3.1. Challenges of compact content description with wavelets

Motivated by the insights reported in the preceding section, we proceed to
develop audio content descriptors from the wavelet coefficients. The wavelet
coefficients very closely characterize the audio content, but these coefficients
are a very verbose characterization. The challenge is to extract a very compact
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characterization that is practical for efficient internet search and information
retrieval. During our explorations leading to the development of our wavelet
dispersion vector characterization, which is our main result and is presented
in Section 4, we have investigated a number of different feature extraction
techniques. In this section we summarize the investigations of two techniques
to overcome the challenge of wavelet data extraction and summarization; we
refer the interested reader to [52] for details. We include these outlines here as
they lend valuable insights that have eventually led to the development of the
wavelet dispersion vector technique and may be of independent interest for
other identification and information retrieval problems.

3.1.1. Gaussian wavelet envelope descriptor

As we have found in Section 3, the audio content of the classical music per-
formances is represented by very specific patterns in the wavelet domain, which
look very similar, even for different performances of the same movement (com-
position). In this section we outline a wavelet envelope descriptor, which de-
scribes the shape of the wavelet patterns. To obtain a numerical function
describing the shape of the patterns shown in Fig. 2, we first estimated the aver-
age energy of the coefficients for each scale. We then set all energy values lower
than a threshold, which represents the intensity of barely visible coefficients, to
zero and determine the envelope of the wavelet energy patterns as the first non-
zero value from the top of each column of the energy matrix. We plot the
resulting envelope functions in Fig. 3 (ignore the smooth ‘‘Gauss fit’’ curves
for now). Recall from the query example illustrated in Fig. 1 that we want
the internet search machine to identify the unknown query performance Mil75-
So1iv by measuring similarities with the known performance Men57So1iv. In
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Fig. 3. Numerical wavelet envelope function and corresponding analytical Gaussian fit.
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order to do so based on the envelope function characterization, the search ma-
chine has to measure a good correlation between these two envelope functions
illustrated in Fig. 3. Although the two envelope functions look very similar, a
correlation measure would not provide a high correlation due to the varying
time shift. The time shift could be compensated by a synchronization algorithm
at the expense of significant added complexity as each piece in the search ma-
chine�s knowledge base would need to be synchronized to the query piece be-
fore computing the correlation. We chose not to pursue this approach and
explored instead an analytical description of the envelope functions.

To obtain an analytical representation of the envelope function, we consider
a Gaussian curve fit employing functions of the form

yðxÞ ¼
XN

i¼1

aie
� x�pi

wið Þ
2

. ð2Þ

We obtained the coefficients of the curve fit using multiple linear regression
models. As illustrated in Fig. 3, the Gaussian fit smoothes the envelopes and
may allow for a good generalization, because the obtained curves look very
similar. We have indeed confirmed that the locations of the peaks referring
to the two different recordings are highly correlated. However, we found an
insignificant correlation for the peak width, see [52] for details.

The Gaussian wavelet envelope descriptor describes the shape of the wavelet
patterns. However, it does not meet the requirements detailed in Section 2. This
descriptor would still need a parametrization technique for the estimation of
the number of peaks that should be approximated. If the number of real peaks
is larger than the number of Gaussian peaks, a less precise approximation is
obtained. Furthermore, the correlation or distance measure to indicate the sim-
ilarity of the functions is very sensitive to single, not correctly resolved peaks.
We therefore expect that this approach would require significant additional
complexity to achieve sufficient generalization for precision audio content
description. We next explore statistical summarization tools to solve the chal-
lenge of parsimoniously characterizing the wavelet coefficients.

3.1.2. Statistical wavelet analysis for content description

In this section we outline our investigations of descriptive statistical summa-
rization tools to find similarities between the wavelet coefficients. In this inves-
tigation we consider two sets of representative audio data to evaluate the
statistical tools� abilities to reveal similarities. The considered set I contains
three different recordings (Men57, Hei52, and Mil73) of the first movement
of Partita 3. Set II contains the movements ii, iii, and iv of Partita 3, each
one recorded by a different player; in particular the movement recordings
Pa3iiMen57, Pa3iiiHei52, and Pa3ivMil73. We consider the first 4 seconds of
every audio file. Each of the two sets contains three subsets, whereby we refer
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to a subset as the combination of two of the pieces in a given set. Ideally, the
investigated statistical tools should measure similarities for the subsets of set I
and dissimilarities for the subsets of set II.

