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ABSTRACT A complete generation of packets coded with Random Linear Network Coding (RLNC) can be
quickly decoded on a multicore system by scheduling the involved matrix block operations in parallel with
an offline (pre-recorded) directed acyclic graph (DAG). The waiting for a complete generation of packets can
be avoided with progressive RLNC decoding that commences the decoding (and can decode some packets)
before all packets in a generation have been received. This article develops and evaluates a novel progressive
RLNC decoding strategy based on the principle of DAG scheduling of parallel matrix block operations.
The novel strategy involves helper matrices for conducting the Gauss Jordan elimination based on rows of
blocks of matrix elements. The matrix block computations are dynamically scheduled by an online DAG
which permits branching, e.g., to skip unnecessary matrix block operations. The throughput and delay of the
novel progressive RLNC decoding strategy are evaluated with experiments on two heterogeneous multicore
processor boards. The novel progressive RLNC decoding achieves throughput levels on par with state-
of-the-art non-progressive (full-generation) RLNC decoding and achieves three times higher throughput
than the fastest (highest-throughput) known progressive RLNC decoder for small generation sizes and
short data packets. Also, our progressive RLNC decoding greatly reduces receiver delays for moderate to
large generation sizes; the delay reductions are particularly pronounced when a low-delay RLNC version
is employed (e.g., reduction to one tenth of the non-progressive decoding delay for a generation size
of 256 packets).

INDEX TERMS Directed acyclic graph (DAG), helper matrix, heterogeneous multicore architecture, online
scheduling, parallel computing, random linear network coding (RLNC).

I. INTRODUCTION
Random linear network coding (RLNC) can signifi-
cantly enhance the communication over unreliable com-
plex networks, such as body area networks [1], caching
networks [2]–[4], cellular networks [5], the Internet of Things
(IoT) [6]–[8], radio access networks [9], vehicular net-
works [10], wireless sensor networks [11], and general
wireless networks [12]–[16]. One main challenge of RLNC
based communication is that the decoding in receiver nodes
involves computationally highly demanding matrix multipli-
cation and matrix inversion [17], [18]. Recently, the directed
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acyclic graph (DAG) scheduling of parallel matrix block
operations from the field of high-performance comput-
ing [19], [20] has been adapted for high-throughput RLNC
encoding and decoding of a complete generation of source
symbols (source data packets) [21]. However, the decoding of
a complete generation introduces long delays at the receiving
nodes since at least a full generation worth of packets needs
to be received before the decoding can commence [22].

Progressive RLNC decoding reduces the delays at the
receiving nodes by commencing the decoding computations
when only a single or a few packets (less than the full genera-
tion) have been received [23]. Progressive decoding becomes
especially important with the emergence of low-delay RLNC
coding schemes that permit the completion of the decoding
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of some packets (and their release to the higher protocol lay-
ers) before a complete generation worth of packets has been
received [24]–[26]. To the best of our knowledge, the highly
efficient DAG scheduling of parallel matrix block operations
has not yet been studied in the context of progressive RLNC
decoding.

In this article, we introduce a progressive RLNC decod-
ing strategy based on the principle of DAG scheduling of
parallel matrix block operations. Whereas generation-based
(non-progressive) RLNC decoding can invert and multiply
matrices, and thus perform the Gauss Jordan elimination,
with the lower-upper (LU) factorization, progressive decod-
ing cannot employ LU factorization (as LU factorization
requires the full matrix). Thus, we develop a novel helper
matrix based technique for performing the Gauss Jordan
elimination over rows of blocks of matrix elements. Non-
progressive RLNC decoding can proceed according to a
statically (offline) configured DAG schedule that can be
pre-recorded ahead of the actual computation execution.
In contrast, our progressive RLNC decoding requires
dynamic (online) scheduling decisions to work efficiently
(particularly, efficient backward substitution requires fre-
quent online branching decisions, see Section III-B2).

This article is structured as follows. Section II presents
background on network coding and the different types of
RLNC decoding, as well as related work on efficient com-
puting strategies for network coding. Section III introduces
the novel progressive RLNC decoding strategy with helper
matrices for the Gauss Jordan elimination and the online
DAG scheduling onmultiple parallel processor cores. In addi-
tion, Section III-D introduces a stripe optimization and a
full rows optimization that jointly process multiple matrix
blocks in a given row. Section IV presents the evaluation
of the novel progressive RLNC decoding strategy through
measurements with two heterogeneous multicore processor
boards. Section V concludes this article.

II. BACKGROUND AND RELATED WORK
A. NETWORK CODING BASICS
The sender partitions the source data into source symbols of
sizem [in units of words, whereby for the typically considered
GF(28), 1 word= 8 bit= 1 Byte]. Then, g consecutive source
symbols form a generation, which can be represented by a
data matrix A with g rows and m columns. RLNC encoding
combines the source symbols in a generation linearly in a
Galois Field GF(2p) [27], which can be represented as the
matrix multiplication of a random coding coefficient matrix
C sender [with g rows (or g+ r rows when r redundant coded
packets are to be generated) and g columns] with the data
matrix A to form the coded symbol (data) matrix D sender =

CA (with g rows and m columns). A coded packet consists
of a coding coefficient row of matrix C sender and the corre-
sponding row of the coded data matrix D sender.

The receiver accumulates received coding vectors in a
coefficient matrixC and the coded symbols in a data matrixD
(which we write without subscripts as computations with

FIGURE 1. Coded packet arrival and decoded packet release for
(a) non-progressive generation-based decoder with generation size g = 8,
(b) progressive decoder (processing individual packets) and
generation-based RLNC coding, (c) progressive decoder (processing
individual packets) with low-delay RLNC coding, and (d, our focus)
progressive sub-generation decoder with low-delay RLNC coding with a
block fill level p = 2 (and matrix block size b ≥ 2). Blue sections represent
time spent on decoding computations, while white sections represent
idle time (or other work).

these two matrices are our focus and we want to avoid nota-
tional clutter). The receiver matrices C and D may have dif-
ferent row order than the sender matricesC sender andD sender.
Without loss of generality of the RLNC computing method-
ology, we neglect errors or erasures during the network trans-
mission and linear dependencies of the coding coefficient
rows; accordingly, we consider r = 0 redundant coded pack-
ets. (We briefly outline the processing of linearly dependent
coding coefficient rows at the end of Section III-B1.) The
receiver decodes the data symbols by computing A = C−1D.
The receiver can completely decode all g data symbols if
it has received g coded packets with linearly independent
coding coefficient rows.

Following high-performance computing strate-
gies [28]–[30], efficient kernel (base) operations for various
common operations, such as multiplication and inversion,
on matrix blocks in GF(28) have recently been devel-
oped [21], [31]–[33]. We employ these kernel operations,
which exploit the single instruction multiple data (SIMD)
instructions that are commonly available on IoT and wireless
node processor boards [34].

B. BACKGROUND: NON-PROGRESSIVE AND
PROGRESSIVE RLNC DECODERS
RLNC decoders can be categorized into non-progressive and
progressive decoders. A non-progressive decoder expects that
all information is fully available before starting to decode. For
instance, in generation-based RLNC coding [35], a full gener-
ation of coded packets (symbols) is collected before the non-
progressive decoding process starts, as illustrated in Fig. 1(a).
Having all data available allows the decoder to employ
matrix inversion and matrix multiplication algorithms for
full matrices. Thus, matrix inversion algorithms other than
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Gauss-Jordan elimination, e.g., LU inversion [21], can
be employed. Moreover, cache-friendly or parallelization-
friendly algorithms can be utilized when the encoding data
for the full generation is available.

