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With the increasing popularity
of networked multimedia applica-
tions, video data is expected to
account for a large portion of the
traffic in the Internet of the future
and in next-generation wireless
systems. For transport over net-
works, video is typically encoded
(i.e., compressed) to reduce band-
width requirements. Even com-
pressed video, however, requires
large bandwidths on the order of
100 kb/s or Mb/s. In addition,
compressed video streams typical-
ly exhibit highly variable bit rates
(VBRs). This, in conjunction with
the stringent quality of service
(QoS) requirements (loss and
delay) of video traffic, makes the
transport of video traffic over
communication networks a chal-
lenging problem. As a conse-
quence, in the last decade, net-
working research on all aspects of
video transport has exploded. The
characteristics of video traffic,
video traffic modeling, as well as
protocols and mechanisms for the
efficient transport of video streams
have received a great deal of inter-
est among networking researchers
and network operators.

Video traces, which give the
sizes of the individual video
frames in a video sequence,
have been emerging as conve-
nient video characterizations for
networking studies. This article
introduces video traces and out-
lines how they characterize
encoded video and can be used
in evaluating multimedia net-
working mechanisms.

Overview of digital
video and video coding

Digital video consists of video
frames (images) that are displayed
at a prescribed frame rate; a

video frame rate of 30 frames/s is used by
the National Television Standards Com-
mittee (NTSC). The reciprocal of the
frame rate gives the display time of a
frame on the screen and is commonly
referred to as frame period, denoted by
T; note that for NTSC video
T = 1/30 s = 33.333 ms. Each individual
video frame consists of picture elements
(usually referred to as pixels or pels). The
frame format specifies the size of the
individual frames in terms of pixels. The
ITU-R/CCIR-601 format (the common TV
format) has 720 × 480 pixels (i.e., 720
pixels in the horizontal direction and 480
pixels in the vertical direction), while the
common intermediate format (CIF) format
has 352 × 288 pixels, and the quarter CIF
(QCIF) format has 176 × 144 pixels; the
CIF and QCIF formats are typically con-
sidered in network-related studies. Each
pixel is represented by three components
(samples): the luminance component (Y)
and the two chrominance components
hue (U) and intensity (V), whereby each
sample is typically quantized into 8 b.
The resulting bit rates are very large. For
instance, in a monochrome (black-and-
white) CIF video, there are 352 × 288 Y
samples in each video frame, resulting in
a frame size of 101,376 B for an uncom-
pressed video frame and a corresponding
bit rate of 101,376 × 8 b/33.333 ms =
24.3 Mb/s, which underscores the need
for compression.

Most commercial video codecs, such
as RealVideo and WindowsMedia, are
derived from the MPEG and H.26x
video compression (coding) standards.
The two main principles in MPEG and
H.26x video coding are

• intraframe coding using the dis-
crete cosine transform (DCT)

• interframe coding using motion
estimation and compensation between
successive video frames.
In intraframe coding each video frame
is divided into blocks of 8 × 8 samples.
Each block is transformed using the
DCT into a block of 8 × 8 transform
coefficients, which represent the spatial
frequency components in the original
block. Typically, the video frame infor-
mation is concentrated in a few low
spatial frequency components, which
allows for a more compact representa-
tion of the video frame. The transform
coefficients are then quantized, where-
by the level of coarseness of the quan-
tization is controlled by setting a quan-
tization step size (quantization scale). A
larger quantization scale gives a coarser
quantization, resulting in a smaller size
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(in bits) of the encoded video frame
(and, thus, more compression) but also
in a coarser, lower quality video. With
constant bit rate (CBR) encoding, the
quantization scale is dynamically
adjusted to keep the bit rate at a pre-
scribed level. With VBR encoding, on
the other hand, the quantization scale
is kept constant, resulting in essentially
constant video quality but highly VBRs,
as discussed shortly. Since VBR encod-
ing provides consistent video quality
and can achieve more efficient com-
pression, it is the focus of much of the
multimedia networking research and is
also the focus of this article.

For interframe coding, MPEG intro-
duced the frame types intracoded (I),

intercoded (P), and bidirectional coded
(B). These different frame types are orga-
nized into so-called groups of pictures
(GoPs). More specifically, the sequence
of frames from a given I frame up to and
including the frame preceding the next I
frame is referred to as one GoP. The pat-
tern of I, P, and B frames that make up a
GoP is commonly referred to as GoP pat-
tern or GoP structure, as illustrated for a
typical GoP pattern with three P frames
in a GoP and two B frames before and
after each P frame in Fig. 1. The different
frame types are encoded as follows. In
an I frame, all blocks are intracoded as
outlined above. P frames, are intercoded
(as explained shortly) with reference to
the preceding I or P frame, i.e., the pre-
ceding I or P frame serves for forward
prediction as illustrated by the solid
arrows in Fig. 1. B frames, on the other
hand, are intercoded with reference to
the preceding I or P frame, which serves
for forward prediction, and the succeed-
ing I or P frame, which serves for back-
ward prediction, as illustrated by the
dashed arrows in Fig. 1.