We have considered three sets of descriptive tools, namely (i) statistical var-
iability summarization tools, (ii) scale frequency measure (derived from our
wavelet envelope descriptor), and (iii) percentile correlation plots.

Statistical data summarization tools. For comparing the distribution of the
wavelet coefficients, we consider the following summarization tools: (1) arith-
metic mean, (2) geometric mean, (3) harmonic mean, (4) standard deviation,
(5) variation, (6) mean absolute deviation, (7) median, (8) interquartile range,
(9) range, and (10) skewness, see [52] for detailed definitions. We summarize
our investigation methodology as follows: For each audio piece we perform
a continuous Meyer wavelet transform for the scales 1, . . . , 18 (see [53, p.
115 ff]). For each scale, the wavelet coefficients are summarized using one of
the summarization tools. Thus, using one of the 10 summarization tools, an
audio piece is represented by 18 values, which we scaled to a range of
�1, . . . , 1. For each audio subset we evaluate the correlation between the so
obtained values. In summary, we found that the geometric mean, the standard
deviation, the mean absolute deviation, and the interquartile range give consis-
tently high correlation for all subsets of set I. However, we also found that
these summarization tools give high correlations for the subsets in set II. We
obtained the largest difference in correlation between the subsets in sets I
and II for the skewness indicator, which gave a correlation difference (between
the mean skewness correlation of set I and the mean skewness correlation of set
II) of 0.47.

Scale frequency measure. We define the scale frequency measure as a histo-
gram giving the frequency with which the numerical wavelet envelope of Sec-
tion 3.1.1 attains a given scale. We found that the correlations of the scale
frequency measure for the subsets within a set are not consistent and that
the correlations between the subsets in sets I and II are not significantly
different.

Percentile correlations. We employ percentile correlation plots to measure
similarities between the distributions of the wavelet coefficients. We derive
these plots from percentile plots, which we obtain for each subset and wavelet
scale. We calculate one correlation index for each percentile plot. We plot these
correlation indices as a function of the scale to obtain the percentile correlation
plots for sets I and II, which we present in Fig. 4. We observe from Fig. 4(a)
that the correlations for the subsets Men/Mil and Hei/Mil are between 0.95
and 1, whereas the correlations for subset Men/Hei drop down to 0.85 for
the higher wavelet scales. On the other hand, we observe from Fig. 4(b) that
the correlations for all subsets in set II drop below 0.9 for some of the
higher wavelet scales. Thus, we could correctly identify the similarities and
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dissimilarities for the Men/Mil and Hei/Mil subsets, but not for the Men/Hei
subset.

3.2. Conclusions from explorations of compact wavelet descriptors

In summary, our investigations outlined in this section manifest the general
challenges in feature extraction for precision classifiers: The wavelet envelope
descriptor is precise since it describes individual events. However, the descrip-
tion appears to be too precise to allow for a reasonable generalization. The sta-
tistical tools, on the other hand, allow for a generalization; however, their
description appears to be too broad to distinguish similar, but different audio
pieces. To successfully solve our problem posed in Section 2, it would be desir-
able to find a descriptor between these two approaches. This descriptor should
be very precise, but still allow for a generalization.
4. Audio piece content description with wavelet dispersion vector

In this section we present the wavelet dispersion vector, which extracts the
characteristic features of a classical music performance and permits the identi-
fication of the corresponding composition. The intuition behind this vector is
as follows. The dispersion measures discussed in the preceding section first ex-
tracted features of each scale and then concatenated these features to indicate
similarities. This approach leads to a distinction between scale and time. Our
novel wavelet dispersion vector, on the other hand, directly combines time
and scale, as detailed in this section, and thereby describes the structure of
the wavelet patterns. In order to explain the wavelet dispersion vector, we first
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give a general mathematical description and then present an illustrative
example.