On the other hand, a progressive decoder does not need to
wait for all data to arrive. Rather, a progressive decoder can
partially decode the data which has already been received.
Individual newly received coded data packets containing
coded data and coding coefficients can be fed into the pro-
gressive decoder as they arrive. The decoder can then perform
operations based on this new information before it stalls to
wait for more information, as illustrated in Fig. 1(b). In par-
ticular, the illustration in Fig. 1(b) considers a conventional
full-vector RLNC code; thus, decoded packets can only be
released after the last decoding computation for the genera-
tion has been completed. A progressive decoder can exploit
low-delay codes, such as sliding window codes [36]–[38]
or systematic generation based codes [39] (which may have
interspersed redundancy [26]), by releasing any fully decoded
information to the upper layers before all coded packets for a
generation have been received. Fig. 1(c) illustrates the oper-
ation of a progressive decoder with a low-delay code, where
decoded packets can be released after each respective com-
putation process. (We assume RLNC coding without losses
and redundancy in Fig. 1(c), however, the general principle
of progressive decoding applies in those cases as well.) Pro-
gressive decoders are useful in delay-sensitive applications,
such as live streaming or conference applications.

A hybrid scheme is to perform sub-generation based pro-
gressive decoding [22], which processesmultiple coded pack-
ets at once, e.g., two coded packets at once as illustrated
in Fig. 1(d). Progressive sub-generation decoding generally
processes more than a single coded packet, but less than
the normal generation size so as to combine the strengths
of non-progressive and progressive decoders: Using efficient
algorithms while decreasing the decoding delay.

C. RELATED WORK ON NETWORK
CODING COMPUTATIONS
Some research studies have sought to mitigate the com-
putational complexities of network coding by considering
small Galois fields [40]–[43] or novel forms of network
coding [44]. We consider the conventional RLNC over
large fields, e.g., GF(28), which have negligible linear
dependencies of the coding coefficient rows. The compu-
tation of the GF(28) RLNC can be efficiently sped up on
servers with large numbers of Graphics Processing Units
(GPUs) [22], [45]–[47]. However, many ubiquitous comput-
ing nodes, e.g., smartphones and IoT nodes, have only few
GPUs [48]; hence, copying to the GPU threads does not
amortize [33]. We consider heterogeneous multicore proces-
sors [49] that are common on smartphones and IoT nodes [50]
and therefore do not specifically optimize for GPU pro-
cessing. We note for completeness that a custom very large
scale integration (VLSI) design for network coding has been
studied in [51].

FIGURE 2. Illustration of receive buffer integration with decoder.

TABLE 1. Summary of main notations and parameters.

Computational strategies for GF(28) network coding on
general-purpose multicore CPUs have mainly focused on
judiciously partitioning the coefficient and data matrices to
facilitate parallel processing [52]–[55]. These partitioning
strategies have greatly sped up the network coding computa-
tions (and reduced the energy consumption [56], [57]). Some
additional speed up can be achieved by scheduling the matrix
block operations according to the dependency structure of
the computations in a DAG [21]. A key drawback of the
DAG approach in [21] is that it is limited to non-progressive
decoding of a full generation of coded packets; whereas,
most of the partitioning approaches [52]–[55] are suitable
for progressive RLNC decoding. The present study seeks to
bring the benefits of DAG scheduling to progressive RLNC
decoding.

III. ONLINE DAG RLNC DECODING
A. SETTING AND NOTATION
We assume that incoming coded packets are stored in an
intermediate receive buffer (queue) upon reception, as shown
in Fig. 2. When the decoder is idle or finished with a previous
batch of packets, it can draw packets from the receive buffer
and decode them. A classic progressive decoder would draw
one coded packet at a time, while a generation-based decoder
would draw a full generation worth of coded packets.
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Our overall decoding approach follows the principles of
progressive sub-generation decoding, as for instance used in
the hybrid decoder in [22]: Incoming coded packets, each
including coding coefficients and coded data, are stored in
an intermediate receive buffer. When p, p ≤ b, packets
have been stored in the intermediate buffer and the decoder
is available, then an iteration of the decoding process starts.
Since the matrix computations are designed for blocks of
size b × b elements, the remaining (b − p bottom rows of
a given block of) coefficients and coded data in the inter-
mediate buffer are padded with zeros before the coefficients
and data are released to the decoder. Note that it is generally
not advantageous to start progressive decoding with multiple
complete rows of blocks (e.g., with 2b received packets) since
the matrix computations operate on one block row at a time.
We also note that under special circumstances e.g., when a
decoding timeout has expired, a progressive decoder may
start the decoding with fewer than p received packets.
Figure 3(a) illustrates an intermediate state of a g × g =

16 × 16 coefficient matrix C and the corresponding data
matrix D at the decoder, before applying the next batch of
p = 4 packets. The first (top most) eight packets have
been partially decoded: The diagonal elements (1, 1) through
(8, 8) as well as the columns 9 to 16 in the coefficient matrix
C are set, the white spaces represent zeros. Matrices C ′ and
D′ contain the coefficients and coded symbols of the next
batch of p = 4 packets which have just arrived. After the next
iteration of the blocked Gauss Jordan elimination, assuming
no linear dependencies in the coefficients, these new packets
will be partially decoded, extending the diagonal of ones in
matrix C to elements (9, 9) to (12, 12) and filling in rows 9 to
12 of the data matrix D.

One iteration of the blocked Gauss Jordan elimina-
tion [58], [59] consists of the usual phases of forward elim-
ination, backward substitution, and swapping rows. Instead
of working on single matrix elements (as e.g., in [60]),
we apply the operations on square submatrix blocks of size
b× b, or multiples of those blocks. In the following section,
we describe each phase of the blocked Gauss Jordan elim-
ination in detail. We describe the elimination process as
an iterative program; however, the actual implementation
will run parallelized by scheduling tasks according to the
data dependencies between the operations, as explained in
Section III-C.

B. BLOCKED GAUSS JORDAN ELIMINATION WITH
HELPER MATRICES
1) FORWARD ELIMINATION
Forward elimination is the first phase of processing the inter-
mediate buffer. Each b×b block of the new coefficient matrix
C ′ is processed with the respective pivot block of the old
coefficient matrix C to eliminate elements at positions where
pivots had already been found. These operations are then
applied to the rest of the coefficient matrix C ′ and the data
matrix D′. We describe the process next and illustrate the
behaviors in Fig. 3.

FIGURE 3. Illustration of steps of the forward elimination phase for
newly received coded packets in new coefficient matrix C ′ and new data
matrix D′ given the current coefficient matrix C and data matrix D with
b× b = 4× 4 blocks. Helper matrix 1 records operations on blocks of C
and D for replication on C ′ and D′ . Helper matrix 2 records operations on
blocks of C ′ and D′ for replication on remaining blocks of C ′ and D′ .

One forward elimination step works similar to the con-
ventional Gauss Jordan algorithm with pivots: Pivots are
expected on the main diagonal. The process checks the main
diagonal from top left to bottom right. If a pivot element i
in position (i, i) of the coefficient matrix C is one, the new
coding coefficients in matrix C ′ are checked row by row for
elements in column i. If the element in a row r in column i in
matrix C ′ is non-zero, then the pivot row i of the coefficient
matrix C is multiplied by the value of the element in row r in
column i inmatrixC ′ and subtracted element by element from
row r ofC ′. However, if the element in the pivot position (i, i)
in matrixC is zero, then the new coefficient rows in matrixC ′

will be checked for a coefficient row with a non-zero element
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in column i. If such a row r with a non-zero element in column
i is found in matrix C ′, then row r will be scaled (multiplied
with the inverse) of the element of row r in column i, and
marked to be swapped afterwards into matrix C . In that way,
the elements of the new coefficientmatrixC ′ on existing pivot
columns of the coefficient matrix C will be eliminated, and
new pivots will be found if they did not previously exist.

