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Abstract—We present different video traffic models for H.264
variable bit rate (VBR) videos. We propose our models on top
of the recent unified traffic model developed by Dai et al. [1],
which presents a frame-level hybrid framework for modeling
MPEG-4 and H.264 multi-layer VBR video traffic. We exploit
the hierarchical predication structure inherent in H.264 for intra-
GoP (group of pictures) analysis. We model the children frames
by considering various combinations of the correlation between
the parent frames in the prediction structure. Our simulations
show that modeling using the hierarchical prediction structure
indeed improves capturing the statistical features of the videos
and prediction of network performance, without an increase in
the complexity as compared to the unified traffic model by Dai
et al. [1], which was shown earlier to be better than previous
traffic models.

Index Terms—Hierarchical prediction structures, H.264 SVC,
intra-GoP correlation, video traffic modeling,

I. INTRODUCTION

Video traffic modeling plays a major part in network traffic
analysis. It is imperative to network design and simulation,
providing Quality of Service (QoS) to network applications,
besides providing insights into the coding process and struc-
ture of video sequences. Many models have been proposed
in the past for MPEG video traffic. But very few studies
have considered H.264 [2] video traffic modeling and the
multi-layer aspects of video traffic streamed over the Internet.
Prominent among those is the recent unified traffic model
developed by Dai et al. [1] which presented a framework
by incorporating wavelet domain analysis into time-domain
modeling.

Video traffic modeling has been an active research area
for quite many years now. A plethora of models have been
developed over time for various applications meeting various
demands. There are different ways to classify these models, a
few of which will be described in the section II, based on our
research interest.

We briefly present our major motivation for this study. We
wish to make the hierarchical B-frames structure (shown in
Figure 1), which is inherent in H.264, a part of the modeling
process by treating correlation between each different pair of
hierarchical B-frames separately. This is in contrast to the
H.264 video traffic model developed by Dai et al. [1], where
the hierarchical B-frames were not considered. Instead, the

Fig. 1. Hierarchical prediction structure in a G16B7 H.264 video sequence
showing 3 temporal levels for the B frames. The arrows indicate the direction
of prediction.

correlation between any pair of B-frames was considered to be
the same. Our approach improves the overall traffic modeling
of H.264 single layer video streams, without adding much
complexity, as it considers the correlation between the B-
frames of different hierarchical levels instead of treating all
B-frames alike as suggested by [1]. We have proposed this
change through a linear model which estimates the B-frames
from the lower hierarchial level B-Frames. Specifically, we
propose and evaluate three B-frame prediction models, which
are detailed in Section IV. We do not change the estimation
of I-frames and the I-B frames correlation presented in [1].

A Group of Pictures (GoP) of an encoded video stream is
defined as one I-frame and all subsequent P and B-frames
before the next I-frame in the stream. One GoP of a G16B7
structure is shown in Figure 1, which means there are 7 B-
frames in between any I and P-frame and an I-frame repeats
every 16 frames i.e IBBBBBBBPBBBBBBBI... Also note that
the 7 B-frames of the first-half of the GoP in Figure 1, are
divided into 3 hierarchical levels represented by T = 1 to 3.
The I/P-frames belong to the coarsest temporal level T = 0.
The arrows in the figure indicate the direction of prediction.
Two arrows culminating at a particular frame indicate that the
child frame has two parent frames. As illustrated in Figure 1
the pattern of prediction for every B-frame is quite different
from another B-frame, hence these individual correlations
can be exploited to improve the modeling process. We have
additionally validated our approach by using a G16B15 GoP



structure, where the middle P-frame is replaced by another
B-frame.

The rest of the paper is organized as follows. In Section II,
we classify the varied video traffic models based on different
metrics and point the reader to research articles about these
traffic models. In Section III, we review in detail the traffic
model developed by Dai et al. [1] including the models for esti-
mating I, B and P frames. We propose the changes introduced
to [1] and all our models in the following Section IV. The
results are shown in Section V and we compare our models
to the model proposed in [1]. We summarize our conclusions
in Section VI and propose ideas for future/ongoing research.