4.1. Formal description of wavelet dispersion vector

Suppose an audio piece with T samples is given. In our numerical work we
consider the first 5 seconds of each performance sampled at 8 kHz, for a total
of T = 40,000 samples for a given piece. Suppose a wavelet transform with S

scales is performed on the audio samples. We examine the performance of
the different wavelet families, order numbers, and scales for audio identifica-
tion in Section 5. Let

C ¼ ðcs;tÞ; s ¼ 1; . . . ; S; t ¼ 1; . . . ; T ; ð3Þ
denote the matrix of obtained wavelet coefficients. Note that this matrix has S

rows and T columns.
The wavelet coefficient matrix C is now processed as follows to obtain the

wavelet dispersion vector. First, we obtain a rank order matrix

R ¼ ðrs;tÞ; s ¼ 1; . . . ; S; t ¼ 1; . . . ; T ; ð4Þ
from the matrix C. The elements rs,t, s = 1, . . . , S, of a given column t in the
rank order matrix R are the ranks (ordered positions) of the corresponding ele-
ments cs,t, s = 1, . . . , S, of the wavelet coefficient matrix C, i.e.,

rs;t ¼ order16s6S ½cs;t�; ð5Þ
whereby order16i6I[xi] gives the position of xi when the xi, i = 1, . . . , I, are
sorted in decreasing order. In particular, the largest wavelet coefficient of a
given column, i.e., max16s6Scs,t is assigned the rank 1, i.e.,

smax ¼ arg max
16s6S

cs;t ð6Þ

) rsmax;t ¼ 1. ð7Þ
Similarly, the smallest wavelet coefficient is assigned the rank S, i.e.,

smin ¼ arg min
16s6S

cs;t ð8Þ

) rsmin;t ¼ S. ð9Þ

Next, we calculate a rank histogram (wavelet dispersion) matrix D by count-
ing how often a given scale (row) in the rank order matrix R attained a given
rank q, i.e.,

D ¼ ðds;qÞ; s ¼ 1; . . . ; S; q ¼ 1; . . . ; S; ð10Þ
with

ds;q ¼
XT

t¼1

1ðrs;t¼qÞ; ð11Þ
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whereby 1() denotes the indicator function, i.e., 1(A) = 1 if A is true and 1(A) = 0
otherwise. Note that the rank histogram matrix elements satisfy 1 6 ds,q 6 T

and
PS

q¼1ds;q ¼ T 8s ¼ 1; . . . ; S.
Finally, we arrange the wavelet dispersion matrix elements into the wavelet

distortion vector~v by reading the matrix elements row-by-row, i.e.,

~v ¼ ½d1;1; d1;2; . . . ; d1;S ; d2;1; d2;2; . . . ; d2;S ; . . . ; dS;1; dS;2; . . . ; dS;S �. ð12Þ

Note that the wavelet dispersion vector has a slight relation to the percentile
plots considered in Section 3.1.2. Intuitively, both for obtaining the wavelet
dispersion vector and the percentile plot, the wavelet coefficients are sorted
and histograms are constructed. For the wavelet dispersion vector the coeffi-
cients are sorted across the scales for a given time instant, and the histograms
(one for each scale) are then constructed across time; the data summarized in a
histogram, however, captures the ordering pattern of the coefficients across dif-
ferent scales. For the percentile plot, on the other hand, the coefficients are
sorted across time for a given scale and a histogram is constructed from the
sorted coefficients; the data thus summarized in a histogram does not capture
the ordering pattern of the coefficients across scales.

4.2. Illustrative example of wavelet dispersion vector

To illustrate the calculation of the wavelet dispersion vector we consider an
example with T = 5 audio samples and S = 3 wavelet scales and the wavelet
coefficient matrix

ð13Þ

(which contains only positive values for ease of illustration). The row and col-
umn indices do not belong to C and are only included for clarity. We now
determine the rank order for audio sample t = 1.