To intercode a frame, for each block
the best matching block in the reference
frame(s) is determined and identified by
a motion vector. This process is com-
monly referred to as motion estimation.
Any (typically small) difference between
the block to be encoded and the best
matching block is transformed using the
DCT and quantized as outlined above.
This process is commonly referred to as
motion compensation. If a good match
can not be found in the reference
frame(s), the block is intracoded.

Different types of video
characterization for network
performance evaluation

Generally, there are three different
ways to characterize encoded video for
the purpose of network performance
evaluation:

• video bit stream
• video traffic trace
• video traffic model.

The video bit stream is the actual output
of the video encoding and contains the
complete video information. One advan-
tage of the bit stream is that it allows for
networking experiments where the qual-
ity of the video—after suffering losses in
the network—can be visually evaluated.
One limitation of the bit stream is that it
is very large in size: up to several giga-
bytes for one hour of compressed video
or several tens of gigabytes for one hour
of uncompressed video. Another limita-
tion of bit streams is that they are usually
proprietary and/or protected by copy-
right. This limits the access of network-
ing researchers to bit streams and also
limits the exchange of bit streams among
research groups.

Video traces are an alternative to bit
streams. While bit streams give the actu-
al bits carrying the video information,
traces only give the number of bits used
for the encoding of the individual video
frames. More specifically, let Xn ,
n = 1, . . . , N, denote the frame size
(number of bits) of the encoded (com-
pressed) video frame n , whereby N
denotes the number of frames in the
video. A video trace typically gives the
frame index (number) n, the frame type
(I, P, or B), and the frame size Xn (and
possibly more detailed information, such
as information about video quality met-
rics) in an ASCII file with one line per
frame, as illustrated in Table 1 for the
first 16 frames of an encoding of Star
Wars Episode IV. Since the video traces
give only the number of bits represent-
ing the video, instead of the actual bits,
there are generally no copyright issues.

Video traffic models strive to capture
the essential properties of the real traffic
in an accurate, computationally efficient,
and preferably mathematically tractable
description, which should also be parsi-
monious, i.e., require only a small num-
ber of parameters. A traffic model is typi-
cally developed based on the statistical
properties of a set of video trace samples
of the real video traffic. The developed
traffic model is verified by comparing
the traffic it generates with the video
traces. If the traffic model is deemed
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Fig. 1  A typical MPEG GoP pattern with references used for predictive coding of P and
B frames
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Table 1.  First 16 lines of a
trace of an encoding of Star
Wars Episode IV with a 12
frame GoP pattern. The trace
excerpt gives the frame sizes
X1, X2, . . . , X16 in bits.

1 I 40,488
2 B 18,200
3 B 18,472
4 P 25,584
5 B 19,640
6 B 19,616
7 P 24,528
8 B 18,512
9 B 18,528

10 P 24,880
11 B 20,448
12 B 20,088
13 I 42,544
14 B 18,376
15 B 17,928
16 P 26,144

Table 2.  Traffic statistics for QCIF videos with N = 108,000
frames encoded with MPEG-4 with fixed quantization scales
corresponding to a high video quality.
Video Title Frame Size Stats GoP Size Stats

Mean CoV Peak/M CoV Peak/M
X̄XX [kB] CoVx Xmax/X̄XX CoVy Ymax/ȲYY

Star Wars Episode IV 2.30 0.61 7.61 0.38 5.05
Silence of the Lambs 1.88 0.77 8.72 0.59  7.37
The Tonight Show 2.74 0.88 7.23 0.71 4.56



sufficiently accurate, it can be used for
the mathematical analysis of networks,
for model-driven simulations, and also
for generating so-called virtual (synthet-
ic) video traces.