II. RELATED WORKS:VIDEO TRAFFIC MODEL
CLASSIFICATION

A good traffic model is expected to capture the statisti-
cal characteristics of video sequences (such as frame size
distribution and autocorrelation function (ACF)) and predict
the network performance (such as buffer overflow proba-
bilities and packet loss [1]). Several popular models have
captured the distribution of frame sizes of video traffic, quite
accurately. A few of the most popular distribution models
that have been studied are the lognormal model [3], normal
model [4], Gamma model [5] and other hybrid models such
as Gamma/Pareto [6] and Gamma/Lognormal [7]. Modeling
the ACF structure of VBR traffic is much more challenging,
because these models need to accurately consider and predict
for both Long-Range Dependence (LRD) and Short-Range de-
pendence (SRD). VBR video traffic can be a complex mixture
of both SRD and LRD. SRD traffic is generally exhibited by
real-time application traffic, such as Voice over IP (VoIP) [8].
LRD traffic is observed for non-real-time applications such
as web-request traffic [9] and Ethernet data traffic [10]. The
presence of both SRD and LRD properties in video traffic
indicates that the ACF structure is similar to SRD processes
at small time lags and LRD processes at large time lags [11].
Hence we would require a model which can model both
SRD/LRD ACF structures.

Some variants of Markov processes [12]–[14] model SRD
processes reasonably well. On the other hand, models such
as Fractional Gaussian Noise (FGN) processes capture LRD,
but not SRD [10]. In the recent past, a few models have
emerged, which were finally able to model both SRD and
LRD processes. This complicated problem has been studied
by many, but only a very few were successful such as the
Nested Auto-regressive (AR) model [6], wavelet model [15],
and unified MPEG-4/H.264 model [1].

Single-layer traffic models are the most common type of
video traffic models. Much less work has been done though
to model multi-layer video traffic. A transform-expand-sample
(TES)-based model [16], uses two levels of priority for
modeling MPEG video. The finite-state Markov chain model
developed by Chandra et al. [17] was used to model single
and two layer scalable video traffic. Later, Zhao et al. [18]
developed a K-state Markov chain based model on frame-
size clusters. Dai et al. [1] have developed a unified traffic

model, in which they have tried to fully exploit the cross-
layer correlation between base-layer and multiple enhance-
ment layers. Fiems et al. [19] have proposed a multivariate
Markovian traffic model to characterize H.264/SVC scalable
video traces. More recently multiview video traffic modeling
has been explored [20].

Dai et al. [1] have a good discussion on different traffic
models. Wavelet analysis is being used increasingly due to
their advantages in capturing both LRD and SRD properties
of video. In the same reference, the authors have used wavelet
analysis to estimate I frames, which we included into our
modeling as well. Please refer to [1] for a detailed discussion
on wavelet modeling.

III. UNIFIED TRAFFIC MODEL PROPOSED BY [1]

We base our work on prior research presented by Dai et
al. in [1], where both single-layer and scalable-layer traffic
was considered based on the publicly available video traces
from [21]. We are interested in the presented model’s intra-
GoP correlation analysis, which is the correlation between
I and P/B-frame sizes within a GoP as described earlier
in Section I. The wavelet-based estimation of I-frames is
described in Section III-A. We present a brief summary of the
intra-GoP correlation analysis performed by Dai et al. [1] here,
which motivated us to consider an extension for hierarchical
prediction structures. Note that the P and B-frame estimation
is similar as presented in [1], hence they are used inter-
changeably.