ð14Þ

The number in brackets represents the rank order within the column. This pro-
cess is repeated for all audio samples:

ð15Þ
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To form the rank order matrix we only retain the ranks, i.e.,

ð16Þ

Next, we calculate the wavelet dispersion matrix by counting the ranks within a
scale (row)

ð17Þ

The first row, for instance, obtained the first rank once, the second rank twice,
and the third rank twice. The wavelet dispersion data is then stringed to form
the wavelet dispersion vector.

~v ¼ ½ 1 2 2 0 3 2 4 0 1 �T . ð18Þ

We further illustrate this procedure for the first five seconds (T = 40,000) of
the Men36So1 recording. We employ the Meyer wavelet with S = 18 scales. In
Fig. 5 we show the S rank histograms corresponding to the wavelet dispersion
matrix D.

4.3. Summarizing search machine knowledge in wavelet classifier matrix

Generally, for every audio piece (file) p, the wavelet dispersion vector can be
constructed to represent the audio characteristics as detailed in the preceding
sections. The wavelet dispersion vectors ~vp of all audio pieces known to the
search machine p, p = 1, . . . , P, can then be combined in a wavelet classifier ma-

trix W, whereby each dispersion vector forms a column of the matrix, i.e.,

W ¼ ð~vpÞ; p ¼ 1; . . . ; P . ð19Þ
Our audio data base contains P = 128 different audio files. Thus we calcu-

late 128 different wavelet dispersion vectors, which form the 128 columns of
the wavelet classifier matrix W. Note that this assumes that all 128 pieces are
known to the search machine. If only a subset of the pieces is known to the
search machine, then the number of columns P is correspondingly smaller.
The number of rows of W depends on the number of employed wavelet scales
and the dimension reduction technique, as detailed in the next section.

4.4. Dimension reduction of wavelet classifier matrix

In this section we discuss the dimension reduction of the wavelet classifier
matrix W, which is desirable to obtain a more compact representation of the
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Fig. 5. Rank histograms corresponding to wavelet dispersion matrix D for So1Men36. The
histogram values are stringed to form the wavelet dispersion vector~v.

S. Rein, M. Reisslein / Information Sciences 176 (2006) 1629–1655 1645
audio pieces known to the search machine. We first note that there are redun-
dancies in the rank order matrix R and dispersion matrix D calculated for a
given piece p. Specifically, one row of R and one column of D are redundant
and could be eliminated, which would provide a typically minor dimension
reduction.

Instead of pursuing this minor dimension reduction, we propose a simple yet
effective dimension reduction technique that eliminates some of the histogram
columns of the dispersion matrix D before forming the wavelet dispersion vec-
tor. More specifically, we eliminate a certain number of the columns ds,q,
q = 1, . . . , S, starting from the lowest rank q = 1 and highest rank q = S.
We study this approach quantitatively in Section 5. This dimension reduction
approach is motivated by the results of Section 3.1.1 where the wavelet enve-
lope descriptor was obtained by deleting very small wavelet coefficients. These
values were barely visible in the wavelet domain pictures and were not part of
the specific and bounded wavelet patterns. Similarly, we discard the lowest
ranks of the wavelet dispersion histograms as they represent the small wavelet
coefficients. We also discard the highest ranks because they represent a set of
outlying wavelet coefficients.
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We also conducted experiments for dimension reduction employing the
principal component analysis technique [54]. We found that the principal com-
ponents of the classifier data do no longer contain the characteristic informa-
tion to allow for a reasonable identification.

We also note that although the considered audio pieces contain multiple
voices, a dimension reduction through sub-space estimation techniques is not
possible, because the different voices do not fulfill the statistical requirements
for this technique. Furthermore, such a separation is difficult because the dif-
ferent voices do not occur at fixed frequency bands.

4.5. Preliminary performance evaluation of wavelet dispersion vector content

description

In this section we conduct a preliminary evaluation of the identification and
generalization performance of the classical music description using the wavelet
dispersion vector. Recall that each audio piece (file) p is described by a wavelet
dispersion vector ~vp. In abstract terms these vectors lie in a dispersion vector
space. The vectors describing performances of different compositions should
be ‘‘distant’’ from each other in order to allow for a correct identification.
On the other hand, the vectors describing different performances of the same
composition (piece) should be ‘‘close’’ (similar) to each other in order to allow
for a generalization, and thus identification of performances unknown to the
search machine.

