
564 IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 7, JULY 2006

Shortest Path Routing in Optical WDM Ring
Networks under Multicast Traffic

Michael Scheutzow, Patrick Seeling, Martin Maier, and Martin Reisslein

Abstract— We present an analytical model to investigate the
mean hop distance of shortest path routing bidirectional optical
WDM ring networks not only for multicast traffic with arbitrary
fanout but also for unicast and broadcast traffic.

Index Terms— Mean hop distance, multicasting, optical ring
network, shortest path routing, wavelength division multiplexing.

I. INTRODUCTION

OPTICAL bidirectional rings typically deploy shortest
path routing in order to minimize the number of required

hops and to maximize thereby the number of simultaneous
transmissions and network capacity by means of spatial reuse
of bandwidth resources, as done for instance in IEEE 802.17
Resilient Packet Ring (RPR) [1]. In this paper, we analyze
the mean hop distance of shortest path routing in optical
bidirectional wavelength division multiplexing (WDM) rings
under uniform multicast as well as unicast and broadcast
traffic. We note that [2] does not consider shortest path routing,
but a one-copy transmission strategy. This one-copy strategy
sends a single multicast packet copy on a wavelength and
incurs a larger hop distance than shortest path routing.

II. WDM RING NETWORK

We consider a bidirectional WDM ring network with the
set of wavelength channels λ ∈ {1, 2, . . . ,Λ} on the clock-
wise fiber ring and the same set λ ∈ {1, 2, . . . ,Λ} on the
counterclockwise fiber ring. The network interconnects N
nodes, which we index without loss of generality sequentially
in the clockwise direction as n = 1, 2, . . . , N . We consider
node structures where each node (i) can transmit on any
wavelength, and (ii) receive on one (home) wavelength using
a single fixed-tuned receiver (FR), whereby the nodes n =
λ + k · Λ, k = 0, 1, . . . , (η − 1) with η := N/Λ (which we
assume to be an integer) share the same home wavelength λ.

III. ANALYSIS

A. Traffic Model

We consider uniform traffic with the number F of destina-
tion nodes for a given packet distributed according to
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µl = P (F = l), l = 1, 2, . . . , N − 1. (1)

B. Evaluation of Hop Distance

The total expected hop distance E[H] required to serve a
given multicast packet is obtained by summing the expected
hop distances E[Hλ] required on the individual wavelengths,

E[H] =
Λ∑

λ=1

E[Hλ]. (2)

We evaluate the expected hop distance E[Hλ] by extending
the notion of the largest gap, detailed in [3] for the single-
wavelength ring network, to the WDM ring as follows. For
each wavelength λ, λ = 1, . . . ,Λ, we define the largest gap
as the largest hop distance between any two successive nodes
(on the perimeter of the ring) in the set of nodes containing the
source node (which we assume without loss of generality to be
homed on wavelength Λ) and all � multicast destination nodes
(out of a total of l multicast destinations) that are homed on
the considered wavelength λ. Let g

(λ)
�,η denote the conditional

expectation of the length of the largest gap (in number of
hops) between the considered set of nodes for a wavelength λ
given that there are � multicast destinations on the wavelength.
Note that with shortest path routing, the multicast packet(s)
on a given wavelength traverse the entire ring, except for
the largest gap, i.e., the hop distance on a wavelength λ

homing � multicast destinations is given by N − g
(λ)
�,η . We

also note that given a total of l multicast destinations, the
conditional probability for � of these destinations being homed
on wavelength λ �= Λ (with Λ homing the source node) is

P (FΛ,λ = �|F = l) =

(
η
�

)(
N−1−η

l−�

)
(
N−1

l

) (3)

and the conditional probability for � destinations being homed
on Λ is given by

P (FΛ,Λ = �|F = l) =

(
η−1

�

)(
N−η
l−�

)
(
N−1

l

) , (4)

see [2] for details. With these conditional probabilities,

E[Hλ]=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑N−1
l=1 µl

[∑η
�=1 P (FΛ,λ = �|F = l) · (N − g

(λ)
�,η )

]
for λ �= Λ∑N−1

l=1 µl

[∑η−1
�=1 P (FΛ,Λ = �|F = l) · (N − g

(Λ)
�,η )

]
for λ = Λ.