Note that all row operations (multiply-subtract as well
as scaling and row swapping) can be described as linear
operations using matrices. We use this fact to create two
helper matrices during the forward elimination. These helper
matrices are used to replicate the respective row operations
on the remainder of the coefficient matrix C ′ and the data
matrix D′.
Fig. 3 illustrates this behavior: Initially, in step 0

(Fig. 3(a)), the first two block rows (rows 1–8) of C
are partially decoded, i.e., pivots have been found in the
rows 1–8. A new set of packets has been received, forming
matrices C ′ and D′.
As a first step (Fig. 3(b)), the existing pivots in posi-

tions (1, 1) to (4, 4) of C are processed to eliminate the
elements in the first (left-most) block of the new coeffi-
cient matrix C ′. During this first step, the helper matrices
record the performed matrix operations; the exact same linear
operations must be replicated on the remaining rows. Helper
matrix 1 records the linear operations that are performed
from the blocks of C and D for replication in C ′ and D′,
respectively. Helper matrix 2 records the linear operations
that are performed from C ′ and D′ for replication on the
remaining blocks of C ′ and D′, respectively. In the first
step, only pivot elements from C are used to clear elements
in C ′, as recorded in helper matrix 1 (while helper matrix 2
is an identity matrix that will not change C ′ and D′ when
applied).

In step 2 (Fig. 3(c)), the existing pivots in positions (5, 5)
to (8, 8) of C are applied to the second block of C ′. Again,
helper matrix 1 records the operations that are applied to
the remainder of C and all blocks of the data matrix D for
replication inC ′ andD′, respectively. Helpermatrix 2 remains
again an identity matrix.

In step 3 (Fig. 3(d)), C does not have any pivots on posi-
tions (9, 9) to (12, 12). Therefore, no rows ofC are applied on
C ′ and the helper matrix 1 remains a zero matrix. Within the
third block of the new coefficients inC ′, Gaussian elimination
is performed, resulting in pivots in the third block of C ′, the
corresponding row operations are recorded in helper matrix 2.
Those rows of C ′ and their target positions in C are also
remembered for swapping in a later phase.

After each pivot processing part in a step of the forward
elimination phase, simple matrix multiplication is used to
apply the row operations on the remaining blocks of the
coefficient matrix C ′ and the data matrix D′ using the helper
matrices 1 and 2. As we have seen during the example,
there are special cases: When the helper matrix 1 is a zero
matrix or the helper matrix 2 is the identity matrix, then the
matrix multiplication does not change the matricesC ′ andD′.

These cases can therefore be optimized: we include a flag
in the matrix data structure to indicate an identity or zero
matrix. If the flag is set, then the matrix multiplication is
skipped, which can save up to half of the matrix multiplica-
tion operations.

Newly received packets with coding coefficient rows that
are not linearly independent of the coding coefficient rows
of previously received packets undergo the regular forward
elimination processing. However, during the forward elim-
ination phase those packets will be ‘‘zeroed out’’, because
those linear dependent coding coefficient rows will not result
in pivots. Each such linearly dependent coding coefficient
row will result in a row of zeros in the new coding coefficient
matrix C ′. Hence, the following backward substitution and
row swapping will be skipped because they are no longer
necessary. This online adaption of the processing of linearly
dependent coding coefficient vectors is an advantage com-
pared to the offline DAG approach where linear dependent
coding coefficient rows cannot be detected until the entire
decoding operation is completed and we notice that the cod-
ing coefficient matrix was not transformed into an identity
matrix.

2) BACKWARD SUBSTITUTION
Backward substitution is used to eliminate elements from the
blocks above a newly found pivot, so that more positions are
filled with zeros. Similar to the conventional Gauss Jordan
algorithm, we sweep matrix C ′ from the last column (col-
umn g) to the first column and check for each columnwhether
matrix C ′ has a new (non-zero) pivot element. The presence
of new pivot elements has been marked in the forward elim-
ination phase as we remembered those rows for swapping.
For each block in matrix C ′ with new pivots, we apply the
backward substitution into the blocks of matrix C above the
pivot block. Fig. 4 illustrates the backward substitution steps
of the third block of matrix C ′ into the first (step 1, Fig. 4(a))
and second (step 2, Fig. 4(b)) block row of matrixC . For each
non-zero element in the block row of matrix C , the pivot row
fromC ′ will be scaled (multiplied with) the non-zero element
and then subtracted element by element in both matrix C and
matrix D.
As in forward elimination, the row operations (scaling,

subtracting) are recorded in a helper matrix, which is possible
due to the linear nature of the operations. The helper matrix
is then used to apply the same operations on the remaining
blocks of matrices C and D.

We note that the backward substitution involves frequent
online branching decisions and thus necessitates an online
execution approach for efficient implementation. In particu-
lar, we only need to process block rows where a new packet
has been swapped in, and can skip the remaining block rows.
A computation execution according to a schedule that has
been pre-recorded offline (as employed in the offline DAG
approach [21]) would have to schedule tasks for the entire
matrices since some rows could have been swapped ‘‘up’’.
Possibly, a task could be quit early if it notices that nothing
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FIGURE 4. Illustration of steps of backward substitution phase: New
pivots found in step 3 of the forward elimination in C ′ (Fig. 3(d)) are
backward substituted into C and D. The helper matrix records the
operations on the first applicable block of C [e.g., block with elements
(9,1) to (12,4), i.e., the third block from the left in the top-most block row
for the first row, i.e., Step 1; Step 2 uses block (9,5 to 12,8)] for replication
on the remaining blocks of C and D.

FIGURE 5. Illustration of row swapping phase: The new pivot rows found
in step 3 of the forward elimination in C ′ and D′ (Fig. 3(d)) are swapped
into the third block row of C and D.

has been swapped in the current block row. Nevertheless,
an offline execution would still incur a massive overhead for
creating all these useless tasks.

3) ROW SWAPPING
After the backward substitution is complete, the new pivot
rows from matrices C ′ and D′ are swapped into their respec-
tive positions in matrices C and D. Unlike the conventional
Gauss Jordan algorithm, we perform this row swapping
phase after completing the backward substitution in order
to avoid disturbing the linear application of the helper
matrices.

Figure 5 illustrates how the pivot rows of matri-
ces C ′ and D′ are swapped into their final positions into the
third block row of matrices C and D. In our example, all
pivots have been placed in the same block, but in practice it
can happen that pivots are found in non-consecutive positions
and can therefore be placed in different blocks.

