
SFrWF: Segmented Fractional Wavelet Filter Based
Dwt For Low Memory Image Coders

Mohd Tausif 1, Ekram Khan1, Mohd Hasan1and Martin Reisslein2

1Department of Electronics Engineering, A. M. U., Aligarh, India
mohdtausif32@gmail.com, ekhan67@gmail.com, mohd.hasan@amu.ac.in

2Schools of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, USA
reisslein@asu.edu

Abstract— The Discrete Wavelet Transform (DWT) is
extensively used for image coding due to its excellent energy
compaction property and its ability to simultaneously analyze
images in space-frequency domains. However, conventional
methods of computing the DWT coefficients of an image require
large amounts of memory, thus making them unsuitable for
memory-constraint low-cost portable devices. In this paper we
propose a novel low memory approach named Segmented
Fractional Wavelet Filter SFrWF to compute the DWT of high
resolution images on low-memory devices. Evaluation results
show that the SFrWF requires less than 10 kB of RAM for a
gray-scale image of size 2048×2048 thus making the SFrWF
suitable for low-cost visual sensor nodes.

Keywords— Discrete Wavelet Transform, Fractional Wavelet
Filter, low memory, visual sensor nodes.

I. INTRODUCTION

Most modern electronic gadgets, such as mobile-phones
and personal digital assistants (PDAs), have built-in
infrastructure to capture and share images wirelessly. A visual
sensor is a wireless sensor node equipped with a camera. A
Visual Sensor Network (VSN) is a network of visual sensors.
VSNs are widely used for wildlife monitoring, vehicle traffic
monitoring, and tracking objects of interest [1]-[5]. In most
such applications, the deployment of large numbers of sensor
nodes necessitates the use of low-cost visual sensors. The
available random access memory (RAM) of most of the low-
cost sensor nodes is only of the order of 10 kB [1]. Also, hand-
held devices are mass market consumer products, and so their
cost should be as low as possible. In order to maintain their
low cost, the built-in RAM of these devices is generally kept
small [6].

Furthermore, since the bandwidth of wireless links is
limited, the captured images must be compressed, before their
transmission [7]. An image coder mainly consists of a
transform stage (for energy compaction) and coding stage (to
quantize and encode the transformed coefficients). The
transform and coding algorithms chosen in an image coder
must satisfy the memory constraint of low-cost visual sensors.
In this work we concentrate on the low-memory Discrete
Wavelet Transform (DWT).

In order to facilitate transmission of images over band-
limited wireless networks (or Internet), the transformed
coefficients need to be coded using efficient image coding

algorithm. The total memory requirement of an image coder
will then be the larger of the required transform and coding
algorithm memories. Various wavelet based image coding
algorithms, such as the Low Memory Block Tree Coder
(LMBTC) [7], Backward Coding of Wavelet Trees (BCWT)
[8], the Wavelet Image two line coder (Wi2l) [9], and the Zero
Memory Set Partitioned Embedded Block Coder (ZM-
SPECK) [10] satisfy the memory-constraint of low cost visual
sensor nodes. ZM-SPECK does not require any memory for its
implementation (except for a few buffers), yet it needs to be
combined with DWT, to design an image coder. In such case,
the transform memory determines the overall codec memory
and therefore the transform memory needs to be reduced to
design a low-memory image coder.

The traditional approaches to compute the DWT require
the whole image to be kept in system memory, which limits
the implementation on memory-constraint devices. Also the
memory requirement of the DWT increases linearly with the
image size. Thus, it would be difficult to implement the DWT
for high-resolution (HR) images [1].

To overcome this limitation, many low-memory
implementations of the DWT have been proposed [6], [11]-
[18], which can be categorized into three groups: line-based
approaches [6], [11], [12], block-based approaches [13], [14],
and strip-based approaches [15]-[18]. In line-based DWT, the
image data is read line by line in a buffer and only the lines
that are necessary to compute DWT coefficients are kept in
the memory. In block-based approaches, the image is first
partitioned into blocks and the wavelet transform is then
applied on these fixed size blocks, rather than on the whole
image. The strip-based DWT, also known as Z-scan DWT is
analogous to line based DWT applied on wide blocks. The
memory requirement of these methods for a typical 512×512
size gray-scale image is approximately 26 kB [1], which is
still more than the available on-board memory of many low-
cost sensor nodes. Recently, the Fractional Wavelet Filter
(FrWF) has been proposed to compute the DWT with much
smaller memory than the previous methods and is
implementable on low cost sensor nodes [1], [19].