(5)

1) Conditional Expectation g
(Λ)
�,η : We can express the ex-

pected length g
(Λ)
�,η of the largest gap on wavelength Λ of the

WDM ring in terms of the expected length of the largest gap
g(�, η) on a single-wavelength ring analyzed in [3] by observ-
ing that the only difference between the two is that successive
nodes on wavelength Λ in the WDM ring are spaced Λ hops
apart, whereas successive nodes in the single-channel ring are
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one hop apart. Hence, g
(Λ)
�,η = Λ · g(�, η), whereby g(�, η)

is given by Eqn. (16) in [3] as g(�, η) =
∑η−1

k=1 k · q�,η(k)
with q�,η(·) denoting the distribution of the length of the
largest gap and being calculated from the recursion q�,η(k) =
p�,η(k) · ∑k

m=1 q�−1,η−k(m) +
∑k−1

m=1 p�,η(m) · q�−1,η−m(k)
with the initialization q0,η(k) = 1 for k = η and q0,η(k) = 0
for k < η and with p�,η(k) =

(
η−k−1

�−1

)
/
(
η−1

�

)
denoting the

probability that an arbitrary gap has k hops.

2) Evaluation of Conditional Expectation g
(λ)
�,η for wave-

lengths λ �= Λ: The wavelengths λ, λ �= Λ, in the WDM ring
have the additional distinctions from the single-channel ring
that (i) the source node of the multicast is not homed on the
wavelength λ, and (ii) the hop distances from a source node
on wavelength Λ to the multicast destinations on wavelength
λ, λ �= Λ, are not integer multiples of Λ. Instead, the hop
distances are generally λ + jΛ in the clockwise direction and
(j + 1)Λ − λ with j = 0, . . . , η − 1 in the counter clockwise
direction. We employ the following analytical strategy for
evaluating the conditional expectation g

(λ)
�,η of the length of the

largest gap on the wavelengths λ, λ �= Λ. We initially leave
the source node out of consideration and analyze the largest
spacing (in number of hops) between successive multicast
destinations on wavelength λ. We then introduce the source
node and analyze how the placement of the source node
affects the expected lengths of the two largest destination node
spacings and the resultant largest gap. In brief, if the source
node falls outside the largest spacing, then the largest spacing
is equivalent to the largest gap. If the source node falls inside
the largest spacing, it subdivides the spacing and depending
on the size of the subdivisions, one of the subdivisions or
the second largest spacing becomes the largest gap. Formally,
let S1, S2, . . . , S� be random variables denoting the lengths
of the spacings between successive multicast destinations on
wavelengths λ, λ �= Λ, in hops. These random variables take
on values that are integer multiples of Λ and are identically
distributed. Let Smax,1 be a random variable denoting the
length of the largest spacing, i.e., Smax,1 := max{S1, . . . , S�}.
Noting that the spacings of the � multicast destinations among
the η = N/Λ nodes on wavelength λ are equivalent to the gaps
on a single wavelength ring homing η nodes of which � − 1
nodes are multicast destinations and one node is the source
node of the multicast, we have P (Smax,1 = k·Λ) = q�−1,η(k),
whereby q(·) is given in Sec. III-B.1. Let Smax,2 be a random
variable denoting the length of the second largest spacing, i.e.,
Smax,2 := max{{S1, . . . , S�} \ {Smax,1}}. Let r�−1,η denote
the joint distribution of the largest and second largest spacing,
i.e., r�−1,η(k,m) := P (Smax,1 = kΛ, Smax,2 = mΛ), which
we evaluate next and is subsequently used to evaluate the
distribution of the length of the largest gap.