C. PARALLELIZATION WITH ONLINE DAG OF DATA
DEPENDENCIES
1) OVERVIEW OF DATA DEPENDENCIES
The previous section described a blocked variant of the Gauss
Jordan algorithm with helper matrices to implement a pro-
gressive RLNC decoder. The blockedGauss Jordan algorithm
with the helper matrices exhibits many opportunities for par-
allelization: In each of the three phases, the block-by-block
matrix multiplications according to the helper matrices as
well as the swap operations are independent from each other
and can therefore be performed in parallel. For example, the
backward substitution steps for one column of C ′ and the
related scaling and subtraction operations in C and D can
be simultaneously executed for the different block rows of C
and D, e.g., the operations illustrated in Fig. 4(a) and (b) can
be executed simultaneously. However, there are not only
parallelization opportunities among the operations within one
phase, but operations from different phases can potentially
run in parallel. For example, the matrix multiplication tasks
from the forward elimination phase can still be running while
the tasks from the following backward substitution phase are
already executed. In particular, while the matrix multipli-
cations with helper matrices from the forward elimination
phase are still applied on D′ (see Fig. 3(d)), the backward
substitution steps on C and C ′ (see Fig. 4(a) and (b)) can
already be executed by different computing threads since
there are no data dependencies.

Generally, we can allow any operation to be executed in
parallel with other operations if there are no data dependen-
cies prohibiting the parallel execution. Data dependencies can
be formulated using the following four rules:

1) Read afterWrite: a block of data must be written before
the next process can read the result.

2) Read after Read: Multiple read operations can be per-
formed at the same time from a given data block

3) Write after Read: All readers must be finished before a
process can write to a data block

4) Write after Write: A process needs to finish writing
to a block of data before the next process writes to
the same block of data. Note that writing also includes
‘‘changing’’ data, as in reading and writing at the same
time or performing in-place operations.

2) REVIEW OF OFFLINE DAG FOR DATA DEPENDENCIES
According to these dependencies, each input/output data
block of a block operation task can be annotated whether the
block operation reads or writes the data block. This tracking
of data blocks, or more generally of ‘‘data objects’’, allows to
define the data dependencies. Generally, an iterative program
can be parallelized for high-performance computing with a
Directed Acyclic Graph (DAG) [19]. An offline DAG strategy
for RLNC has been described in [21]. The offline DAG
strategy involves a ‘‘recording’’ step, where the program
is executed without performing the actual computations to
record the data dependencies of each operation. The result
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of this step is a DAG that represents the data dependen-
cies. As a second step, this pre-recorded DAG is executed
using a scheduler that executes the recorded operations in
parallel when the respective dependencies have been cleared.
In summary, in the offline DAG strategy [21], the DAG of the
dependencies is created completely offline before the actual
RLNC decoding is executed in real-time (online).

The offline DAG approach has two main drawbacks: First,
the offline DAG approach in [21] employed the LU inversion
to invert the entire coefficient matrix C and to multiply the
inverted coefficient matrix C−1 with the data matrix D to
decode all g symbols in a generation at the same time. The LU
matrix inversion requires a complete matrix and is therefore
not suitable for progressive decoding. A second drawback
is that the schedule creation prior to the execution does not
allow for branches in the execution, i.e., it is not possible
to react to intermediate outcomes within the algorithm, e.g.
skipping some computations if a coefficient is found to be
zero. While this does not affect the LU matrix inversion
approach, this inflexibility limits the applicability on our
blocked Gauss Jordan algorithm where the backward substi-
tution step only needs to be applied on few rows and therefore
employs branching (see Section III-B2). Creating tasks for
all rows in each iteration would lead to a lot of unnecessary
computations.

3) ONLINE DAG CONCEPT FOR RLNC DECODING
Inspired by online data dependency management principles
for parallelism in high performance computing [19], [61],
we develop an online DAG approach for progressive RLNC
decoding. Instead of constructing the entire DAG a priori
(offline), we add block operations on the fly: A main thread
executes the iterative RLNC program. Whenever there is a
block operation to be executed, it will not be executed right
away; instead, we add a new task description that charac-
terizes the read and write dependencies in the online DAG.
Based on the task operation description, the main thread
‘‘delegates’’ a block operation task to a later time or to
another worker thread. At the same time, worker threads
check for task descriptions in the DAG which have all depen-
dencies resolved, pick them, and execute them. The worker
threads will therefore pick up the delegated operations from
the main thread. The independent individual worker threads
can pick up and execute the operation tasks completely
asynchronously.

Importantly, there is no explicit synchronization needed in
this process; the main thread can go ahead and add new task
descriptions similarly to the offline DAG approach. However,
the main thread can also choose to wait for certain tasks or
certain data objects to be finished, and then act upon the
intermediate results. This makes branching possible, e.g.,
skipping certain computations if all coefficients are zero.
However, this branching comes at the cost of adding an
explicit synchronization, which can lead to idle times if not
enough tasks are available to keep all cores busy.

FIGURE 6. Illustration of data structures for online DAG for data
dependencies.

4) DELEGATION OF MATRIX OPERATION TASKS
Figure 6 illustrates the data structures for the online DAG.
In the depicted example, the main thread has delegated a
matrix multiplication. All parameters are copied to the ‘‘task
description’’ structure in the upper left of Figure 6 so the
block operation can be called later as in conventional pro-
grams. The matrix multiplication block operation performs
the operation C = A · B. The task description therefore
includes pointers to memory where the matrix blocks A, B,
and C are stored, as well as information about the size of
the matrices (n,m, k) and possibly more. For each pointer in
the task description, such as the matrix block pointers A, B,
and C , a separate ‘‘data object’’ is created which handles
the data dependencies. Each data object contains an ‘‘access
queue’’ where the data access of each task is registered when
it is delegated. By registering the data accesses, the order of
the data accesses of the tasks on the data objects is noted.
In this way, the data dependencies are registered.

When a new task is delegated, data objects which will be
accessed will be looked up from a hash, or created if not
yet present. The data access for each data object will be
registered. To do so, for each data object, the last data access
description in the access queue (the onewhichwas added last)
will be investigated—the last data access represents the valid
state after already scheduled (preceding) tasks have been
executed. If the new task will read from the data object and
the last data access is also reading, then the new task just adds
itself as a ‘‘participant’’ to the participant list of the read data
access. This is possible since multiple tasks can read from the
same data. In any other case, a new operation is appended to
the access queue and the delegated task is entered as the only
participant.

161190 VOLUME 7, 2019



S. Wunderlich et al.: Progressive Multicore RLNC Decoding With Online DAG Scheduling

Only the first data access in the data objects access queue
is ‘‘ready’’. A task which is ready for execution needs to
be ‘‘ready’’ with all tasks parameters’ data objects. In other
words, the task needs to be a participant of the first data
access description of the access queue in all of the task
parameters’ data objects. To avoid look ups, we have a depen-
dency counter in the task description which is decremented
whenever a data access description becomes the first in the
data access queue. When the dependency counter reaches
zero, the task description is moved into a ‘‘ready queue’’
where worker threads can pick up and execute the task.

Once a task has been executed, the data objects and their
entries in the respective data access participant lists are
removed. If a participant list is empty, the data access is
complete and the next data access in the queue is assigned
to become the first of the queue; also, the dependencies of
all task descriptions in the new data access participant list
are decremented. New tasks may become ready for execution
if their dependency counters have now been decremented
to zero; those tasks have now their data dependencies met
and can be safely executed. In case of multiple ready tasks,
the threads select tasks as follows. We define forward elimi-
nation and backward substitution tasks as ‘‘priority’’ tasks.
Slow cores, e.g., the LITTLE ODROID-XU-3 cores (see
Section IV-A1) select the first non-priority task in the queue,
but never execute a priority task. Fast cores execute the first
priority task, or the first non-priority task if no other task is
ready.

One caveat in this process is that the iterative program
must be written in a way that data objects do not overlap in
memory; otherwise, the described process cannot correctly
detect data dependencies.