Although the FrWF satisfies the memory constraint of
low-cost portable devices and sensor nodes for low resolution
images, for HR images (images of dimensions greater than
1024×1024), the FrWF memory requirements are more than
that available on typical sensor nodes. Since the demands for

2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON)
GLA University, Mathura, Oct 26-28, 2017

978-1-5386-3004-4/17/$31.00 ©2017 IEEE 593

HR images are increasing day-by-day in applications such as
medical imaging and space-borne imaging, there is a need to
develop low-cost sensor nodes for such applications.

In this paper we propose the Segmented Fractional
Wavelet Filter (SFrWF) to compute the DWT coefficients of
an image. Instead of reading the complete image line into a
buffer (as in case of the FrWF), the image lines are partitioned
into segments and then each segment is read separately into
the buffer. In fact, the SFrWF is a specifically designed
combination of a general overlap-add method with the FrWF.
Experimental results show that the SFrWF requires much
smaller memory and can be used to compute the DWT of HR
images using low-cost microcontrollers. To the best of our
knowledge, this is the first attempt on reducing the transform
memory beyond that of FrWF.

The rest of the paper is organized as follows. Brief
overviews of the FrWF and the overlap-add method are
presented in Section II. The proposed SFrWF algorithm is
described in Section III. Experimental results and related
discussions are presented in Section IV. Finally, the paper is
concluded in Section V.

II. BACKGROUND

A. Fractional Wavelet Filter (FrWF)

The FrWF is a low-memory approach to compute the
DWT of an image. In this approach, the original image and the
sub-bands are stored in an external memory card. A vertical
filter area (VFA) is defined which selects the number of rows
equal to the length of the low pass filter (LPF) from the SD-
card. The FrWF uses only three buffers, each capable of
storing N coefficients, for an image of size N×N. Only one row
from the VFA is read into buffer s at a time. All operations
required to calculate the DWT are performed on this line and
the intermediate results are stored into two different buffers,
namely LL_HL and LH_HH. For a gray-scale image, the
memory requirement of FrWF using floating point arithmetic
for ‘lev’ levels of wavelet transform is given by:

‘ (1)

 For further details on the FrWF, readers are referred to [1].

B. Overlap-add Method
The overlap-add method is a technique to compute the

convolution of signals by partitioning the signals into different
parts [20]. Although the overlap-add method has been
developed for speech processing, it can be readily extended to
image processing [21]. To understand the overlap-add method,
let us partition the input signal x of length N into four equal
parts and , each of size L=N/4. The signals

and are convolved separately by a filter of

Fig. 1. Schematic diagram showing the overlap-add method:
Partitions of length L of the original signal are convolved
(denoted by symbol) with a filter of length M.

length M resulting in outputs (of length N+M-1), , ,
and (each of length L+M-1), respectively. The overlap-add
method, as depicted in Fig. 1, ensures the linearity property of
convolution, i.e. = = (+ + +) =

+ + + . From Fig. 1 it is clear that when the highlighted
terms of , , are overlapped and added together, it
gives the same result as . The highlighted terms are basically
the overlapped and added terms. The last M-1 terms of ,

and are added consecutively to the first M-1 terms of ,
and respectively. The resulting andd when

concatenated together would give This property of
convolution is utilized in the proposed SFrWF.

III. SEGMENTED FRACTIONAL WAVELET FILTER

The SFrWF is a novel approach to further reduce the
memory requirement of the FrWF. The SFrWF partitions each
image line into multiple (k, k 2) segments and applies the
FrWF to each segment. The segments are combined with the
overlap-add method. The proposed SFrWF technique uses
nine line buffers: an input buffer of dimension 1×

qqqqqqqqqq
(for an

image of size × , whereby each line is partitioned into k
segments); four buffers , and whereby each
stores

)
 filtered coefficients, where = length of filter;

and four intermediate (temporary) buffers , , and
, each of dimension

p y)
. In addition, the SFrWF

requires one buffer to hold the convolution result (L or H).
These nine line buffers and the single element buffer consume
system memory. In order to explain the logic of the SFrWF,
let us consider k = 2 segments, (though it can be generalized to

594

any value of k). Further, let us focus on computing the DWT
coefficients for one decomposition level. The original image
and the final sub-bands , , , and , (each of
dimension ×) are assumed to be stored on an external secure
digital (SD) card. In order to apply the FrWF to each segment,
a vertical area (VA) containing the number of rows equal to
the number of coefficients in the low pass filter (LPF) is
selected. A VA includes the number of columns equal to the
segment size, making the dimensions of the VA equal to M× .