• Dai et al. [1] show the correlation between I and dif-
ferent P-frames belonging to different time instances i.e
I −P1, I −P2, I −P3,. . . where i = 1,2,3,. . . represent
different time instances of P Frames within a GoP. Similar
terminology is used to describe B-frames. Please note that
these time instances are different than the hierarchical B-
Frames, as a B-frame belonging to time instance of 3,
may not necessarily refer to the 3rd Hierarchical B-frame
structure of Figure 1. Dai et al. have not shown any results
for correlation between B-frames of different hierarchical
levels. The authors concluded that the “time instance” or
“i” value of P or B-frames does not matter as they got
similar correlation values for I−P1, I−P2, I−P3, etc.

• The results provided by Dai et al. in [1] have been mainly
for the MPEG-4 standard and CIF resolution for single-
layer traffic analysis.

• Dai et al. suggest that the B-frames can be modeled from
the I-frames in two ways:

a. If the correlation between I and B-frames is not
strong, as is the case with a few video sequences,
then the B-frames can be represented by an i.i.d
lognormal random number generator.

b. If the correlation between I and B-frames is
strong, a linear model and a synthetic gener-
alized gamma distribution can model the B-
frames, as

ϕB
i (n) = aϕ̃I(n) + υ̃B(n), (1)



where ϕB
i (n) is the size of the ith B-frame in

GOP n. ϕ̃I(n) is defined as

ϕ̃I(n) = ϕI(n)− E[ϕI(n)], (2)

where ϕI(n) is the size of the I-frame in the nth
GoP and the estimation of which is discussed
in detail in Section III-A. υ̃B(n) is a synthetic
process, independent of ϕ̃I(n) and is described
in more detail in the Section IV. a is defined as

a = r(0)σB/σI , (3)

where r(0) is the lag-0 correlation between
ϕ̃I(n) and ϕB

i (n), σB and σI are the standard
deviation of ϕB

i (n) and ϕ̃I(n), respectively.

A. Wavelet Model for Estimating I-Frames [1]

In the following, we highlight the main properties of the
wavelet model proposed by Dai et al. in [1] for predicting the
size of I-frames. The model is a four-step process which can
be summarized as follows.

• The I-frame sizes are modeled in the wavelet domain
using the estimated approximation {Ak} and detailed
{Dk} coefficients, where k represents the decomposition
level. The required signal is typically decomposed using
a family of basis functions, which includes a high-pass
wavelet function and a low-pass scaling filter which
generates the detailed coefficients, and approximation
coefficients of the original signal respectively [1]. Haar
wavelet function has been used in the model.

• The next step is the modeling of the detailed and approx-
imation coefficients. In this step the detailed coefficients
{Dk}, are modeled by a mixture-Laplacian distribution,
whose pdf is given by

f(x) = p
λ0

2
e−λ0|x| + (1− p)

λ1

2
e−λ1|x| , (4)

where p is the probability to obtain a sample from a low-
variance Laplacian component, and λ0 and λ1 are the
shape parameters of the corresponding low- and high-
variance Laplacian distributions. In [1] it is shown that the
histogram of the mixture-Laplacian synthetic coefficients
{D1} is much closer to the actual one than the other
discussed distributions.

• The third step is to model the approximation coefficients
{Ak} which are non-negligibly correlated and are not
i.i.d. To preserve the correlation of approximation coeffi-
cients and to achieve the expected distribution, the coars-
est approximation coefficients are modeled as dependent
random variables with marginal Gamma distributions.
The sub-steps involved are [1]

a. Generate N dependent Gaussian variables xi

using a k × k correlation matrix, where N is
the length of {Ak} and the correlation lags l
is chosen to be a value like the average scene

(a) SONY demo CIF

(b) Transporter2 1080p HD

Fig. 2. The difference ACF plots for all estimated frames from five
models vs the original traffic. The unif sametime [1] plots indicate highest
deviation from original ACF traffic, whereas our models Hier 2Par avg
and Hier 2Par weigh have lowest deviation.

length. The correlation matrix is obtained from
the actual coefficients {Ak}.

b. Apply the Gaussian CDF FG(x) directly to xi

to convert them into a uniformly distributed set
of variables FG(xi).

c. Pass the result from the last step through the in-
verse Gamma CDF to generate (still dependent)
Gamma random variables.