D. FURTHER OPTIMIZATIONS
This section describes two optimizations of the principles
described in Sections III-B and III-C.

1) STRIPE OPTIMIZATION
Wehave found that applying helpermatrices on the remaining
blocks in a block-by-block fashion creates many individ-
ual tasks, but also quite considerable overhead due to the
dependencymanagement for each task description. Instead of
processing individual blocks, it may be preferable to group
multiple blocks of a row into a ‘‘stripe’’ and to process the
entire stripe as one delegated task so that there are fewer
matrix multiplication tasks and less overhead. The stripe size
should be large enough to avoid many ‘‘short’’ tasks, but
small enough to create enough tasks descriptions to keep
all cores (threads) busy. Figure 7 illustrates the stripe opti-
mization for a forward elimination example. As illustrated in
Figure 7(a), without the stripe optimization, the helper matri-
ces are applied block-by-block on the new data matrix D′,
resulting in sixteen matrix multiplications tasks. Figure 7(b)
shows the stripe optimization with a stripe size of s = 16,
which reduces the number of tasks to four; these four tasks

FIGURE 7. Illustration of operation without and with stripe optimization
for block size b = 4: Without stripe optimization, single b× b blocks are
processed; with stripe optimization, stripes of b rows and s columns are
processed.

FIGURE 8. Operation without and with full rows optimization.

involve larger matrices and require therefore longer compu-
tation times per task.

2) FULL ROWS OPTIMIZATION
Similarly to the striping of the data matrix, the ‘‘full rows’’
optimization reduces the number of block operation tasks in
the coefficient matrix when performing forward elimination
and backward substitution. The original implementation of
the forward elimination and backward substitution computes
a helper matrix and applies this helper matrix on the remain-
ing blocks of a row using matrix multiplication block per
block. The ‘‘full rows’’ optimization instead computes the
helper matrix and immediately applies it on the remaining
blocks of the same block row within one task. This full
rows optimization consolidates multiple tasks into one. The
consolidation reduces the task management overhead, but
potentially creates a bottleneck if not enough tasks are avail-
able to keep all cores busy.

Figure 8 illustrates the full rows optimization for the
forwarding elimination step (the backward elimination step
works analogously): The default operation (without full rows
optimization) computes the two helper matrices using the
pivot block in the coefficient matrix C and the respective
new coefficient block in C ′ in the first task. The remaining
tasks apply the helper matrices on the remaining blocks in the
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coefficient matrix C and new coefficient matrix C ′, respec-
tively, using matrix multiplication. With full rows optimiza-
tion, there is only one task performing all computations on
the entire pivot block row of the coefficient matrix C and the
complete new coefficient matrix C ′. This single task takes
longer to compute and is only processed by a single thread.

IV. EVALUATION
This section presents decoding throughput and delay mea-
surements for two heterogeneous multicore processor boards
that evaluate the proposed online DAG RLNC decoding
approach. We conduct a measurement-based evaluation as to
the best of our knowledge and understanding, a reasonably
accurate analytical characterization of the decoding through-
put and delay for heterogeneous multicore processors is cur-
rently intractable.

A. EVALUATION SET-UP
1) MULTICORE PROCESSOR BOARDS
The experiments have been conducted with contemporary
system on a chip (SoC) boards, namely the ODROID-XU-3
(based on Samsung Exynos 5422 SoC) and ODROID-XU+E
(based on Samsung Exynos 5410 SoC), which have been
employed in previous RLNC coding evaluations [21], [33].
Both boards have four Cortex-A15 (big) cores (clocked at
2.0 GHz in XU-3 and 1.6 GHz in XU+E) and four Cortex-A7
(LITTLE) cores (clocked at 1.4 GHz in XU-3 and 1.2 GHz
in XU+E). Also, on both boards, each core has an L1 cache
of 32 KiB for data and 32 KiB for instructions with 64 byte
cache lines. On both boards, the A15 cores share a 2 MiB
L2 cache and the A7 cores share a 512 KiB L2 cache. Both
boards have 2GiBLPDDR3 random accessmemory (clocked
at 933 MHz in XU-3 and 800 MHz in XU-E) and support
NEON (an advanced form of single instruction multiple data
(SIMD) instructions). The main difference is that the XU-3
supports heterogeneous multi-processing (HMP) while the
XU+E does not. With HMP, the XU-3 can simultaneously
utilize all eight cores, whereas the XU+E can only use either
the four big cores or the four little cores (but not all eight cores
at the same time).

2) TEST MATRICES AND PARAMETER SETTINGS
For each evaluation replication, we consider an independently
randomly generated coding coefficient matrix C . Specifi-
cally, we consider two coefficient matrix types:

• Full vector coefficient matrix has all g×g elements set
to random values. In general, no decoded symbols will
be released until the last (gth) packet of the generation
is processed by the decoder.

• Triangle coefficient matrix is a lower triangular matrix
where all elements above the main diagonal are zero.
Thus, the first packet (coding coefficient row) has
only one non-zero coefficient, the second packet has
two non-zero coefficients, and so on (we do not con-
sider reordering of packets). This allows the decoder to

FIGURE 9. Illustration of packet queueing delay, packet decoding delay,
and queued decoding delay for a progressive sub-generation decoder for
generation size g = 16 and block size b = 4 (and block fill level p = b = 4)
for a triangle coefficient matrix.

decode and release one decoded symbol per incoming
coded packet (provided the coding coefficient rows are
linearly independent).

Throughout, we only consider linearly independent coding
coefficient rows.

Data size m (symbol size) was varied between m =

1024 representing short data packets, m = 1536 which is
close to the typical Ethernet Maximum Transfer Unit (MTU)
of 1500 bytes but a multiple of 512, as well as m = 4096 and
m = 16384 Bytes which may be used for data center storage.
(Unequal packet sizes can be accommodated with padding or
other techniques [62].)

Generation size g has been chosen within 16, 32, 64, . . . ,
1024. We consider zero redundant data packets, i.e., we
assume that all g coded packets for a given generation are
received (eventually, according to the arrival process defined
in Section IV-A3) and have linearly independent coding coef-
ficient rows. Larger generation sizes generally yield lower
decoding throughput and higher latency, but have better
chances to recover packets lost in an error burst [63].

Threads t are varied between t = 1, 2, 4, and 8 threads.
Threads are pinned on the physical CPUs to ensure that
the operating system scheduler never overbooks cores with
multiple threads. The pinning also ensures that for t = 4 and
fewer threads, only the big cores are used.

Block size b has been chosen within 16, 32, 64, . . . , g. The
block size b = 16 is the minimum block size where the
NEON SIMD code can perform at its full potential.

Block fill level p was set to 1, 2, 4, . . . , b.
Stripe size s has been chosen from s = 64, 128, 256,

and 512.
Full rows optimization has been turned on and off.

3) PERFORMANCE METRICS
We define the throughput as the size gm [bytes] of the data
matrixD divided by themeasured decoding computation time
from the time instant when the decoder starts processing the
first coded packet to the time instant when the decoder emits
the last (gth) decoded symbol of a given generation.