While calculating the DWT, at any given time only one
row from the VA is read into the input buffer and filtered,
(according to the steps given in Table I) to obtain the
coefficients. Prior to filtering, the input data (of the first
segment) is symmetrically extended on the left-hand side. The
extended signal is then jointly filtered and down-sampled. For
instance, for a low-pass filter of length M whose impulse
response is centered at location zero, we sum over the index m
= -(M-1)/2 to m = (M-1)/2 to compute the convolution:

 (2)

This abbreviated representation of the convolution operation
conv(s, , 2) is employed in Line 6 of Table I and
analogously for the high-pass filter in Line 9 of Table I. The
low-pass filtered coefficients are then multiplied by a
particular tap-gain of low-pass and high-pass filters and are
stored in the and buffers, respectively. A similar
process is applied to the high-pass filtered coefficients (output
of conv(s, , 2 1), where denotes high pass filter) which
are stored in the and buffers, respectively. The VA is
then slided horizontally to cover the columns of the next
segment of the same rows, and the new VA is then processed
similarly. Note that the pre-filtering symmetric extension will
be applied to data belonging to the first (left-side extension)
and the last (right-side extension) segments only. After
covering one set of rows in all segments, the VA is moved
down by two lines to achieve vertical downsampling by a
factor of two.

The steps involved in implementing the SFrWF for k = 2
segments are summarized in Table I. From the implementation
point of view, the buffer contents are transferred to the SD-
card as follows. All the coefficients of the buffer (updated
coefficients of first segment), except the last (highest indexed)
four (; where is the length of LPF, =9 here)
elements, are transferred to the SD-card, whereas remaining
four coefficients of (denoted by) are transferred to
buffer (Line 12, Table I), thereby emptying the buffer
to be used for processing of the next updated by adding with
the corresponding elements of (Line 18, Table I). Next,
the contents of the buffer are concatenated with the
previously stored data on the SD-card. The process is repeated
for each segmented VA of the same rows, except the last
segmented VA, for which the entire contents of are
concatenated on the SD-card. After repeating the process for
all VAs, the sub-band is obtained. The same procedure is
executed for the intermediate buffers , , and to

TABLE I: STEPS OF PROPOSED SFrWF, illustrated for k =2 segments

1. For i = 0, 1, 2,…, N/2-1;
2. Initialize temporary buffers , , and to zero
3. For j = -4, -3, …, 4: // for 9 tap filter
4. Read first half of image line 2i + j from SD-card into s
5. For = 0, 1,…, N/4-1.
6. = conv(s, , 2)
7. + = // update

8. + = // update

9. = conv(s, , 2 1)
10. + = // update
11. + = · // update

12. // highest indexed four coeffic. of LLt

13. ; ;
14. Write remaining coeffic. of , , and buffers as

coeffic. of , and to SD-card; clear buffers;
15. For j = -4, -3, …, 4:
16. Read second half off image line 2i+ j from SD-card into s
17. Repeat steps 5-11
18. + = // lowest indexed four coeffic. of LLt

19. + = ; + = ; + ====

20. Concatenate coefficients of , , and buffers with
previously stored coefficients of the corresponding lines of ,

and respectively, on SD-card

obtain the sub-bands , , and , respectively.

For each subsequent decomposition level, the steps in
Table I can be repeatedly applied on the resulting sub-band
of the previous decomposition level.

A. Memory and Complexity analysis of SFrWF
The memory requirement of the SFrWF depends on the

number of elements and the size of each element stored in the
nine buffers. The coefficients of input buffer will be of one
byte each (unsigned integer as they are directly read from the
image) and the coefficients of the remaining eight buffers will
be of four bytes each (to store real numbers obtained after
convolution). Thus, the SFrWF memory requirement are:

Bytes (3)

Where first term bytes is the memory size of buffer plus
the) components of the four temporary line buffers;
whereas 8() bytes of the second term are due to buffers

, and and the remaining 4() bytes of the
second term are for the four temporary line buffers. Note that
the same buffers may be used for computing higher DWT
levels.

