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The Rate Variability-Distortion (VD) Curve
of Encoded Video and Its Impact on

Statistical Multiplexing
Patrick Seeling and Martin Reisslein

Abstract—Encoded video is expected to contribute a signifi-
cant portion of the load on future communication systems and
networks, which often employ statistical multiplexing. In such sys-
tems, the number of video streams that can be supported depends
both on the mean bit rate as well as bit rate variability of the
video streams. At the same time, the utility (revenue) earned from
video streaming depends both on the number of supported video
streams as well as their quality level. In this paper we examine the
interplay between video quality, traffic variability, and utility for
open-loop encoded video. We introduce the rate variability-distor-
tion (VD) curve which relates the bit rate variability to the quality
level of an encoded video. We find that the VD curve generally
exhibits a characteristic “hump” behavior of first increasing,
peaking, and subsequently decreasing variability for increasing
quality. We examine the impact of video content characteristics,
encoding parameters, and traffic smoothing on the VD behavior.
We describe a methodology for assessing (i) the set of the video
streams that can be supported with a statistical quality of service
requirement, and (ii) the utility earned from video streaming over
a link. This methodology is based on the rate-distortion and rate
variability-distortion characteristics of the videos. We find that
the statistical multiplexing gain and the utility as a function of the
video quality level typically exhibit a “hump” similar to the VD
curve.

Index Terms—Network utility, statistical multiplexing, variable
bit rate video, video content, video quality, video streaming, video
traffic.

I. INTRODUCTION

V IDEO streaming is expected to play a dominant role in
future multimedia applications, including in multimedia

applications that are offered over communication systems and
networks. For the transport over communications systems and
networks the video is typically compressed (encoded). Gener-
ally, video can be encoded (i) in an open loop with a fixed quan-
tization scale, which results in fairly consistent video quality
but variable bit rate (VBR) video traffic, or (ii) in a closed loop
by adjusting the quantization scale, which can keep the bit rate
close to a fixed target bit rate but typically results in quality vari-
ations in the video [1]. We note that video can also be encoded
with scalability into multiple layers. Broadly speaking, a given
layer is either encoded with an open loop to give fairly constant
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quality and variable bit rates, or with a closed loop to give a close
to constant bit rate and variable quality. Also, the video can be
encoded with fine granularity scalability, which permits the fine
granular scaling of the video bit rate and quality. In this paper
we focus primarily on nonscalable (single layer) video encoded
with a fixed quantization scale. However, our methodology and
results are also applicable to variable bit rate layers of scalable
encodings.

In order to transport the variable bit rate video traffic at
reasonably high levels of network utilization, the video streams
are typically transported with some sort of statistical transport
scheme, which may occasionally drop (lose) some of the video
traffic. These statistical transport schemes employ statistical
multiplexing, i.e., they exploit the fact that the peaks in the
traffic of the simultaneously ongoing streams do typically
not collude. The number of simultaneous streams that can
be supported by a given network depends on the statistical
characteristics of the video traffic and the tolerable loss rate.
Importantly, the utility (i.e., revenue) earned from streaming
videos over a given network typically not only depends on the
number of simultaneously supported streams, but also their
quality. Clearly, the utility increases by increasing the number
as well as the quality of the streams that can be simultaneously
supported with a given network capacity.

Assessing the utility of a network providing a video streaming
service with statistical multiplexing thus requires the joint con-
sideration of the number of supported streams as well as their
quality levels. Importantly, the number of streams that can be
supported with statistical multiplexing depends on the mean (av-
erage) bit rate as well as the variability of the bit rate. For given
mean bit rates the number of supported streams decreases as the
variability of the traffic increases. Intuitively, with higher vari-
ability it is more likely that colluding traffic peaks exceed the
network capacity and result in losses.

Rate-distortion curves, which have been intensively studied
(see Section II) relate the size (in bit) of an encoded video frame
to its quality and can also be used to relate the average bit rate
of a sequence of video frames to the average video quality.1

Considering mean bit rates and quality levels, however, is in-
sufficient to assess the utility of video streaming with statis-
tical multiplexing since the number of supported streams also
depends critically on the bit rate variability. To the best of our

1Strictly speaking, rate-distortion curves relate bit rate to distortion (whereby
distortion is inversely related to quality), but it is quite common to refer to the
curves relating bit rate to quality as rate-distortion curves and we will follow
this practice in this paper.
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Fig. 1. VD curves for MPEG-4 coded scenes from The Terminator.