We define the packet decoding delay as the time inter-
val from the time instant when a coded symbol enters the
decoder until the time instant when the decoder emits the
corresponding decoded symbol, as illustrated in Fig. 9 for
coded packet #2. In our evaluations, we consider r = 0
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redundant packets; thus, there are exactly as many coded
symbols as decoded symbols, so a coded symbol will corre-
spond to a decoded symbol. We define the queued decod-
ing delay as the sum of the packet decoding delay and
the packet queueing delay, which is evaluated as follows.
In a progressive sub-generation decoder, the decoder only
starts computing an iteration when block fill level p packets
have been received. However, we can not expect that packets
arrive in convenient batches of p packets just in time as
the decoder needs them to proceed without stalling. Instead,
we assume that packets arrive evenly distributed with a con-
stant inter-packet (time interval) spacing (which is computed
based on the measured throughput; note that the throughput
is the inverse of the decoding delay of a full generation of g
packets). The queue entry times of the packets are set to the
latest possible entry times that satisfy a constant inter-packet
spacing for all g packets in a generation, while ensuring that
p packets have been received when the decoder needs the
next batch of p packets to proceed without stalling. (For the
offline DAG approach, i.e., the generation-based benchmark,
all p = g packets of a generation need to be received by
the time the decoder starts decoding the generation.) The
queueing delay is defined as the time interval from the time
instant when a packet enters the queue to the time instant
when the decoder pulls the packet from the intermediate
receive queue. (For the offline DAG benchmark, the average
packet queueing delay equals half the decoding delay for
a generation.) Thus, the queued decoding delay is the time
interval from the time instant when a packet enters the queue
(for an equal packet spacing arrival pattern) until the time
instant when the decoder emits the corresponding decoded
symbol, as illustrated for packet #2 in Fig. 9. We average
the g individual queued decoding delays for the g symbols
in a given generation to obtain one mean queued decoding
delay for a given generation (i.e., for a given evaluation
replication).

We briefly note that alternatively the delay could be defined
as the time interval from the time instant when the last coded
symbol of a generation enters the decoder until the time
instant when the decoder has emitted all symbols of the gener-
ation. However, such a delay definition based on the last sym-
bol does not capture the effects of symbols that are decoded
and released early to the upper protocol layers. For instance,
in the example illustrated in Fig. 9, symbols #1 through #8 are
decoded and released to the upper layers even before the last
symbol #16 arrives. Accordingly, in order to accurately evalu-
ate the decoding delay performance of progressive decoding
we do not consider this alternate ‘‘last symbol’’ delay def-
inition; instead, we consider the queued decoding delay as
defined above based on individual symbols.

4) EVALUATION METHODOLOGY
We conducted all evaluations with the Galois Field GF(28)
using the NEON-enabled SIMD code of the Fifi/Kodo
library [64], which employs fast SIMD operations for the
Galois Field [32], [65].

We present results for prescribed combinations of coef-
ficient matrix type C , data size m, generation size g, and
number of threads t in the figures in the next section. For
each considered prescribed combination of C type, m, g,
and t , we performed 20 independent replications for each
combination of the remaining parameters block size b (b =
16, 32, 64, . . . , g), block fill level p (p = 1, 2, 4, . . . , b),
and stripe size s (s = 64, 128, 256, 512), as well as full
rows optimization (on or off) to determine the combination of
b, p, s, and full rows optimization that achieves the maximum
throughput as well as the combination of b, p, s, and full
rows optimization that achieves theminimum delay. For these
maximum-throughput and minimum-delay settings of b, p, s,
and the full rows optimization, we then conducted between
18000 and 60000 independent replications of the evaluation
for each of the prescribed combinations ofC type,m, g, and t .
All presented throughput and delay results are averages over
the independent replications. The resulting widths of the 95%
statistical confidence intervals of the evaluated performance
metrics were less than 0.5% of the respective means and are
omitted from the plots to avoid visual clutter.

B. RESULTS
1) THROUGHPUT
a: PROGRESSIVE ONLINE DAG VS.
NON-PROGRESSIVE OFFLINE DAG
Fig. 10 compares the decoding throughput of the proposed
progressive online DAG approach with the non-progressive
offline DAG approach [21]. The comparison considers the
range of generation sizes g and symbol sizes m for t = 1, 4,
and 8 threads and was conducted with the ODROID-XU-3
board, which can operate up to eight cores simultaneously.
We observe from Fig. 10 that the online DAG approach
achieves generally similar decoding throughput levels as the
offline DAG approach. Focusing on Fig. 10(a) for the small
generation size g = 16, we observe that the online DAG
approach achieves generally somewhat higher throughput
than the SE throughput for scheduling and executing the
offline DAG. This is mainly because the online approach
includes the stripe optimization (Section III-D1), whereas the
offline DAG approach of [21] is limited to block processing
and does not form stripes. For small generation sizes g and
correspondingly small block sizes b, b ≤ g, the individual
block computing tasks are relatively small. Thus, the over-
head of scheduling the computing tasks is relatively high
compared to the actual computing task execution. The stripe
optimization reduces the scheduling overhead relative to the
task execution and thus increases the decoding throughput.

We further observe from Fig. 10(a) that the execute
(E) decoding throughputs achievedwith a pre-scheduled (pre-
recorded) offline DAG (represented by the outlined bars
in Fig. 10) significantly exceed the online DAG decoding
throughputs for the large m = 4096 and 16384 symbol sizes.
For large symbol sizes there are numerous block computing
tasks in the offline DAG approach [21] offering plentiful
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FIGURE 10. Throughput comparison of progressive (online DAG) decoding
(blue) with the non-progressive (offline DAG) decoding [21] (red bars,
SE as solid bars and E as outlines), for t = 1,4, and 8 threads for various
generation sizes g and symbol sizes m on XU-3 for full vector coefficient
matrix.

opportunities for parallelization. With pre-recording of the
offline DAG schedule, the overhead of scheduling the numer-
ous computing tasks does not directly influence the actual
decoding computation. Thus, the benefits from executing the
pre-recorded DAG with an increased level of parallelization
can outweigh the overheads of handling more computing
tasks, and thus increase throughput compared to the online
DAG approach that schedules the computing tasks in a ‘‘live’’
manner.

Overall, the decoding throughput results in Fig. 10 demon-
strate that the online DAG approach exhibits the same gen-
eral performance trends as the conventional offline DAG
approach: The decoding throughputs generally decrease with
increasing generation size g, mainly due to the increasing
computational complexity of O(g3) of the inversion of the
coding coefficient matrix C , also each element has to be
touched g times for the matrix multiplication. Moreover,
the decoding throughputs increase with increasing symbol
size m, mainly due to the increasing opportunities for par-
allelization. Importantly, the online DAG approach can gen-
erally take advantage of multiple threads as efficiently as the
offline DAG approach. With both approaches, the decoding
throughputs typically greatly increase with four parallel com-
puting threads (cores) compared to a single computing thread.
With eight threads, the throughputs decrease for small to
moderate generation sizes g and symbol sizes m compared to
four threads, while eight threads achieve throughput increases
for large g in combination with large m. Combinations of
large g and m provide many opportunities for parallel exe-
cution which outweigh the overhead of operating eight cores
and the delays when critical tasks are scheduled on one of the
slow (LITTLE) cores.

b: PROGRESSIVE ONLINE DAG VS. PROGRESSIVE CD
Fig. 11 compares the decoding throughput of the pro-
posed progressive online DAG approach with the state-
of-the-art progressive coefficient matrix duplication (CD)
approach [33], for additional context, the decoding through-
puts of the offline DAG approach from [21] are also included.
These comparisons were conducted with the XU+E board,
which was considered in [33] and can operate up to four
cores simultaneously.We observe from Fig. 11 that our online
DAG approach achieves higher decoding throughput than the
CD approach for the small symbol size m = 1024, whereby
the advantage of the online DAG approach is particularly
pronounced for the small generation sizes g = 32 and 64.
This result is mainly due to the relatively high static overhead
of the CD approach, which dominates the computational
complexity for small generation sizes [21], [33]. In contrast,
we observe from Fig. 11(a) that the proposed online DAG
approach has a low static overhead and achieves for g =
32,m = 1024 more than three times the decoding throughput
of the CD approach. Small generation and symbol sizes are
especially relevant for low-delay applications, such as media
streaming.
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FIGURE 11. Throughput comparison of progressive (online DAG) decoding (blue), CD decoding [33] (yellow), and non-progressive (offline) DAG
decoding [21] (red bars, SE as solid bars and E as outlines), for t = 1 and 4 threads for various generation sizes g and symbol sizes m = 1024, 4096, and
16384 on ODROID-XU+E for full vector coefficient matrix.