Following the steps in [19], the computational complexity
of SFrWF in terms of number of additions and multiplications
is:

595

TABLE II: MEMORY REQUIREMENT AND COMPUTATIONAL COMPLEXITY OF DWT, FrWF, AND SFrWF (for different numbers of segments k)

Transform (k)
Memory (kB) Complexity (seconds)

512×512
(Image Size)

1024×1024
(Image Size)

2048×2048
(Image Size)

512×512
(Image Size)

1024×1024
(Image Size)

2048×2048
(Image Size)

DWT 2097.152 8388.608 37748.736 0.441 1.504 4.679

FrWF 4.608 9.216 18.432 0.800 1.820 5.396

SFrWF (2) 2.400 4.704 9.312 1.497 3.251 7.290

SFrWF (4) 1.248 2.400 4.704 3.119 6.371 13.583

SFrWF (8) 0.672 1.248 2.400 5.785 11.597 23.781

+ (4)

Where and represent the time required for computing
one addition and one multiplication, respectively.

IV. RESULTS AND DISCUSSION
In this section the memory requirement and

computational complexity (execution time in seconds) of the
proposed SFrWF are compared with the FrWF and DWT in
Table II. We report averages over twenty-five popular gray-
scale test images of varying resolution obtained from the
Waterloo Repertoire (http://links.uwaterloo.ca) and the
standard image database (http://sipi.usc.edu/database). All
the algorithms are implemented using MATLAB 7.0 and are
executed on a Windows 8.1 Netbook with Intel atom CPU Z
3735F @ 1.33 GHz with 2 GB RAM and 32 GB MMC
card. We observe from Table II that the SFrWF consumes
much less memory than the FrWF. The SFrWF memory
consumption can be further reduced by increasing the
number of segments. Table II indicates that for an image of
size 2048×2048, the FrWF consumes about 18.4 kB of
memory, whereas the SFrWF requires only 4.704 kB and
2.400 kB of memory for k = 4 and k = 8, respectively.

Moreover, Table II indicates that the FrWF and SFrWF
require more time than the conventional DWT for
computing the transform coefficients. This is because the
FrWF requires 2.89 times more add operations and 3.25
times more multiplication operations than the DWT [19].
The SFrWF is based on the FrWF concepts; however, due to
the overlap-add process, the SFrWF uses more addition
operations than the FrWF, which leads to a complexity
increase. The SFrWF complexity increases linearly with the
number of segments ‘k’ due to the additional overlap and
add operations. Thus, the SFrWF presents a trade-off
between memory and time complexity, as shown in Fig. 2.

Furthermore, the SFrWF can be readily extended to
images of higher resolution. For example, for an image of
size 8192×8192, the SFrWF would require only 4.704 kB
and 2.400 kB of RAM for k = 16 and k = 32, respectively
(from (3)), whereas the DWT and FrWF would require

0

20

40

60

0

5

10

0 4 8 12 16 20 24 28 32 C
om

pu
ta

tio
na

l t
im

e
in

se

c

M
em

or
y

in
 k

B
number of segments (k)

Memory SFrWF Memory FrWF
Time SFrWF Time FrWF

Fig. 2. Memory-computational complexity (time) trade-off of FrWF and
SFrWF for image size 1024×1024: SFrWF enables flexible memory
requirement vs computation time trade-off.

536.87 MB and 73.728 kB of RAM, respectively. Note that
the SFrWF (with any value of k) when combined with any
coding algorithm, such as LMBTC [7] or ZM-SPECK [10],
gives exactly the same reconstructed image quality as using
the same coding algorithm with the FrWF or conventional
DWT.

V. CONCLUSION

In this paper the Segmented Fractional Wavelet Filter
(SFrWF) is proposed to drastically reduce the memory
requirements for computing the DWT. The SFrWF applies
the FrWF on segmented image lines and then combines
filtered segments using an overlap-add process.
Experimental results demonstrate that the SFrWF can be
used for computing the DWT of high-resolution images
even on low-cost visual sensors and memory-constrained
hand-held portable devices. In future research we aim to
reduce the computational complexity of the SFrWF without
increasing its memory requirements.

ACKNOWLEDGMENT

This work was supported in part by a grant from the
Visvesvaraya PhD Scheme, Department of Electronics and
Information Technology (DeitY), Government of India.

596

REFERENCES

[1] S. Rein and M. Reisslein, “Low-memory wavelet transforms for
wireless sensor networks: A tutorial,” IEEE Communications
Surveys and Tutorials, vol. 13, no. 2, pp. 291–307, Second Quarter
2011.

[2] X. Liu, D. Zhai, J. Zhou, X. Zhang, D. Zhao, and W. Gao,
“Compressive sampling-based image coding for resource-deficient
visual communication,” IEEE Trans. on Image Processing, vol. 25,
no. 6, pp. 2844-2855, June 2016.