Fig. 2. VD curves for MPEG-4 coded scenes from Football.

knowledge the relationship between the bit rate variability and
the average video quality as well as the implications of this re-
lationship on video stream multiplexing have not been system-
atically studied before. In this paper we address these open is-
sues. In particular, we introduce and examine in this paper the
rate variability-distortion (VD) curve which relates the bit rate
variability of an encoded video sequence to its average quality
level and thus facilitates the assessment of the utility of video
streaming with statistical multiplexing. We find that for a va-
riety of transform video coders, the VD curve exhibits a char-
acteristic “hump” behavior, i.e., the bit rate variability first in-
creases, peaks, and subsequently decreases as a function of the
video quality, as illustrated in Figs. 1 and 2 which show the coef-
ficient of variation of the frame sizes (in bit) as a function of the
PSNR video quality for scenes from the movie Terminator and
a video of a football game. We also find that this hump is most
pronounced for low motion video scenes (MC I in the figures,
as detailed shortly) and for long video sequences consisting of
many scenes. We study the impact of the VD behavior on the
statistical multiplexing of video streams and the utility obtained
from a given network capacity. We find that the statistical mul-
tiplexing gain and the utility typically reach a maximum at a
quality level that is in the vicinity of the quality level where the
VD curve peaks. Thus the existence of the hump phenomenon is
of significance for the communication systems and networking

domain, as well as for content providers who have to make a
rate-quality trade-off decision.

This paper is organized as follows. In the following section
we review related work. In Section III we describe the set-up of
our study of the VD characteristics of encoded video and intro-
duce our notations. We present a detailed study of the VD char-
acteristics of open-loop encoded video in Section IV. We first ex-
amine the effects of intra coding and inter coding, as well as the
effects of the different frame types and Group of Picture (GoP)
patterns on the VD characteristics of scenes of different levels of
motion. We then examine the effects of video traffic smoothing
within individual scenes and over full length videos on the VD
characteristics. In Section V we examine piecewise approxima-
tion models which give an estimate of the full VD curve from
a few sample encodings. The impact of the VD characteristics
on the statistical multiplexing of video streams over a buffer-
less link is studied in Section VI. In Section VII we consider the
utility earned from the streaming with statistical multiplexing
over the bufferless link considered in the previous section. Our
main conclusions are summarized in Section VIII.

II. RELATED WORK

Video streaming over networks has received a great deal of at-
tention over past two decades, see for instance [2], [3]. Our study
relates to the following three main lines of research: (i) research
on the rate-distortion (RD) characteristics of encoded video, (ii)
research on the analysis and modeling of video traffic, and (iii)
research on video traffic management mechanisms. Research on
the RD characteristics of encoded video examines the relation-
ship between the (mean) bit rate and the video quality (and en-
coder quantization scale), see [4], [5] for tutorial overview of
this area of research. The two main approaches that have been
employed in RD research are analytical modeling and empirical
modeling. Analytical modeling, such as pursued in [6] attempts
to derive mathematical formulas for the RD behavior in terms
of the statistics of the source video and the properties of the en-
coding mechanism. Empirical modeling, as studied in [7], [8],
strives to approximate the RD curve by interpolating between a
set of sample points. A unified RD analysis framework, which
builds on an analysis of the percentage of zeros in the trans-
formed video frames in conjunction with rate curve modeling is
developed in [9]. The modeled RD characteristics are typically
used to control the mean bit rate of video encoders [10], [11] and
can also be used for allocating mean bit rates to video streams
for network transport [12], [13]. Our study differs from this lit-
erature on the RD characteristics in that we examine the rela-
tionship between the variability of the bit rate on the one hand,
and the video quality (and quantization scale) on the other hand.
In other words, the existing RD studies have focused on the first
order statistic of the video traffic, whereas our focus is on the
second order statistic (which we study in an empirical manner).

The statistical analysis of video traffic and the development
of video traffic models has also received significant interest, see
for instance [14]–[22]. This line of work is primarily focused
on obtaining insights into the statistical properties of the traffic
(including the bit rate variability) of a given video encoding (for
a given, typically fixed quality level or quantization scale) and
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developing analytical models for the observed statistical prop-
erties. In particular, the focus is on finding parsimonious models
that allow for the characterization of video traffic with a small
number of model parameters. In contrast, in this paper we ex-
amine the bit rate variability of the video as a function of the
quality level/quantization scale and demonstrate that the quality
level of the video has a profound impact on the video traffic sta-
tistics, which to the best of our knowledge has not been reported
in detail before.