In this preliminary evaluation we measure the similarities between the wave-
let dispersion vectors using the correlation between the vectors. (In the follow-
ing section we employ neural nets to assess the similarity.) We consider user
query scenarios in which the user queries the search machine with each of
the 32 movements of a given recording and the search machine only knows
the movements of one of the other performances, i.e., the wavelet classifier ma-
trix of the search machine only contains the P = 32 wavelet dispersion vectors
of one of the other performances of the 32 movements. The four different per-
formances in our audio data base allow for 12 different combinations of ‘‘query
performance’’ and ‘‘known performance’’. For each query the search machine
identifies the closest movement among the ‘‘known performances’’ as the
movement that attains the largest correlation with the wavelet dispersion vec-
tor of the queried movement. In Fig. 6 we show the results for the three com-
binations with Men36 as the query performance and each of the other three
performances as the known performances, i.e., each of the 32 wavelet disper-
sion vectors of the Men36 recording is entered as user query and the 32 wavelet
dispersion vectors from one of the other three performances are employed by
the search machine�s wavelet classifier matrix W. Each individual Men36 move-
ment query (column on x-axis) is assigned an answer (y-axis) from each of
three other performances. Therefore, there are 3 points in each column on
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the plot. The three points in a given column represent from left to right the
matched query results in the Men57, Hei52, and Mil75 recordings, respectively.

For example, observe in Fig. 6 how a user query containing the second
movement of Partita 1 of the Men 36 recording (Men36Pa1ii) is answered.
When employing the 32 column classifier matrix of Hei52, the search machine
would identify this piece as the first movement of Partita 1. This identification
is obtained by the maximum of 32 different correlations between the Men36-
Pa1ii classifier and the 32 Hei52 classifiers. The maximum correlations between
Men36So1ii and the 32 Men57 and Mil75 classifiers give the correct answers. If
all points are on the line in Fig. 6, then all pieces were correctly identified. We
observe from the results plotted here (and the experiments with the other three
query performances which we can not include here due to space constraints and
for which we refer to [52]) that approximately 60% of the movements are cor-
rectly identified. Noting that the probability of correctly identifying a move-
ment by random choice is only 1/32, this indicates a good generalization
ability.

Each point in the plots in Fig. 6 represents an audio retrieval of only one
recording. In the related literature, search and retrieval systems are proposed
that are trained by many audio files describing the same content. For example,
in [7], more than 48 sound clips of laughter are employed to construct a laugh-
ter classifier. In this work, we are interested in employing a minimum number
of audio files to construct a classifier that already achieves reasonable results.
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Therefore, our data base contains only 4 different recordings of the same com-
position. Thus a piece unknown to the search and retrieval system can be iden-
tified by a classifier that has been constructed by 3 different recordings (training
pieces). It remains to combine the different training pieces to improve the iden-
tification performance; we examine the use of low-complexity neural nets for
this task in the next section.
5. Neural nets for wavelet dispersion vector classification

In this section we study the use of neural nets for assessing the similarity of a
query wavelet dispersion vector to the vectors in the wavelet classifier matrix of
the search machine. In particular, we examine a wide variety of combinations
of different wavelets (for extracting the wavelet dispersion vector) and neural
nets (for classifying the query vector).

5.1. Overview of examined neural nets

In signal communications and information sciences neural nets have been
proposed to solve a variety of different problems, including pattern recognition
and vector classification, especially when large amounts of novel data are to be
processed with limited computational effort. As detailed in Section 4, we store
the audio content description data in a wavelet dispersion vector~v. The search
machine has to classify a vector entered as query using its wavelet classifier ma-
trix W, which contains all the wavelet dispersion vectors known to the search
machine. Toward this end, we train a neural net with the wavelet dispersion
vectors in the search machine�s wavelet classifier matrix. We note that a trained
neural net is defined by a set of parameters. Thus, after completing the training,
the training data (wavelet classifier matrix) is no longer needed for answering
queries.