[3] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “Wireless
multimedia sensor networks: Applications and testbeds,” Proc.
IEEE, vol. 96, no. 10, pp. 1588–1605, October 2008.

[4] T. Melodia and I. F. Akyildiz, “Research challenges for wireless
multimedia sensor networks,” in Distributed Video Sensor
Networks. London, U.K.: Springer, 2011, pp. 233–246.

[5] O. M. L. Granado, M. O. Martínez-Rach, P. P. Peral, J. O. Gil, and
M. P. Malumbres, “Rate control algorithms for non-
embedded wavelet-based image coding,” J. Signal Process. Syst.,
vol. 68, no. 2, pp. 203–216, August 2012.

[6] C. Chrysafis and A. Ortega, “Line-based, reduced memory, wavelet
image compression,” IEEE Trans. Image Proc., vol. 9, no. 3, pp.
378–389, March 2000.

[7] M. Tausif, N. Kidwai, E. Khan and M. Reisslein, “FrWF-based
LMBTC: Memory-efficient image coding for visual sensors,” IEEE
Sensors Journal, vol. 15, no. 11, pp. 6218-6228, November 2015.

[8] J. Guo, S. Mitra, B. Nutter, and T. Karp, “A fast and low
complexity image codec based on backward coding of wavelet
trees,” in Proc. Data Compress. Conf. (DCC), pp. 292–301, March
2006.

[9] S. Rein and M. Reisslein, “Scalable line-based wavelet image
coding in Wireless Sensor Networks,” Journal of Visual
Communication and Image Representation, vol. 40, pp. 418-431,
July 2016.

[10] N. R. Kidwai, E. Khan and M. Reisslein, “ZM-SPECK: A fast and
memoryless image coder for multimedia sensor networks,” IEEE
Sensors Journal, vol.16, no. 8, pp. 2575-2587, April 2016.

[11] J. Oliver and M. Malumbres, “On the design of fast wavelet
transform algorithms with low memory requirements,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
18, no. 2, pp. 237–248, February 2008.

[12] L. Ye, J. Guo, B. Nutter, and S. Mitra., "Low-memory-usage image
coding with line-based wavelet transform.", SPIE Journal of
Optical Engineering, vol. 50, no. 2, pp. 027005-1-027005-11,
February 2011.

[13] C.-H. Yang, J.-C. Wang, J.-F. Wang, and C.-W. Chang, “A block
based architecture for lifting scheme discrete wavelet transform,”
IEICE Trans. Fundamentals, vol. E90-A, no. 5, pp. 1062–1071,
May 2007.

[14] Y. Bao and C.-C. J. Kuo, “Design of wavelet-based image coder in
memory-constrained environment,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 11, no. 5, pp. 642–650,
May 2001.

[15] L. W. Chew, W. C. Chia, L. M. Ang, and K. P. Seng, "Very low
memory wavelet compression architecture using strip-based
processing for implementation in wireless sensor networks,"
EURASIP Journal on Embedded Systems, vol. 2009, no. 479281,
pp. 1-16, December 2009.

[16] L. W. Chew, W. C. Chia, L. Ang, and K. P. Seng. "Low-memory
video compression architecture using strip-based processing for
implementation in wireless multimedia sensor networks,” Int.
Journal of Sensor Networks, vol. 11, no. 1, pp. 33-47, January
2012.

[17] W. C. Chia, L. W. Chew, L. Ang, and K. P. Seng, "Low memory
image stitching and compression for WMSN using strip-based
processing," Int. Journal of Sensor Networks, vol. 11, no. 1, pp. 22-
32, January 2012.

[18] L. Ye and Z. Hou, “Memory efficient multilevel discrete wavelet
transform schemes for JPEG 2000,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 25, no. 11, pp. 1773-1785,
November 2015.

[19] S. Rein, and M. Reisslein, "Performance evaluation of the
fractional wavelet filter: A low-memory image wavelet transform
for multimedia sensor networks," Ad Hoc Networks, vol. 9, no.4,
pp. 482-496, June 2011.

[20] J. G. Proakis and D. G. Manolakis, Digital Signal Processing
Principles, Algorithms and Applications, 3rd ed., Prentice-Hall,
1996.

[21] J. S. Lim, Two-dimensional Signal and Image Processing,
Englewood Cliffs, NJ, Prentice Hall, 1990.

597

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