The related area of research on video traffic management
mechanisms may be viewed in terms of the following three dif-
ferent problem sub-areas: (a) traffic management for a single
video stream, (b) traffic management for a group of multiplexed
streams of fixed quality (quantization scale), and (c) traffic man-
agement that adapts the video quality while considering mul-
tiple multiplexed streams. The transmission of a single video
stream is considered by the studies [23]–[27], which strive to
maximize the video quality of the considered single stream sub-
ject to the available network bandwidth and suffered packet
losses. The studies [28]–[36] represent a sample of the large
body of literature on the sub-area of traffic management for a
group of multiplexed streams of fixed quality. The main focus
of this sub-area is to maximize the number of video streams with
a given (known) traffic pattern that can be supported subject to
a given amount of network bandwidth and a maximum permis-
sible loss. Whereby the considered video streams are pre-en-
coded with a particular quality level or quantization scale that
are not considered as independent variables in these studies. In
contrast, in this study we examine the multiplexing of video
streams as a function of the quality level/quantization scale.
Our investigations indicate that the quality level of the video
critically affects the multiplexing behavior; this effect has been
largely ignored to date.

The sub-area of traffic management that adapts the quality
while considering a group of multiplexed streams is generally
more closely related to our work in that we also consider
multiple multiplexed streams and examine the multiplexing
behavior as a function of the video quality. The early studies
[37]–[39] considered this problem sub-area at a conceptual
level without considering in detail the dependency of the traffic
statistics and multiplexing behavior on the video quality which
is the focus of our study. Error-resilience mechanisms that
mitigate the drop in quality due to multiplexing losses are
developed in [40]. Joint source-channel coding in the context of
multiplexing losses is examined [41]. The study [42] presents
a system architecture for a streaming service which adaptively
changes the quality level of the streamed video in response to
user feedback while the streaming is ongoing and examines
the achieved multiplexing performance and user perception
rating. Our study of the statistical multiplexing and the utility
of variable bit rate video streaming complements this literature
by uncovering the fundamental relationships between the rate
variability produced by the open-loop encoder for different
quantization scales and the associated achievable multiplexing
gains and network utilities.

We note that the conceptual aspects of the pricing of video
services and the utility of video streaming are discussed in
[43]–[47]. Also, a recent study [48] examined the maximiza-

Fig. 3. Outline of the evaluation setup.

tion of the utility a given user obtains from receiving a video
stream. Our utility study in Section VII differs from [48] in
that we consider the utility that a service provider earns from
multiplexing multiple video streams over a given network
bandwidth.

III. METHODOLOGY OF RATE

VARIABILITY-DISTORTION STUDY

For our evaluation of the rate-variability-distortion character-
istics of encoded video sequences, we employ the setup illus-
trated in Fig. 3. As example video scenes for this study we se-
lected scenes from the two movies Star Wars IV and The Ter-
minator, and a Football game recording in QCIF format (176

144 pixels). In addition, we consider three of the well-known
test sequences, namely Carphone and Claire in the QCIF format
and Paris in the CIF (352 288 pixels) format.

We used the publicly available scene detection software [49]
for the determination of scene boundaries. Scene boundaries
were detected based on (i) director cuts (i.e., the abrupt change
of scene content between two consecutive frames), and (ii) fades
between scenes (i.e., the dissolving of one scene into the fol-
lowing scene using several frames). We visually verified the se-
lected scenes for correctness of scene boundaries.

In general, video content can be classified according to sev-
eral criteria, see for instance [50]–[55]. To illustrate the impact
of the video content on the VD characteristics we consider the
level of motion (content dynamics) in the video, which is widely
considered a key characteristic of video content. Following [51]
we classify the content of a video scene according to the level of
motion into five motion classes ranging from motion class I for a
low level of motion to motion class V for a high level of motion.
For each motion class we selected a representative scene from
each video for our study. An overview of the selected scenes is
presented in Table I.

We consider a variety of Group of Pictures (GoP) patterns,
which are shown in Table II. Note that pattern 7 corresponds
to the widely used IBBPBBPBBPBBIBBP pattern. For
the video coding, we use the reference implementations of
the MPEG4 encoder, the H.264/AVC development version
6.1e [56], and the wavelet encoder presented in [57]. We used
the single layer encoding and the simple profile of MPEG4,
encoding each individual frame as single video object.

A. Definition of Traffic and Quality Metrics

In this section we provide the definitions of the traffic and
quality metrics used throughout this paper. Let and de-
note the number of pixels in the horizontal and vertical direc-
tions in a given video frame (e.g., for QCIF and

). Let , , denote the position of the
given video frame in a given video sequence that consists of
frames. Each video frame is divided into macroblocks (MB)
of 16 16 pixels (e.g., for QCIF) for DCT based en-
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TABLE I
OVERVIEW OF CONSIDERED SCENES

TABLE II
EVALUATED GoP PATTERNS FOR DCT-BASED ENCODINGS

coding. The DCT transformation is performed on a block (i.e.,
subdivision of a macroblock) of 8 8 pixels. We denote the
quantization scale of the encoder by . The possible values for

vary from for MPEG4 and
for H.264/AVC.