There exist many different types of neural nets. Each of these types can be
employed with different algorithms (see for instance [55,56]). Since there exists
no generally valid recipe for choosing the most suitable neural net configura-
tion for processing novel data, we examined different configurations to deter-
mine a reasonable methodology. In particular, we considered single-layer
perceptron neural networks, backpropagation neural networks, and probabi-
listic radial basis neural networks.

The neural nets were trained with a minimum number of epoches (where one
epoch corresponds to one traverse through all of the training wavelet disper-
sion vectors in W) and neurons to allow an identification of known vectors
with a success rate of approximatively 100%. In particular, the perceptron net-
work was trained with a learning rate of 0.001 until a small performance error
or a maximum of 50 epoches was reached. For the backpropagation network
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we employed two tan-sigmoid function layers, each with 80 neurons, and a sin-
gle neuron linear output layer. We trained the network for a maximum of 70
epoches. For backpropagation training, we employed the Fletcher-Reeves con-
jugate gradient algorithm. The probabilistic network is characterized by a bias
parameter, which we set to 2 · 0.8326 (for x = 0.836 the radial basis function
frdb(x) is 0.5). (A detailed description of the employed neural nets along with
matlab code is provided in [52].)

5.2. Overview of examined wavelets

We examine 39 different wavelets, namely the Meyer wavelet, the Mexican
hat wavelet, the Morlet wavelet, 7 types of symlets (modified Daubechies wave-
lets), 5 types of coiflets, 14 types of biorthogonal wavelets, and 10 types of
Daubechies wavelets. In our performance plots we use abbreviated names to
denote the wavelets. The number following the wavelet name denotes the wave-
let order number. The biorthogonal wavelets have two order numbers, because
they use a different wavelet mother function for reconstruction (first number)
and decomposition (second number). Although, we only employ the wavelet
decomposition, each of these so denoted wavelets describe different functions
even if they are of the same order, because the hi-pass decomposition filters em-
ploy different sets of filter coefficients.

5.3. Performance evaluation set-up

For each of the 39 different considered wavelets we conduct the following
evaluation. We perform a wavelet decomposition (wavelet scales 1, 3, 5, . . . ,
47) and construct the wavelet dispersion vectors as detailed in Section 4 for
the first five seconds of each of the 128 (4 performances · 32 movements) audio
pieces in our data base.

We consider a query scenario, where the user queries each of the 32 move-
ments of one performance and the search machine knows the other three perfor-
mances of these movements. In other words, the wavelet classifier matrix of the
search machine contains the wavelet dispersion vectors of the other 3 · 32
movement performances. We discard the first two and the last two bars of each
histogram (first two and last two elements of each row of wavelet dispersion
matrix D of each known piece). Further, we discard the last two histograms of
the higher scales. (Instead, the first two histograms of the lower scales can be dis-
carded with no significant performance difference.) This process reduces the
dimension of the wavelet dispersion matrix from 576 · 96 to 440 · 96. Accord-
ing to our experiments, a more extensive reduction resulted into a significantly
lower performance. Therefore, we here do not report measurements with other
reduction parameters. For processing this matrix with the neural nets, each
vector of this matrix is normalized to zero mean and unit standard deviation.
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5.4. Identification and retrieval performance results

Note that our audio data base of four performances of the same 32 move-
ments allows for four combinations of one ‘‘query performance’’ and three
‘‘known performances’’. We denote each such combination with the query per-
formance, e.g., the performance results for Men36 refer to the combination
where each of the 32 movements of the Men36 performance is entered as query
and the search machine knows the performances Men57, Hei52, and Mil75 of
these movements. In Fig. 7, we report the performance as the percentage of
correctly identified movements for the probabilistic radial neural net. (The
backpropagation net gives relatively poor performance of 10–20% of correct
identification, while the perceptron net gives somewhat better performance
with 25–50% of correct identification, see [52] for details.) The points nov (no-
vel) give the mean success percentage rate (piece identification) across the four
query combinations, i.e., they give the mean value of the 4 points Men36,
Men57, Hei, and Mil. In addition, the points fgp (fingerprint) give the success
rates for scenarios where the queried performance is known to the search ma-
chine, i.e., has been used for the training.