Video traffic statistics
Video traffic is typically characterized

with elementary statistics of frame sizes
X n, n = 1, . . . , N . Commonly, the aver-
age (arithmetic mean) of the frame size

X̄ = 1/N ×∑N
n=1 X n ,

the coefficient of variation CoVX ,
defined as the standard deviation of the
frame size normalized by the average
frame size, i.e., CoVX = σX /X̄ with

σ 2
X = 1/(N − 1) ×

N∑

n = 1

[
X n − X̄

]2
,

and the peak-to-mean ratio of the frame
size X max/X̄ , where X max denotes the
size of the largest frame in the trace, are
considered. These frame size statistics are
given in Table 2 for one-hour segments
(N = 108,000) of MPEG-4 encodings of
popular movies and a late-night TV
show. Note that the bit rates correspond-
ing to the frame sizes reported in Table 2
are obtained by dividing the frame sizes
by the frame period, e.g., the mean bit
rate of the Silence of the Lambs video is
X̄ /T = 1.88 kb/33.333 ms = 564 kb/s.
The values for the CoV and the peak-to-
mean ratio of the frame sizes indicate
that the video traffic is highly variable.
For the Silence of the Lambs encoding,
the largest frame is 8.72 times larger than
the average frame size; correspondingly,
the largest (peak) bit rate of the video is
8.72 × 564 kb/s = 4.92 Mb/s. A signifi-

cant part of this variability of the frame
sizes is due to the frame size variations
within one GoP. As illustrated in Table 1,
P frames that are encoded with forward
prediction are typically smaller than the
intracoded I frames; the B frames that are
encoded with forward and backward
prediction in turn are typically smaller
than the P frames.

To remove the frame size variation
within the individual GoPs from consider-
ation and allow the study of the underly-
ing variations in the video traffic, the sizes
of the frames in each GoP are summed
up to obtain the GoP sizes (in bits). Let
Ym, m = 1, . . . , M , denote the size of
the m th GoP in the video, and note that a
video consisting of N frames and encod-
ed with a GoP pattern consisting of 12
frames has M = N /12 GoPs, i.e., each of
the video encodings in Table 2 has
M = 108, 000/12 = 9, 000 GoPs. The
coefficient of variation CoVY and the
peak-to-mean ratios Ymax/Ȳ of the GoP
sizes, defined analogously as for the
frame sizes and reported in Table 2, indi-
cate that the GoP sizes are significantly
less variable than the frame sizes. Never-
theless, there are still quite large varia-
tions in the GoP sizes, as also illustrated
by the plot of the GoP sizes Ym as a func-
tion of the index m in Fig. 2(a). These
variations are largely due to the different
scene contents in the videos. Scenes with
a lot of detail and/or a high level of
motion are less amenable to compression
(encoding) and result, therefore, in larger
GoP sizes. For instance, there is a very
detailed high motion scene at the very
beginning of the movie, and also a
detailed high motion segment from
approximately GoP number 600 to 1,000.

The variability of the video traffic
poses challenges for the allocation of
network resources, such as link buffers
and bandwidth, for video traffic. When
resources are allocated according to peak
bit rate, the network will be underutilized
most of the time. On the other hand,
when resources are allocated according
to average bit rate, the link bandwidth
will be insufficient to accommodate the
video traffic during the periods of higher
than average bit rate traffic, resulting in
large backlogs of traffic in the buffers
preceding the links. This problem is fur-
ther exacerbated by the typical character-
istic of encoded video to have persistent
periods (bursts) of higher than average
bit rate traffic. This persistency of the traf-
fic bursts is related to the scene structure
of the video, since the traffic rate typical-
ly stays within a certain range in each
scene. One way to measure the persis-
tency of the traffic bursts is to plot the
autocorrelation function of the sequence
of GoP sizes Y1, Y2, . . . ,YM , which is
defined for a lag of k GoPs as

ρ(k) =
1

M − k

M − k∑

m = 1

(
Ym − Ȳ

) (
Ym + k − Ȳ

)

σ 2
Y

and is plotted for Star Wars Episode IV
in Fig. 2(b). The slower the autocorrela-
tion function drops off, the stronger the
correlations and the more persistent the
bursts of traffic. The plotted autocorrela-
tion function decays relatively slowly
for a lag of 80 GoPs, which corresponds
to approximately 32 s, the autocorrela-
tion coefficient is still about 0.2. This
indicates fairly significant correlations
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Fig. 2  Characteristics of GoP sizes of Star Wars Episode IV encoding: (a) GoP size as function of the GoP index and (b)
autocorrelation function
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over relatively long time periods, which
exacerbate the problem of backlog
building up during traffic bursts and
possibly leading to buffer overflows and
the loss of video data.

These challenges in transporting
video traffic over communication net-
works, such as the Internet, combined
with the tremendous increase in popu-
larity of multimedia Internet applications
is fueling the development of more and
more sophisticated video traffic manage-
ment mechanisms. These mechanisms
attempt to judiciously exploit network
resources (buffer, bandwidth) as well as
the client buffer and to time the trans-
mission of the video data so as to pro-
vide good video quality with a band-
width only slightly above the average
bit rate. An important component of the
research on traffic mechanisms is the
evaluation of their performance, which
is often done by simulating the opera-
tion of the mechanism with video traces
as described next.