1) Traffic Metrics: We denote the size (in bit) of the th en-
coded video frame for quantization scale by . The mean
frame size of an encoded video sequence is defined as

(1)

We let denote the standard deviation of the frame size defined
as

(2)

We primarily employ the coefficient of variation [58] defined as

(3)

as the measure of variability of the frame sizes (the variability
of the bit rate of the encoded video). We note that an alternative

measure of the variability of the frame sizes is the peak-to-mean
frame size ratio defined as

(4)

The peak-to-mean ratio, however, can be affected by a single
very large video frame (i.e., an outlier). This problem is avoided
by the coefficient of variation of the frame sizes , which
gives the normalized averaged deviation of the individual
frame sizes from the mean frame size and is therefore widely
employed in performance evaluation [58], [59]. We denote the
maximum coefficient of variation for a given video sequence as

(5)

and denote for the quantization scale that attains this
maximum, i.e., . We similarly define

and .
We define the aggregated frame size trace with aggregation

level , , as

(6)

i.e., the aggregate frame size trace is obtained by averaging the
original frame size trace , , over nonover-
lapping blocks of length frames.

When different frame types exist, these can be combined to
form the group of pictures (GoP). Frame types are intra coded
(I) frames, predicted (P) frames, and bi-directional predicted (B)
frames. The latter two frame types are also referred to as inter
coded frame types. Whenever we refer to an explicit frame type,
we denote the type by its abbreviation in the subscript (e.g.,
for the size of a P frame).

2) Quality Metrics: We denote an individual pixel value (an
8-bit value for the luminance) in the original (uncompressed)
video frame by and its encoded and decoded counter-
part by , with and .
We use the peak signal to noise ratio (PSNR) as a measure for
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the objective video quality. The PSNR quality of frame
encoded with quantization scale is defined as

(7)

We apply the PSNR only to the luminance (Y) component of
an individual frame, as the human eye is most sensitive to this
component [60]. We calculate the average objective quality for
a given video sequence of individual frames as

(8)

We note that several more sophisticated approaches for the cal-
culation of the objective video quality (i.e., algorithms that take
the human visual system into consideration) exist, but the PSNR
is widely used as it is computationally simple a gives generally
a reasonably good measure for the perceived quality [61].

3) Entropy: As measure for the complexity of an individual
video frame, we employ the Shannon entropy. The complexity
for each frame is calculated as entropy of the individual byte
values , given as

(9)

where denotes the sample probability of byte value ,
with , for all byte values. We
denote the coefficient of variation of the entropy values of the
frames , , of a video sequence by .

We use the coefficient of correlation as measure of (linear)
dependency, defined as

(10)

for a set of data points denoted by and , .

IV. RATE VARIABILITY-DISTORTION CHARACTERISTICS OF

OPEN-LOOP ENCODED VIDEO

We examine the coefficient of variation as a function of the
video quality, i.e., the VD curve, of open-loop encoded video
in this section. Current video coders are mostly based on the
Discrete Cosine Transform (DCT). The transform coefficients
are quantized to further reduce the size of the video frames at
the expense of the loss of video information (and thus reduced
video quality). The combination of these two encoding mecha-
nisms is commonly referred to as intra coding or texture coding.
In addition to intra coding, current video coders typically ex-
ploit temporal dependencies between consecutive video frames
by encoding only movements or differences between consecu-
tive frames, which is referred to as motion estimation and com-
pensation or inter coding. To examine the VD curve in detail, we
first focus on intra coding and subsequently expand our study to
include inter coding.

Fig. 4. VD curves for intra coded scenes using DCT based MPEG-4 from The
Terminator.

Fig. 5. VD curves for intra coded scenes using DCT based MPEG-4 from
Football.

A. Intra Coding

We begin by examining the rate variability-distortion (VD)
behavior of intra coded video and studying the correlation be-
tween the VD behavior and the entropy of the video. In Figs. 4
and 5 we plot the VD curves, i.e., the coefficient of variation of
the frame sizes as a function of the PSNR video quality,
for the Terminator and Football scenes. We observe that the intra
coded videos exhibit a characteristic hump in the VD curve,
although the magnitude of the as well as the change in
the are smaller compared to the encoding employing both
intra coding and inter coding (see Figs. 1 and 2). Nevertheless,
the varies approximately between 0.1 and 0.22 for the mo-
tion class IV scene from The Terminator and between 0.14 and
0.3 for the motion class II scene from Football. As illustrated
in Fig. 6 for scenes from The Terminator, we also observe a
hump in the VD curve for wavelet based encoding, although the
overall level of the variability is lower than with the DCT based
encoding.