On the other hand, we observe from Fig. 11 that the
CD approach achieves higher decoding throughput than the
online DAG approach for the very large symbol size m =
16384 in combination with small to moderately large gener-
ation sizes g = 32, 64, and 128. This result is mainly due to
the more efficient matrix multiplication in the CD approach,
where a given computing thread can handle a complete ver-
tical partition of the data matrix D with low overhead as one
‘‘computing task’’. In contrast, our online DAG approach
incurs overheads due to managing each matrix block as a
distinct computing task.

However, we observe from Fig. 11(d) that for the very
large symbol size m = 16384 in conjunction with the large
generation size g = 256, the online DAG approach achieves
substantially higher decoding throughputs than the CD
approach. The throughput degradation of the CD approach

for large g andm is mainly due to caching inefficiencies [33].
In contrast, our block-based online DAG approach remains
highly cache efficient for scenarios with large g andm, which
are highly relevant for storage applications.

2) DELAY
Fig. 12 presents the mean queued decoding delay as a func-
tion of the block fill level p. For the delay evaluation, the
methodology from Section IV-A4 was modified to prescribe
a combination of C type, data size m, generation size g,
number of threads t , and block fill level p to find the combi-
nation of the remaining parameters block size b, stripe size s,
and full rows optimization that minimizes the mean queued
decoding delay. The exhaustive search considered 20 inde-
pendent replications for each combination of these remaining
parameters. We then conducted between 18000 and 60000
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FIGURE 12. Mean queued decoding delay for online DAG approach for
t = 1, 4, and 8 threads for full vector (Full) and triangle (Tri) coefficient
matrices C , for various generation sizes g with symbol size m = 1536 as a
function of the block fill level p on ODROID-XU-3. The offline DAG
(Offl) [21] considers full vector coefficient matrices.

independent replications of the evaluation for each of the pre-
scribed combinations of C type, m, g, t , and p (for the delay
minimizing settings of the remaining parameters), obtaining
95% statistical confidence intervals of less than 0.5% of the
respective means.

We observe from Fig. 12(a) that for the small generation
size g = 16 there are no pronounced differences between
the minimum delays achieved by the compared approaches.
This is mainly because the small g = 16 generation size does
not provide sufficient ‘‘room’’ to significantly reduce delays
through progressive decoding. Rather, for full vector coeffi-
cient matrices, progressive decoding with a block fill level p
less than the generation size g = 16 increases delays due to

the introduced computation inefficiencies for new coefficient
C ′ and data D′ matrices with less rows than the minimum
block size b = 16. Triangular coefficient matrices can offset
these computational inefficiencies by releasing the decoded
symbols early and achieve minuscule delay reductions for a
block fill level of p = 1.
We observe from Fig. 12(b) and (c) that progressive decod-

ing with the online DAG approach can achieve substantial
delay reductions compared to the generation-based offline
DAG approach. The delay reductions become more pro-
nounced with increasing generation size g and with the Tri C
type. For instance, we observe from Fig. 12(c) that for t = 4
threads and the Full C type, the block fill level p = 32 in
the online DAG approach reduces the delay down to approx-
imately two thirds of the offline DAG delay. These delay
reductions for full vector coefficient matrices are mainly due
to the reduction of the decoding computation delay from
the time instant of the receipt of the last (gth) packet of a
generation until the time instant when the generation has been
completely decoded and all g decoded packets are released.
In particular, with the online DAG approach, only the last p
received packets in the new coefficient matrix C ′ and the new
data matrix D′ need to be ‘‘worked’’ via the Gauss Jordan
elimination into the coefficient matrix C and data matrix D,
which can already contain g − p rows when the decoding
process for the last p packets starts.
We observe from Fig. 12(c) that for t = 4 threads for

the Tri C type, the block fill level p = 8 reduces the delay
down to nearly one tenth of the offline DAG delay. The delay
reductions for the triangular coefficient matrix are due to a
combination of the reduced computation time for ‘‘working’’
p received packets into the matrices C and D as well as
the early release of the decoded packets immediately after
completing the processing of each batch of p packets. Large
generation sizes g provide more ‘‘room’’ for these delay
reductions compared to offline DAG decoding.

Generally, the delay curves for the online DAG approach
in Fig. 12(b) and (c) exhibit a delay decrease for increasing
block fill level p up to a delay-optimal p value and then
increasing delays for further increases of p. For small block
fill levels p below the minimum block size b = 16, the
block has to be padded, creating inefficiencies and thus delays
increases that become more pronounced for very small p.
Large block fill levels p require correspondingly large block
sizes b because the block fill level must be less than or equal
to the block size b, i.e., p ≤ b. Large blocks are more
difficult to cache, reducing the caching efficiency. Addition-
ally, the Tri C type permits the release of the p symbols
in a processing batch as soon as the decoding is completed
for the batch. A large block fill level p increases the packet
queueing delay until the decoding processing can commence,
contributing to the delay increases for large p for the Tri C
type.

The delay results for t = 8 threads corroborate the earlier
findings in Section IV-B1.a regarding the additional delays
and overheads arising from utilizing the four slow (LITTLE)
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TABLE 2. Optimized parameter settings for online DAG approach: For
prescribed coefficient matrix C type, data size m = 1536, generation size
g, and number of threads t on ODROID-XU-3, the tables give the block
size b, block fill level p, stripe size s, and full row optimization achieving
the highest throughput in MiB/s (Fig. 10) and the shortest queued
decoding delay in ms (Fig. 12), respectively. The respective optimized
performance metric (throughput or delay) is written in bold.

cores in addition to the four fast (big) cores on the considered
SoC boards.

3) PARAMETER SETTINGS FOR THROUGHPUT-DELAY
TRADEOFF
The goal of this section is to provide insights into the range of
throughput-delay tradeoffs that can be attained with the pro-
posed online DAG approach and the corresponding parameter
settings that achieve the various throughput-delay tradeoffs.
Table 2 considers both types of coding coefficient matrices
(C types), the m = 1536 data size, generation sizes g = 16,
64, and 256, and t = 1, 4, and 8 threads. For each prescribed
combination of C type, m, g, and t , Table 2 gives the block

size b, block fill level p, stripe size s, and full row optimization
(on or off) that achieve the highest throughput and the shortest
queued decoding delay, respectively.