3) Evaluation of Joint Distribution r�−1,η(k,m): We eval-
uate the joint distribution of the largest and second largest
spacing r�−1,η(k,m) for 1 ≤ m ≤ k ≤ η and for � ≥ 2
(the case � = 1 is treated separately at the end of Sec. III-
B.4) by considering the number of possible ways of placing
the multicast destinations on wavelength λ so as to achieve
a largest spacing with kΛ hops and a second largest spacing
with mΛ hops. There are

(
η
�

)
possibilities for selecting the �

destinations out of the η nodes homed on λ. For m < k:

r�−1,η(k,m) =

(# of ways to select � dest. out of η nodes
such that Smax,1=kΛ and Smax,2=mΛ

)
(
η
�

) (6)

=

( η·# of ways to select �−2 dest. out of
η − k − 1 nodes s.t. largest spac. has mΛ hops

)
(
η
�

) (7)

=
η · q�−2,η−k(m) · (η−k−1

�−2

)
(
η
�

) , (8)

where (7) follows by noting that there are η possible positions
for the largest gap. Eqn. (8) follows by noting two points: (A)
The largest gap is bordered by two destination nodes, thus
there are � − 2 nodes left to position after the position of the
largest gap is fixed. There are k + 1 nodes that are inside
or border on the largest gap of kΛ hops, thus there are η −
(k +1) nodes left to position the remaining �− 2 destinations
on. Hence, there are

(
η−k−1

�−2

)
ways for this positioning of

the remaining � − 2 nodes. (B) Merging the endpoints of the
largest gap with kΛ hops into one destination node results in
a ring with η − k nodes on which �− 1 destination nodes are
placed. The event that the largest spacing on this ring with
a total of η − k nodes and � − 1 destination nodes has mΛ
hops is equivalent to the event that the largest gap on a single
wavelength ring with a total of η−k nodes and �−2 multicast
destinations (and one source node) has m hops. This event has
probability q�−2,η−k(m).

For m = k we obtain

r�−1,η(k, k) = q�−1,η(k) −
k−1∑
m=1

r�−1,η(k,m). (9)

To see this note that q�−1,η(k) represents the probability
for the event that the largest spacing has kΛ hops, whereas∑k−1

m=1 r�−1,η(k,m) represents the probability for the event
that the largest spacing has kΛ hops and the second largest
spacing has strictly less than kΛ hops. The difference of the
two probabilities thus represents the probability for the event
that the largest spacing has kΛ hops and the second largest
spacing as kΛ hops.

4) Evaluation of Distribution of Length of Largest Gap:
Now we select independently and uniformly randomly the
sending node of the considered multicast from among the η
nodes on wavelength Λ. The sender subdivides one of the
spacings S1, . . . , S� into two subdivisions. Let G1, . . . , G�+1

be random variables denoting the lengths of the gaps formed
by placing the sender. Note that � − 1 of the formed gaps
are identical to the corresponding spacings. The additional
two gaps add up to the subdivided spacing. Let Gmax be a
random variable denoting the length of the largest gap, i.e.,
Gmax = max{G1, . . . , G�+1}.

For a given wavelength λ �= Λ and number � of multicast
destinations on this wavelength, we denote the distribution of
the length of the largest gap by cγ := P (Gmax = γ), γ =
1, . . . , N−(�−1)Λ. This distribution is used in turn to evaluate
the expected value of the largest gap

g
(λ)
�,η =

N−(�−1)Λ∑
γ=1

γ · cγ . (10)
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Fig. 1. Total expected hop distance E[H] of shortest path routing bidi-
rectional WDM ring with Λ = 4 vs. number of nodes N for unicast,
broadcast, and multicast traffic with different maximum multicast fanout
Fmax ∈ {(N − 1)/4, (N − 1)/2, 3(N − 1)/4}.

For the evaluation of the distribution of the length of the
largest gap we distinguish two scenarios: (A) γ is an integer
multiple of Λ, and (B) γ is not an integer multiple of Λ.

a) Scenario (A): γ is integer multiple of Λ: In scenario
(A), there are exactly three distinct cases that result in the
length of the largest gap of Gmax = γ = jΛ, j ∈ IN.

Case 1: Both the largest and the second largest spacing are
equal to γ = jΛ, i.e., Smax,1 = Smax,2 = γ, which occurs
with probability r�−1,η(j, j).

Case 2: The largest spacing has γ = jΛ hops (Smax,1 = γ),
the second largest spacing has less than γ hops (Smax,2 < γ),
and the sender does not fall into the largest spacing. This
leaves η − j nodes on which the sender may fall, and hence
this event occurs with probability (1−j/η)

∑j−1
k=1 r�−1,η(j, k).