Using video traces for evaluating
networking mechanisms:
Performance metrics

There are three broad areas that
require careful consideration when
using video traces in simulations, namely

• the definition of the video-related
performance metrics

• the generation of the video traffic
work load for the system under study

• the statistically sound estimation of
the performance metrics of interest.

Simulations with video traces can be
used to evaluate conventional network
performance metrics, such as the utiliza-
tion of the networking resources, delay,
and buffer overflow probabilities. In
addition, simulations with video traces
can be used to evaluate performance
metrics that are related to the video, such
as the starvation probability, which gives
some indication of the quality of the
video delivery. The starvation (loss)
probability comes in two main forms.
The frame starvation probability is the
long run fraction of video frames that
miss their decoding (playout) deadline,
i.e., they are not completely delivered to
the receiver by the time the receiver
needs them to start the decoding. The
information-loss probability is the long
run fraction of encoding information
(bits) that misses its decoding (playout)
deadline. The information-loss probabili-
ty has a finer granularity than the frame-
loss probability because a partially deliv-
ered frame is considered as one lost

frame toward the frame-loss probability
(irrespective of how much of the frame
was delivered/ not delivered in time),
whereas the information-loss probability
counts only the fraction of the frame’s
information bits that were not delivered
in time. As an illustrative example, con-
sider the transmission of 10 240-b frames
to a client and suppose only 120 b of the
first frame are delivered on time (and the
other 120 b arrive after the decoding
deadline). Also, suppose the remaining
nine frames are all completely delivered
ahead of their respective decoding dead-
lines. Then the frame-loss probability is
1/10 = 10%, whereas the information-
loss probability is 120/(10 · 240) = 5%. 

Although the frame- and information-
loss probabilities are convenient and
widely used performance metrics for
video networking, they have a number
of limitations. One limitation is that the
loss probabilities ignore the dependen-
cies between the encoded video frames.
Specifically, in an MPEG encoding, the I
frame in a GoP is required to decode all
other P and B frames in the GoP. Thus,
the loss of an I frame affects all the
frames in the GoP. Another shortcoming
is that the loss probabilities provide only
limited insight into the visual video quali-
ty perceived by the user. A smaller loss
probability corresponds in general to a
higher video quality, however, quantify-
ing this relationship is very difficult and
the topic of ongoing research. Overall,
the assessment of the visual quality of
received video after network transport is
a very challenging active research area.
The starvation (loss) probabilities are,
therefore, commonly employed in evalu-
ating the performance of multimedia net-
working mechanisms.

Generating video traffic
workload from traces

When generating the video traffic
workload, there is a range of issues to
consider, from choosing and preparing
the video streams (traces) to running the
actual simulations. The specific simula-
tion approach used in an evaluation
depends to a large degree on the specific
networking scenario and mechanism
under study. For an illustration of a typi-
cal simulation design, we outline the so-
called constant utilization simulation
scenario. This simulation scenario is suit-
able for evaluating the performance of a
multiplexer, scheduler, or similar net-
work system that is fed by several
streams with a specific long run average
utilization level.

The first consideration is typically to
select the videos (titles) and to select
and prepare the corresponding video
traces. It is advisable to select as many
different videos as available in video
trace libraries (as for instance in the
library at <http://trace.eas.asu.edu>)
from the video genre(s) that will be
transported over the network. Let M
denote the number of different videos
selected for a given evaluation study. 

The next step is to select and prepare
the traces for the selected M videos. For
the constant utilization simulation, it is
typically desired that all videos have the
same average bit rate r (in b/s). This
common desired bit rate r is achieved as
follows. For each video, there are typical-
ly traces for encodings with different
quantization scales and correspondingly
different average bit rates available in a
video trace library. First, pick the trace of
the encoding with the average bit rate
X̄ /T that is closest to the desired bit rate
r . Second, multiply each frame size in
the picked video trace by the factor
r/(X̄ /T ).

Next, determine the number of
simultaneous video streams required in
the simulation to achieve the desired
level of system utilization, say a utiliza-
tion level µ. Noting that the long run
average utilization of the system is
given by µ = J · r/C , where C denotes
the capacity of the system (in b/s), we
can solve for the number of required
streams as J = µ · C /r .