We observe from Fig. 7 that the probabilistic radial neural net identifies
known wavelet dispersion vectors (label fgp) with mean success rates of
100% over the entire range of the 39 different wavelets. This indicates that
the neural net perfectly learned to identify the known wavelet dispersion vec-
tors. The success rates for unknown pieces range from 62% to 76% for the
Morlet wavelet function. We also observe that the performance trends are
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wavelets. The morlet and bior3.9 wavelet achieve good generalization.
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similar for all four performances. We furthermore observe that there is a sec-
ond maximum in performance for the biorthogonal 3.9 wavelet, which achieves
a mean identification success rate of 78%. (The plotted results are obtained
with a wavelet decomposition using the wavelet scales 1, 3, 5, . . . , 48. In more
extensive evaluations [52] we found that with a smaller scale bandwidth using
the wavelet scales 1, 3, 5, . . . , 24, the percentages of correct identification are
generally in the range from 20% to 50%, with the Morlet and biorthogonal
3.9 wavelets reaching identification performances in the 60–80% range.)

We provide a more detailed view of the identification results for the proba-
bilistic net with the bior3.9 wavelet (using the wavelet scales 1, 3, 5, . . . , 48) in
Fig. 8. For user queries on each of the 32 movements from each of the four
performances (Men36, Men57, Hei52, and Mil75), the figure gives the identifi-
cation result. Note that each of the identification results in Fig. 8 is obtained by
the probabilistic net with a wavelet classifier matrix containing the other three
performances, whereas in Fig. 6, the identification is obtained by a maximum
correlation measure with only one performance in the search machine�s wavelet
classifier matrix.

5.5. Summary of identification and retrieval methodology

Based on our results, we summarize our proposed methodology for the con-
sidered audio identification and retrieval problem as follows. First, a Morlet or
biorthogonal (order 3.9) wavelet decomposition with the scales s = 1, 3,
5, . . . , 47 is performed to obtain the wavelet coefficients. The coefficients are then
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summarized in the wavelet dispersion vector~v. The dimension of this vector is
reduced as detailed in Section 4.4 and the wavelet dispersion matrix W is formed,
which represents the knowledge base (set of example vectors) of the search
machine. Finally, a probabilistic radial neural net is trained with the set of
example vectors and subsequently employed for answering queries.
6. Conclusion

In this paper we have considered a problem from the domain of music infor-
mation retrieval, namely the problem of identifying the classical music compo-
sition of an unknown performance of the composition. We have developed and
evaluated a wavelet transform based methodology for the identification of clas-
sical music compositions and the retrieval of other performances of the compo-
sition, which we expect to become an important service of next generation
internet search machines. Our methodology consists of two main components:
the characterization of the audio in the wavelet dispersion vector, and the
assessment of the similarity of these vector by a neural net. The wavelet disper-
sion vector extracts the characteristic features of the audio content into a com-
pact descriptor, which is accurate yet has good generalization properties.

The proposed methodology has been evaluated with four different perfor-
mances of 32 different classical music movements. Thus, one class (for a given
movement) in the search machine�s knowledge base is constructed from only
three example wavelet dispersion vectors. The system achieves a mean success
rate of 78% for correctly identifying an unknown performance of a movement.
This performance is quite promising, given that the different performances of
the 32 movements differ significantly in time, frequency, audio environments,
and audio recording quality. The historical recording of Y. Menuhin from
1936 with a correspondingly low recording quality is identified with a success
rate of 75%.

Wavelet transform based approaches have to date received relatively little
attention in the domain of music information retrieval, yet as demonstrated
with the solution of the specific problem considered in this paper hold signifi-
cant potential for the domain of music information retrieval. With the present
study we provide ground work for the development of wavelet transform based
techniques for other problems in the domain of music information retrieval,
which are an exciting area for future work.
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