• Using the estimated approximation and detailed coef-
ficients from above, the inverse wavelet transform is
performed to generate the I-frame sizes.

IV. OUR MODELS FOR ESTIMATING B-FRAMES

In the following, we outline our model, which uses a
similar linear model as described in Equation (1) to model the



Fig. 3. QQ Plots for traffic generated by five models for Transporter2 1080p
HD. Data generated by our model Hier 2Par avg lies closest to the reference
line, similar to unif sametime [1].

correlation between I-frames and B-frames, except that there
is a separate relation between I and each of the different B-
frames belonging to separate hierarchical stages. We introduce
j as the hierarchical B frame level and in turn derive

ϕ
Bj

i (n) = aϕ̃I(n) + υ̃B(n), (5)

where i still signifies the different time instances of B-frames
at a particular hierarchical level. In our model, ϕB3

2 (n) would
hence represent the size of the second B-frame belonging to
the third hierarchical B level.

The authors of [1] suggested that to estimate the residuals, a
synthetic process υ̃B(n) could be used. υ̃B(n) is independent
of the estimated I-frame sizes ϕ̃I(n) and is estimated from the
actual residuals υB(n) as

υB(n) = ϕ
Bj

i (n)− aϕ̃I(n). (6)

As in [1], we employ a generalized Gamma Distribution to
estimate υB(n). We used the parameter estimation algorithm
for the generalized Gamma distribution, described in [22], to
estimate the parameters of the synthetic process. The pdf of a
generalized gamma distribution with parameters γ, α, and β
is

f(x) =
|β| γαβxαβ−1e−(γx)β

Γ(α)
∀ x > 0, (7)

where β ∈ R and α > 0 are shape parameters, γ ∈ R is
a scale parameter, and Γ(·) denotes the gamma function. To
get comparable results, we have used the parameter estimation
method used by Dai et al. [1] in this study.

To improve over the modeling accuracy of [1], we in-
troduce additional estimations, in addition to the modeling
of the B-frames from I-frames as shown above. We do this
by considering the correlation between B-frames belonging

to different hierarchical levels. In particular, we model the
B-frame of a certain level (a child frame), by considering
different combinations of the correlations between that child
B-frame and its parent I/P and parent B-frames from a lower
hierarchical level (considering the coarsest level to be that of
the I-frames).

To model the B-frames of a higher level (Bj), from the
lower hierarchical level B-frames (Bk), we follow a linear
model similar to Equation (5). Specifically,

ϕ
Bj

i (n) = bϕ̃Bk
i (n) + ω̃BjBk

(n), (8)

where the value of j in ϕ
Bj

i (n) is always higher than the
value of k in & ϕ̃Bk

i (n), corresponding to the child and
the parent B-frames of different hierarchical B-frames. Bj

from Equation (5) should not be confused with Bj from
Equation (8), as j takes different values 1,2,. . . based on the
number of hierarchical levels. However, the i values in ϕ

Bj

i (n)
& ϕ̃Bk

i (n) may or may not be the same, depending on the
hierarchical B-frame and GoP structures. b is defined as

b = r(0)σBj/σBk
. (9)

ωBjBk
(n) is a synthetic process and we model it as a

generalized Gamma distribution as described above.
In this paper, we propose and evaluate three models, which

differ in the estimation process of the correlation between
children and parent B-frames as follows:

• Hier 1Par estimates the B-frames from only one of the
two parents shown in Figure 1. The one parent is chosen
to be the one with the higher correlation of the two
parents.

• Hier 2Par avg estimates the B-frames from both the
parents by taking an average of the two estimations.

• Hier 2Par weigh estimates the B-frames as the weighted
sum of the frame index estimations of the two parents
weighed by the absolute difference in frame index (dis-
tance). Frame index difference is considered since the
correlation is observed to be heavily dependent on the
distances of the frames.