Having selected and prepared the
video traces and determined the num-
ber of simultaneous streams to be simu-
lated, we can move on to the actual
simulation of the network mechanism
under study, which proceeds as fol-
lows. For each of the J video streams,
one of the M traces is uniformly ran-
domly selected, i.e., each trace is equally
likely selected with probability 1/M to
satisfy a client request. For each select-
ed trace, a starting (frame) phase is
independently drawn from a discrete
uniform distribution over the N frames
in the trace. The video frames are then
processed according to the networking
mechanism under study from the start-
ing frame onward.

The next question that arises is for
how long, i.e., for how many frames
should the mechanism under study be
simulated? One option is to continue the
simulation for N frames, i.e., for the full
length of the traces. (Note that, due to
the random starting frame, the end of the
traces may be reached before processing
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all N frames. When the end of a trace is
reached the trace is “wrapped around,’’
i.e., the processing continues from the
beginning of the trace.) Once all N
frames have been processed, we immedi-
ately randomly select a new trace and
starting phase into the trace for each of
the J streams. Thus there are always J
streams in progress. Another option is to
not continue the simulation until all N
frames of a trace have been processed
but instead to draw a random indepen-
dent stream duration L j frames (which is
bounded by N ) for each individual
stream j, j = 1, . . . , J . Whenever all L j
frames of a stream j have been
processed, a new trace, starting phase,
and duration L j are randomly drawn for
the stream immediately.

Estimating performance metrics
As with any simulation, a key con-

sideration when simulating a network
mechanism using video traces is the sta-
tistical validity of the obtained results.
Generally, in simulation studies either a
terminating simulation approach or a
steady-state simulation approach is used
to obtain statistically valid results. Both
approaches can be applied to simula-
tions with video traces, as discussed in
the following.

In terminating simulations, several
independent simulation runs are per-
formed and the estimates of the metrics
of interest are obtained by averaging the
metric samples obtained from the indi-
vidual runs. A terminating simulation of
the constant utilization scenario can be
conducted by running several simulations
for a fixed number of video frames, e.g.,
all the N frames in the videos as outlined
above. Each simulation is started with
independently randomly selected traces
and starting phases. Each simulation for a
set of video traces and starting phases
gives one sample of the metrics of inter-
est (e.g., information-loss probability).
The advantage of this terminating simula-
tion approach is that the individual simu-
lation runs are independent, thus, the
classical student t or normal distribution
based statistics can be used to evaluate
the confidence intervals around the
means of the collected samples.

The disadvantage of the terminating
simulation approach is that each simula-
tion run needs to be “warmed up’’ suffi-
ciently to remove the initial transient
(i.e., the metrics of interest are not
observed during the warm-up period but
only after the system has reached its
steady-state operating region). While this

is not a problem for system simulations,
which do not require any warm-up, e.g.,
the simulation of a bufferless multiplexer
for a constant utilization, the warm-up
may be a significant problem for systems
that need warm-up, e.g., buffered multi-
plexers. Determining the sufficiently
long warm-up period for simulations
with video traces is largely an open
research problem. It is, therefore, advis-
able to conservatively warm up the sys-
tem for relatively long periods and to
inspect whether the system has reached
that steady-state operating region before
observing the metrics of interest.

With the steady-state simulation
approach, a single (typically very long)
simulation run is performed, and the met-
rics of interest are typically obtained by
averaging metric samples obtained during
independent observation periods (usually
referred to as batches). A steady-state
simulation with video traces can be con-
ducted by running one long constant uti-
lization simulation. The advantage of the
steady-state simulation is that the warm-
up period is incurred only once. The
challenge of the steady-state simulation of
systems with video traces is that, due to
the correlations in video traffic over long
time periods, the metric estimates of suc-
cessive (nonoverlapping) observation
periods (batches) are typically somewhat
correlated. A simple heuristic to obtain
uncorrelated batches, which are required
to apply the standard normal distribution-
based confidence interval calculation, is
to separate successive observation peri-
ods (batches) such that they are (approxi-
mately) independent. More specifically,
the heuristic is to run the constant utiliza-
tion and to truncate the distribution of the
stream duration at a specific value Lmax
frames. Then, separating successive
batches by at least Lmax frames will
ensure that none of the video streams
that contribute to the traffic load during a
given batch contributes to the traffic load
during the next batch. This ensures that
the successive batches are approximately
independent. This heuristic provides a
simple way to obtain statistically mean-
ingful performance metrics at the expense
of increased simulation duration.

Future directions in
network performance
evaluation with video traces

Ongoing developments of video traces
are focused on providing video traces for
evaluating emerging video services, such
as Internet protocol based (IP) television,
a.k.a. IPTV, and high-definition television

(HDTV) over the Internet. Also, advanced
video traces are being developed that
allow for accurate estimates of the visual
quality of the received video after lossy
network transport.
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