To examine the origin of the hump phenomenon in the intra
coded videos, we study the correlation between the rate vari-
ability and the entropy of the raw (uncompressed) videos. More,
specifically, we study the correlation between the coefficient of
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Fig. 6. VD curves for intra coded scenes using wavelet based coding from The
Terminator.

variation of the frame entropies and elementary statistics
of the coefficient of variation of the frame sizes . We con-
sider the following elementary statistics: (i) the largest ,
i.e., as defined in (5), (ii) the range of the , i.e.,

, and the standard deviation of the . The
coefficients of correlation between each of the columns with the
elementary statistics of the and the column (cal-
culated according to (10)) are all above 0.84. This indicates a
relatively strong dependence of the variability of the encoded
frame sizes on the variability of entropy of the uncompressed
source video. We may thus conclude that the origin for the VD
behavior of the intra coded video lies in the complexity of the
individual video frames.

To visualize this dependence we plot in Fig. 7 the frame sizes
of Carphone encoded with and the corresponding frame
entropy for Carphone. We observe that typically video frames
with a high entropy result in large encoded frame sizes and that
the variability of the entropy of the source video is reflected in
the variability of the encoded video frames.

B. Inter Coding

We now proceed to examine the VD behavior of video en-
coded using intra coding together with inter coding. We initially
study the VD behavior for the GoP pattern 7, which is widely
considered in video studies. We also initially consider encodings
where all three frame types are encoded with the same quanti-
zation scale . We then examine the impact of different GoP
patterns and different quantization scales for the different frame
types.

In Figs. 1 and 2 we have plotted the VD curves of the Ter-
minator and Football scenes encoded in MPEG-4. Similarly
in Figs. 8 and 9 we plot the VD curves of the test sequences
encoded in MPEG-4 and H.264. The maximum coefficient of
variation , the quantization scale attaining this max-
imum , and the average PSNR quality at this quantiza-
tion scale for the MPEG-4 encodings are summarized
in Table IV. From a close inspection of Figs. 1, 2, 8, and 9, as
well as Table IV, we observe that the scenes with motion class
I exhibit by far the most pronounced peak of the coefficient
of variation , whereas the scenes with motion class V ex-
hibit the smallest peak. The other motion classes lie in between

these two extremes. For these other motion classes there is again
an ordering where the lower motion classes attain higher
peaks, although the differences between these peaks are rela-
tively small compared to the wide gap between the peaks for
the motion classes I and V. All VD curves exhibit the character-
istic hump behavior whereby the variability increases with de-
creasing quality, reaches a peak, and then drops off as the quality
decreases further. These typical behaviors of the VD curve are
further confirmed by the VD curves of the test sequences in
Figs. 8 and 9, which demonstrate that both the MPEG-4 and
H.264 encoders produce the characteristic hump behavior of the
VD curve. We observe that the VD curve for H.264 is smoother
than the curve for MPEG-4, which may be due to the various
enhancements in H.264 over MPEG-4.

To explain these VD characteristics of inter coded video, we
have first examined whether there is strong connection between
the entropy of the uncompressed video and the coefficient of
variation of the frame sizes. Specifically, we have encoded the
video scenes using GoP pattern 3, i.e., the first frame of the scene
is intra coded and all subsequent frames are inter coded with re-
spect to the preceding frame. We compared this variability of the
frame sizes with the entropy of the difference in the pixel values
between successive frames. That is, we calculated the entropy
of the differences for each of the frames

, , and then calculate the coefficient of vari-
ation of these individual frame difference entropies. This cal-
culation of the entropy is motivated by the inter coding, which
primarily encodes the differences between successive frames.
We have observed that there is no strong correlation between
the coefficient of variation of the frame sizes and entropy dif-
ferences. From this observation we may conclude that the inter
coding introduces additional variation, which is not explained
by the frame complexity measured as entropy.