Case 3: The largest spacing has more than γ = jΛ hops
(Smax,1 > γ), the second largest spacing has γ hops (Smax,2 =
γ), and the sender subdivides the largest spacing such that
both subdivisions are shorter than γ hops. This occurs with
probability

∑min(η,2j−1)
k=j+1 {r�−1,η(k, j) · (2j − k)/η}.

Combining all three cases we obtain for scenario (A):

cjΛ = r�−1,η(j, j) +
η − j

η

j−1∑
k=1

r�−1,η(j, k) (11)

+
1

η

min(η,2j−1)∑
k=j+1

{r�−1,η(k, j)(2j − k)} , j = 1, 2, . . . , η − (� − 1).

b) Scenario (B): γ is not an integer multiple of Λ: Due to
the rotational offset of the nodes on wavelength λ, λ �= Λ (on
which we consider the multicast destinations) and wavelength
Λ (on which we consider the sender to be), the feasible values
for γ in scenario (B) are either jΛ + λ or (j + 1)Λ − λ for
some j = 0, 1, . . . , η−1 and there are three different cases to
consider.

1) λ < Λ/2: In this case there is exactly one position for
the sender to achieve the subdivision such that the larger
subdivision has jΛ + λ hops or (j + 1)Λ−λ hops. The
sender falls on this one position with probability 1/η.
Hence,

cjΛ+λ =
1
η

min(η−�+1, 2j)∑
k=j+1

j∑
m=1

r�−1,η(k,m), (12)

c(j+1)Λ−λ =
1
η

min(η−�+1, 2j+1)∑
k=j+1

j∑
m=1

r�−1,η(k,m). (13)

2) λ > Λ/2: In this case there is also exactly one position
for the sender to achieve the desired subdivision, i.e.,

cjΛ+λ =
1
η

min(η−�+1, 2j+1)∑
k=j+1

j∑
m=1

r�−1,η(k,m), (14)

c(j+1)Λ−λ =
1
η

min(η−�+1, 2j)∑
k=j+1

j∑
m=1

r�−1,η(k,m). (15)

3) λ = Λ/2: In this case there are two possible positions
to achieve a subdivision such that the larger subdivision
has γ = jΛ + Λ/2 hops, provided the largest spacing
has at most 2jΛ hops. Thus,

cjΛ+Λ/2 =
2
η

2j∑
k=j+1

j∑
m=1

r�−1,η(k,m)

+
1
η

j∑
m=1

r�−1,η(2j + 1,m). (16)

For the special case of � = 1 multicast destination on a
wavelength channel we obtain

g
(λ)
1,η =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3
4N for λ �= Λ, η even
3
4N − λ

η + Λ
4η for λ �= Λ, η odd, λ ≤ Λ/2

3
4N + λ

η − 3Λ
4η for λ �= Λ, η odd, λ ≥ Λ/2

3
4N − Λ

4 for λ = Λ, η odd
3
4N − N

4(η−1) for λ = Λ, η even.

(17)

IV. RESULTS

Fig. 1 depicts the total expected hop distance E[H] of a
shortest path routing bidirectional WDM ring deploying Λ = 4
wavelengths in each direction vs. the number of nodes N .

We consider uniform unicast traffic (µ1 = 1 and µl = 0,
2 ≤ l ≤ N −1), broadcast traffic (µN−1 = 1 and µl = 0, 1 ≤
l ≤ N−2), and multicast traffic with three different maximum
multicast fanouts Fmax ∈ {(N−1)/4, (N−1)/2, 3(N−1)/4},
where the fanout of a multicast packet is uniformly distributed
over the interval [2, Fmax]. For unicast and broadcast traffic
we obtain the minimum and maximum E[H], respectively. For
multicast traffic, E[H] increases for increasing Fmax. For all
types of traffic, E[H] increases for increasing N .

V. CONCLUSIONS

The presented analytical model allows the computation of
the mean hop distance of shortest path routing bidirectional
WDM ring networks for a wide range of unicast, multicast,
and broadcast traffic scenarios. The model is important to
study WDM upgrades of currently single-channel optical
rings, e.g., RPR.
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