When the estimations from two parents of the same child
frame are averaged as in Equation (8), we get the values for our
Hier 2Par avg model. If these two estimations are weighted
based on the frame numbers of the parents within the GoP, we
get our model Hier 2Par weigh, whereas if we just consider
the estimation of one parent (with the higher correlation), we
get the model Hier 1Par.

In addition we have also considered two cases for the traffic
model developed by Dai et al. [1]. They have mentioned that
the time-instance of B/P-frames does not matter, hence they
calculate the correlation between I and any B/P-frame and use
that for all the possible parent-child combinations. We call this
original model as unif sametime. We made a modification to
this case to consider the correlation between I and B/P-frames
of different time instances to be different, and not same as the
previous case. We call this model as unif difftime. Now we
compare these five models in the next section.



V. RESULTS

We do not show any results for MPEG-4 video traces as
shown in [1] for single layer video traces since MPEG-4
has decreased in significance. But we did run our models
on MPEG-4 traces and results are similar to the ones shown
here. Due to space constraints we show results for two video
sequences, SONY demo and Transporter2 [21]. SONY demo is
of CIF (352 X 288) pixel resolution and has GoP structure
of G16B7 at 30 fps and QP 10, whereas Transporter2 is
of 1080p HD (1920 X 1080) pixel resolution and has GoP
structure of G16B15 at 24 fps and QP 22. SONY demo
has different scenes of varied motion clubbed together for
10 minutes. Transporter2 contains first 30 minutes of high
motion and texture scenes from the motion picture. Hence we
have lot of variations in our test conditions. Results for other
combinations will be updated at [21]. We have used H.264-
SVC Single layer encoding i.e JSVM 9.15.

We perform different studies to demonstrate accuracy of our
three models and compare them with the model proposed by
Dai et al. in [1] i.e unif sametime. We propose a variation
to the model proposed by Dai et al. i.e unif difftime, which
considers B frames at different time-instances. The order of
models in figures and tables is related to number of parent
frames and type of prediction.

A. ACF Plots

The first test is to plot the ACF function for all models. The
ACF shows similarities between observations as a function
of time separation between them [23]. ACF between frame
sizes is generally used for traffic correlation. The difference
between the original traffic ACF and a specific model’s ACF
is shown in Figure 2, to highlight differences between both
ACFs. Difference correlation is plotted as a function of lag
time. All models are shifted at short lag times in ACF plots,
whereas they get close to the original ACF at longer lags.
This is especially true for the Transporter2 HD sequence.
unif sametime proposed by Dai et al. [1] fails to retrace
smaller peaks, whereas our three models retrace the exact
shape of original traffic ACF. As the difference ACF plots
in Figure 2 indicates, unif sametime has most deviations
compared to the original ACF.

B. QQ Plots

The second test is Q-Q or QQ plots (“Q” stands for
quantile). It is a statistical technique in which quantiles of
two probability distributions are plotted against each other. The
points lie close to a 45 degree reference line if they are similar
to each other. So ideally we would like frame size points of
estimated traffic models to be as close to the reference line as
possible. These plots are shown in Figure 3 for Transporter2.
The plots suggest that our model Hier 2Par avg and the
unif sametime model proposed by Dai et al. [1] are very
similar and represent the original data almost accurately. The
QQ plots for SONY demo follow a similar pattern. The plots
suggest that the estimated traffic from our models conforms
with the distribution of the original traffic.