We observe that for , with increasing the standard
deviation of the frames sizes is dropping relatively slower than
the mean frame size such that inequality (12) holds and the VD
curve is increasing. For , the trend is reversed, i.e., the
standard deviation of the frame sizes is dropping relatively faster
than the mean frame size with increasing , resulting in the de-
crease of the VD curve. To obtain insight into the origins of
the VD behavior we proceed to examine the coefficient of vari-
ability more closely and then examine the encoding of the dif-
ferent frame types. The slope of the VD curve is given by

(11)

where denotes the derivative of with respect to , The VD
curve is increasing in if

(12)

and decreasing in if this inequality is reversed. We illustrate
this behavior for Scene 384 (MC I) of The Terminator in Fig. 10.

In the following, we further examine the different factors in-
fluencing the VD behavior for GoP pattern 7.

a) Average sizes of frame types: Due to the fixed GoP
structure for the encoding, the different frame types Intra (I),
Predicted (P), and Bi-directional predicted (B) occur at fixed po-
sitions in the encoded video. The differences of the mean frame
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TABLE III
ELEMENTARY STATISTICS OF THE VARIATION OF THE INTRA CODED FRAME SIZES CoV AND THE COEFFICIENT OF VARIATION OF THE ENTROPY OF THE

UNCOMPRESSED VIDEO FRAMES CoV . THE CoV STATISTICS ARE HIGHLY CORRELATED TO THE ENTROPY VARIATION CoV

Fig. 7. Encoded frame sizes and entropy of the raw video for Carphone. a) Encoded frame size for q = 15. b) Frame entropy.

Fig. 8. VD curves for MPEG4 encoded test sequences.

sizes of the three frame types thus contribute to the variability
of the encoded video. In Fig. 11, we illustrate the mean frame
sizes by frame type for the high and low motion scenes from
The Terminator. We observe that the difference between the dif-
ferent frame types is more pronounced in the low motion scene

Fig. 9. VD curves for H.264/AVC encoded test sequences.

384 than in the high motion scene 441. In addition, we observe
that the pronounced observed in scene 384 is located
in the region where the mean sizes of the two predicted frame
types begin to remain roughly constant compared to the intra
coded frame types. For scene 441, where we do not observe
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TABLE IV
MAXIMUM COEFFICIENT OF VARIATION OF FRAME SIZE CoV ,

QUANTIZATION SCALE ATTAINING MAXIMUM q , AND QUALITY AT

MAXIMUM Q FOR MPEG-4 ENCODINGS WITH GoP PATTERN 7 AND

SAME QUANTIZATION SCALE FOR ALL FRAME TYPES

a pronounced hump in the VD curve, we do not observe such
behavior, as the mean frame sizes of all three frame types con-
stantly decrease as the quantization scale increases.

The previous observations were made based on the mean
frame type sizes without regard of their contribution to the total
video traffic. In Fig. 12 we plot the fraction of the total video
traffic that is from a specific frame type. We observe that in
scene 384 the fraction of encoded video data that is stored in
the different frame types decreases for the two predicted frame
types, reaches a minimum where the is located on the
quantization scale, and slightly increases afterwards. In the high
motion scene from The Terminator, we do not observe such be-
havior. Instead, the fractions of data stored in each frame type
remain approximately constant.

b) Variabilities of sizes of frame types: In addition to the
mean sizes, the variability of the sizes of the different frame types
(measured as ) influences the VD curve characteristics.
In Fig. 13 we plot the coefficients of variation of the different
frame types for scenes 384 and 441 from The Terminator.
From the plots shown here and for a larger number of scenes
(see [62]) we observe that the I frame variability is lower
than the variability of the predicted frame types. We also
observe that for P frames the maximum variability typically
decreases from motion class I to V. We furthermore observe
that the overall of the scene is mainly governed by
the P and B frames.

C. Impact of Different Quantization Scales for Different Frame
Types on VD Characteristics

In order to obtain more detailed insights into the dependen-
cies of the VD characteristics on the different frame types, we
examine in this section the impact of different quantization
scales for the different frame types. We denote , , and

, for the quantization scales used for I, P, and B frames,
respectively. Initially, we consider a constant offset between the

quantization scales, specifically, and
for . We plot the resulting VD curves for the
scenes from The Terminator and Football in Fig. 14. We observe
that with these different quantization scales, the variability is
overall steadily increasing with increasing video quality. This
behavior is in contrast to the hump behavior observed in Figs. 1
and 2 for identical quantization scales for the different frame
types. We also observe that with both, identical and different
quantization scales, motion class I has by far the highest vari-
ability and motion class V has the smallest variability, with
the variabilities of the other motion classes lying in between.
In addition, we observe that the frame size variabilities with
different quantization scales are higher than with identical
quantization scales. This is because with the larger quantization
scales for the P and B frames, these frames have now even
smaller sizes compared to the I frame sizes, which results in an
overall increased variability of the frame sizes.