We observe from Table 2 that for the Full C type, the block
size b and block fill level p are generally 16 for the small
generation size g = 16; whereas, for the larger g = 64 and
256 generation sizes, the block size b = 64 corresponds to
the 64-byte length of the L1 cache lines while the block fill
level is p = 64 for the maximum throughput and smaller
block fill levels of p = 8, 16, and 32 achieve the minimum
delays as specified in Table 2. Interestingly, the differences
between the b, p, s, and full row optimization for highest
throughput and shortest delay are relatively minor for the Full
C type. Concomitantly, the differences between the highest
throughputs and the throughputs corresponding to the short-
est delays are relatively minor; specifically, for g = 16,
the highest throughput and shortest delay operating points
coincide; for g = 64 and 256, the maximum throughput
operating points have somewhat higher delays (up to about
20% higher for g = 256) than the shortest delay operating
points; conversely, the shortest delay operating points have
somewhat lower throughputs (up to 20% lower for g = 256)
than the highest throughput operating points. The stripe sizes
are s = 512 for g = 16 as well as for g = 64 and 256 for
small thread numbers t , whereas large thread numbers t tend
to prefer shorter stripe sizes of s = 256 and 128.

In contrast, we observe for the Tri C type in Table 2 large
differences between the highest throughput and shortest delay
parameter settings and achieved throughput-delay operating
points. For instance, for t = 4 threads for the generation
sizes g = 64 and 256, the highest throughputs are roughly
three times higher than the throughputs for the shortest delay
operating points; the delays of the highest throughput operat-
ing points are a little over twice the shortest delays, albeit
still short compared to the Full C type delays. This wide
range of throughput-delay tradeoffs of the operating points
for Tri C type decoding is mainly due to the wide range of
flexibilities for releasing decoded packets as soon as block fill
level p, p ≤ b ≤ g, packets have been received and decoded.
Decoding p < b received coded packets can reduce the delays
but substantially degrades the throughput as b− p rows need
to be zero padded in the new coefficient matrixC ′ and the new
data matrix D′ to enable the block based matrix processing.
Generally, for Tri C type decoding, the highest throughput

settings have large block sizes b equal to the generation size
g for g = 16 and 64, and up to twice the cache line length,
i.e., up to 128, for g = 256. The block fill levels match the
block sizes, i.e., p = b for the highest throughput; whereas,
the shortest delay requires small block fill levels in the range
from 1 to 8. We also observe from Table 2 that the high
throughput vs. short delay tradeoff is mainly controlled by
the block fill level p (while the other parameters b, s, and full
row optimization exhibit generally only minor differences for
the different operating points).

Generally, for utilizing the online DAG approach in oper-
ational practice, we recommend to first conduct an offline
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TABLE 3. Optimized throughput in MiB/s and queued decoding delay in
ms for sparse RLNC as a function of density γ/g for random sparsity and
pseudo-systematic sparsity for full coefficient matrix C type, data size
m = 1536, generation size g = 64, and t = 4 threads on ODROID-XU-3.
The respective optimized performance metric (throughput or delay) is
written in bold.

search for the optimal parameter settings. Specifically, for
the employed coding coefficient matrices (C types), data
sizes m, generation sizes g, and available number t of pro-
cessor threads we recommend to conduct simulations for the
different combinations of block size b, block fill level p,
stripe size s, and full row optimization, similar to our eval-
uation methodology (see Section IV-A4) so as to determine
the throughput-delay tradeoffs. Then, the desired operational
objective in terms of the high throughput vs. short delay
tradeoff can be attained through appropriate selection of the
parameters b, p, s, and full rows optimization.

4) IMPACT OF SPARSE RLNC
Sparse RLNC has recently been proposed to reduce the
RLNC computations [66]–[69]. With sparse RLNC, only a
prescribed subset of the coding coefficients in the coefficient
matrix C are set to values drawn randomly from a given
GF(2p). In particular, only a subset of γ, γ ≤ g, of the
source symbols of a given generation of g source symbols
are combined to form a coded symbol. We consider a random
sparsity approach that uniformly randomly selects γ source
symbols among the g source symbols of the generation to
form a coded symbol [70]. That is, γ uniformly randomly
selected positions (out of the g positions) of the coding coef-
ficient row are set to randomGF(2p) values and the remaining
g− γ positions are zero. More specifically, in order to avoid
dimensionality problems, we selected the position on the
diagonal of the coding coefficient matrix (i.e., position i of
coding coefficient row i, i = 1, 2, . . . , g) and then γ − 1
other random positions of the row.

We also consider the pseudo-systematic perpetual sparse
coding from [60], which prescribes a particular coding coef-
ficient row pattern for the successive rows r, r = 1, 2, . . . , g,
of C : Row r has a one in position r and random GF(2p)
values in the next γ − 1 positions (with wrap-around, e.g.,
row r = g has a one in position g and random GF(2p) values
in positions 1 through γ − 1).

Following the evaluation methodology of Section IV-B3,
we examine the highest throughput and the shortest queued
decoding delay. In particular, we consider the full coefficient
matrix C type for symbol size m = 1536, generation size
g = 64, and t = 4 threads. Table 3 presents the throughput
and queued decoding delay values for the highest throughput
and shortest queued decoding delay operating points.We vary

the sparsity, or equivalently the density, of the encoding by
varying the ratio γ /g.

We observe from Table 3 in comparison with the entries
for the Full C type and t = 4 threads in Table 2(b) that,
as expected, the throughput and delay values for sparse
coding with a high density γ /g approach the correspond-
ing throughput and delay values for conventional encoding
(which corresponds to γ /g = 1). For decreasing density
γ /g, i.e., increasing levels of sparsity in the RLNC coding,
we observe from Table 3 increasing throughputs and decreas-
ing delays. The throughput increases and delay reductions are
more pronounced for the pseudo-systematic sparse coding
than for the random sparse coding. These results indicate
that the proposed online DAG RLNC decoding approach
can extract performance gains from sparse RLNC coding.
The performance gains are particularly pronounced for the
pseudo-systematic sparsity approach which has more con-
secutive zeros in the coding coefficient rows, thus allowing
for more efficient processing, than for the random sparsity
approach.

V. CONCLUSION
We have developed and evaluated a novel progressive
decoding methodology for Random Linear Network Coding
(RLNC). Our methodology schedules matrix block opera-
tions in an online manner in a directed acyclic graph (DAG)
so as to facilitate highly efficient parallel computation on
multicore processors while allowing for dynamic branch-
ing decisions. Our performance evaluations on hetero-
geneous multiprocessor boards have indicated that our
online DAG approach achieves similar decoding through-
put as the state-of-the-art non-progressive (offline DAG)
RLNC decoding methodology. Importantly, the online DAG
approach achieves three times higher decoding through-
put than the state-of-the-art progressive coefficient matrix
duplication (CD) RLNC decoding for small generations
of 1 KiB data symbols and is thus well suited for low-latency
packet network applications. Also, the online DAG approach
achieves higher decoding throughput than CD decoding for
large generations of very large data symbols, which are com-
mon in storage applications. Compared to offline decoding,
the progressive online DAG approach can reduce the decod-
ing delay by one third for full vector RLNC encoding, while
delay reductions by a factor of ten are possible for low-latency
RLNC encoding methods. The online DAG approach allows
for the control of the high throughput vs. short decoding delay
tradeoff through a block fill level parameter that indicates
how many received coded packets are processed at a time.

The online DAG approach developed in this study opens
up several interesting future research directions. The present
study developed the online DAG approach for heteroge-
neous multicore processor systems without an extensive GPU
infrastructure. Future work could extend the online DAG
approach to utilize GPUs and investigate how to manage
the task assignments to GPUs so as to minimize decoding
latencies. Another future research direction is to examine
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online DAG based RLNC decoding for RLNC versions that
are not based on generations, but rather employ dynamic
sliding encoding windows, e.g., [38].
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