TABLE I
OVERFLOW DATA LOSS VALUES FOR FIVE MODELS VS ORIGINAL TRAFFIC.
FOR CIF, OUR MODELS Hier 2Par avg AND Hier 2Par weigh HAVE DATA

LOSS VALUES CLOSEST TO ORIGINAL TRAFFIC, WHEREAS FOR HD
SEQUENCE OUR OTHER MODEL Hier 1Par PERFORMS BEST

Traffic type Drain rate d

r̄ 1.5r̄ 2r̄ 2.5r̄ 3r̄

SONY demo CIF

Original 0.261 0.122 0.071 0.041 0.023
Hier-1Par 0.284 0.150 0.091 0.061 0.042

unif-sametime [1] 0.248 0.148 0.099 0.069 0.048
Hier-2Par-avg 0.271 0.144 0.089 0.061 0.042
unif-difftime 0.268 0.148 0.093 0.063 0.043

Hier-2Par-weigh 0.270 0.144 0.090 0.061 0.042

Transporter2 1080p HD

Original 0.1891 0.0684 0.0270 0.0115 0.0052
Hier-1Par 0.1917 0.0638 0.0261 0.0117 0.0050

unif-sametime [1] 0.1642 0.0593 0.0269 0.0124 0.0054
Hier-2Par-avg 0.1819 0.0586 0.0246 0.0113 0.0050
unif-difftime 0.1855 0.0647 0.0270 0.0119 0.0051

Hier-2Par-weigh 0.1824 0.0592 0.0248 0.0114 0.0050

C. Buffer overflows

The third measure we have used is the buffer overflow
test which verifies whether the models preserve the temporal
information of the original traffic. We employed leaky-bucket
simulation as a test [5] and used the simulation steps described
in [24]. The test consists of sending traffic over a buffer with
a capacity B at a drain rate d, which is usually varied as
multiples of mean traffic rate r̄ [1]. Buffer overflow data
loss is calculated and plotted as a function of drain rates.
The data loss numbers give a clearer picture than the plots,
hence we have shown values in Table I for different drain
rates. It was recommended in [24] that B = 192 kB for
H.264 CIF videos. Please note that 1080p HD video requires
larger buffer sizes than CIF videos. The values in Table I
indicate that Hier 2Par weigh and Hier 2Par avg have data
loss values closest to the original traffic and the unif sametime
model proposed by Dai et al. [1] has the most deviation. This
indicates that our models preserve the temporal information of
original traffic better than the model proposed by Dai et al. [1].
For each simulation we run many independent replications
(N ), until the 95% confidence interval (CI) value is less than
10% of the corresponding sample mean. For cases shown here
N = 96.

We also calculate the relative error between the data loss of
the original traffic and the estimated traffic generated by the
models. Error e is the ratio of overflow data loss difference
between original traffic and estimated traffic to that of the
original data loss. We calculate e for all models and present
values in Figure 4 where they are plotted as a function of the
different buffer capacities. We have covered a wide range of
buffer capacities, such as 50 ms to 1.5 s. For drain rate d =
2r̄, we plot the error bars for the 95% CI values obtained for
N = 2000. The results from Figure 4 indicate that our models
Hier 2Par weigh and Hier 2Par avg have the lowest relative
error value for CIF sequences, whereas the unif sametime
model proposed by Dai et al. [1] has highest relative error



(a) SONY demo CIF

(b) Transporter2 1080p HD

Fig. 4. Relative error plots for five models for drain rate d = 2r̄. (a) For
CIF our models Hier 2Par avg and Hier 2Par weigh have lowest relative
error. (b) for HD our model Hier 1Par has lowest relative error.

values. For the HD sequence, our model Hier 1Par and the
variation model unif difftime have the lowest relative errors.

VI. CONCLUSION

In this paper we proposed different traffic models
which exploited the hierarchical prediction structures inher-
ent in H.264. Our investigations indicate that our mod-
els Hier 2Par weigh, Hier 2Par avg, and Hier 1Par capture
traffic autocorrelation characteristics more accurately than
the model proposed by Dai et al [1], whereas the QQ
plots are similar. Also, our models give favorable accuracy
of buffer overflow probability for many scenarios; whereby
our Hier 1Par model performs particularly well for HD se-
quences and our Hier 2Par weigh model for CIF sequences.
We are investigating these emerging different accuracies for
different video resolutions in ongoing research. Currently we
are working on extending this model to scalable and multiview
traffic.
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