Next, we examine the impact of the magnitude of the differ-
ences between the quantization scales for the different frame
sizes. Specifically, we consider the differences 1, 3, 5, 7, and
10 (i.e., , , , and

, and analogously for ). In Fig. 15 we plot the re-
sulting VD curves for the motion class I and V scenes from The
Terminator. We observe that with larger differences of the quan-
tization scales, the variability increases significantly for higher
video quality. The general level of the variability is higher for
the low motion scenes than for the high motion scenes, which
corroborates our earlier observations. In addition we note the
difference in the VD behavior for low and high motion scenes,
i.e., the increase in the frame quantization differences results in
an almost exponentially increasing VD curve for high motion
scenes, whereas the VD curve for low motion scenes becomes
linearly increasing.

D. Impact of Different GoP Patterns on VD Characteristics

We examine the impact of the different GoP patterns on the
VD curve by plotting in Fig. 16 the VD curve for the motion
class III scene from The Terminator for the GoP patterns defined
in Table II. We employ identical quantization scales for all frame
types. We include here the VD curves for the medium motion
activity scene from The Terminator as they are representative
of the curves for the low and medium motion activity scenes.
For the high motion scenes, the different GoP patterns have an
overall negligible impact on the VD curves.

We observe from Fig. 16 that lengthening the GoP results
in lower variability. This is primarily due to the decreased
influence of the always large sized I frames, as the GoP includes
more frames. By comparing the curves in Figs. 16(a), (b),
(c), and (d) we observe that introducing more B frames into
the GoP pattern results in general in a minor reduction of
the variability.

E. Effect of Frame Aggregation (Traffic Smoothing) on VD
Characteristics

Frame aggregation, i.e., the smoothing of the video traffic over
multiple frames as defined in (6), is an elementary technique to
reduce the bit rate variability of video traffic and it is therefore
important to examine the impact of frame aggregation on the
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Fig. 10. Mean and standard deviation of frame size and derivative terms as a function of quantization scale q for scene 384 from The Terminator encoded with
GoP pattern 7. a) Mean frame size �X and standard deviation of frame sizes � . b) � �

�X and � �

�X .

Fig. 11. Mean frame sizes by frame type for scenes from The Terminator encoded with GoP pattern 7. a) X , X , X , and X for scene 384 (MC I); b) X ,
X , X , and X for scene 441 (MC V).

Fig. 12. Fractions of frame types for scenes from The Terminator encoded with GoP pattern 7. a) X =X ,X =X , and X =X for scene 384 (MC I); b) X =X ,
X =X , and X =X for scene 441 (MC V).

VD curve. Note that all the preceding results were obtained for
an aggregation level of , i.e., by considering individual
frames. We now consider a range of aggregation levels
from 1 through 36. Throughout this section we consider GoP
pattern 7 and apply the same quantization scale to all frame

types. In Fig. 17 we plot the VD curves for the MC I and
MC V scenes from The Terminator for different aggregation
levels . We observe that the variability is greatly reduced by
smoothing the frames over an increasing number of frames.
With an increase from to 3 frames, the differences



482 IEEE TRANSACTIONS ON BROADCASTING, VOL. 51, NO. 4, DECEMBER 2005

Fig. 13. Coefficient of variation CoV for different frame types for The Terminator scenes. a) Scene 384 (MC I); b) Scene 441 (MC V).

Fig. 14. VD curves for different quantization scales for different frame types with q = q + 5 and q = q + 5. a) The Terminator; b) Football.

Fig. 15. Different magnitudes of differences between quantization scales for different frame types, q = q + 1, q = q + 3, q = q + 5, q = q + 7,
and q = q + 10. a) The Terminator, scene 384, MC I; b) The Terminator, scene 441, MC V.

between the I and P frames on the one hand, and the B
frames on the other hand, are smoothed out. As a result the
maximum variability is reduced from 1.633 to 0.853 for scene
384 and reduced from 0.373 to 0.186 for scene 441. Overall,
our results here and from our more extensive experiments
[62] indicate that smoothing over three frames approximately
cuts the variability in half.

When the aggregation level is increased further to one GoP
(i.e., with the considered GoP pattern 7), we observe
again a decrease in the variability to about one half compared to
an aggregation of three frames. This is because the significant
frame size differences between the I frames and the P frames
are smoothed out by the aggregation. If the aggregation level
is further increased from a single GoP to multiple GoPs there
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Fig. 16. Effect of different GoP patterns for motion class III scene from The Terminator. a) Scene 628, GoP patterns 1, 2, and 3. b) Scene 628, GoP patterns 4,
5, and 6. c) Scene 628, GoP patterns 7, 8, and 9. d) Scene 628, GoP patterns 10 and 11.

Fig. 17. Effect of frame aggregation (smoothing) on CoV for The Terminator scenes. a) Scene 384 (MC I). b) Scene 441 (MC V).

is typically a smaller reduction in variability, which diminishes
with increasing aggregation level . In summary, we find that the
video traffic variability within a given scene is approximately
cut in half by smoothing over 3 frames (i.e., the I or P frame
and the two adjacent B frames in the considered GoP pattern 7).
Smoothing over one GoP further cuts the variability roughly in
half.

F. Effect of Scene Concatenation

A typical video consists of a series of concatenated scenes.
To obtain insights into the VD characteristics of entire videos it
is thus necessary to examine the traffic variability across mul-
tiple scenes. Toward this end, we concatenate all five scenes
from a given movie into one video segment and plot the VD
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Fig. 18. Effect of frame aggregation (smoothing) on CoV for concatenated
scenes (384, 462, 628, 262, and 441) from The Terminator.

Fig. 19. CoV for entire videos.

curve for the thus obtained video segment for different frame
aggregation levels for the five scenes from The Terminator in
Fig. 18. We observe that the variability is reduced by smoothing
over 3 frames. Smoothing over one GoP reduces the variability
a little further. However, in contrast to the above results for in-
dividual scenes, the reduction in variability is relatively small
for the video segment consisting of concatenated scenes. For
an aggregation level of frames, for instance, we ob-
serve from Fig. 17 that the individual scenes give a maximum
variability smaller than 0.2, yet we observe from Fig. 18 that
the maximum variability of the concatenated scenes is approxi-
mately 0.75. This high variability is mainly due to the variability
of the frame sizes from scene to scene.

Interestingly, we also observe from the comparison of Fig. 18
with Fig. 17 that the VD curves for individual scenes flatten
out as the aggregation level increases, whereas the VD curve
for the concatenation of scenes retains a pronounced hump and
relatively steep slope even for large aggregation levels. This is
due to the behaviors of the mean frame sizes and the standard
deviation of the frames sizes which when evaluated over the
segment of concatenated scenes give pronounced slopes of the
VD curve (11).

Next, we consider the VD curves of the entire one-hour long
excerpts from Star Wars, The Terminator, and Football, which
we plot in Fig. 19 for the frame aggregation level and

the GoP aggregation level . We observe again the char-
acteristic hump behavior of the VD curve, indicating that the
behaviorial trends observed in Fig. 18 for the concatenation of
5 scenes extend to the concatenation of several hundred scenes
in a 1-hour video. We observe also that the GoP smoothing tends
to slightly shift the peak in the VD curve to higher quality levels.
Overall, the GoP smoothing of the long videos roughly cuts
the variability in half, compared to the individual scenes where
GoP smoothing roughly cut the variability down to a quarter
(cf. Fig. 17). This indicates that video traffic smoothing is quite
effective in reducing the traffic variability within a given scene.
On the other hand, traffic smoothing is less effective in reducing
the traffic variability of a long video consisting of several scenes
with distinct content characteristics. It appears hence benefi-
cial to pay attention to the scene structure of the video when
streaming smoothed video.

V. VD APPROXIMATION FRAMEWORK

In this section, we introduce a piecewise approximation
framework for the VD curve. The purpose of the piecewise ap-
proximation is to estimate the VD curve for the entire range of
quantization scales from sample encodings for a small number
of quantization scales.

A. Piecewise Approximation Model

Our method employs piecewise power curve fitting for the es-
timation of the relationships between (i) size of encoded video
frame and quantization scale, (ii) standard deviation of size of
encoded video frame and quantization scale, and (iii) PSNR
of encoded and subsequently decoded frame and quantization
scale. Given the estimation of these three relationships, the ap-
proximated VD curve can be calculated. Our power curve fitting
method is inspired by [7], [8], where similar techniques are em-
ployed to approximate rate-distortion curves.

Let denote a quantization scale setting for which the en-
coded video data is available (i.e., interpolation points or sam-
ples) and denote the quantization scale settings for which we
use the approximation framework to estimate the values needed
for the calculation of the VD values (i.e., intermediate points).
The power curve representation of an arbitrary function
(e.g., mean, standard deviation, or PSNR) for a quantization
scale setting is given as

(13)

Between a set of two consecutive interpolation points and
we calculate the parameters and as

and (14)

The estimated values between the interpolation points and
are then given as

(15)

We consider three different levels of estimation. On the ag-
gregated level, we estimate the mean frame size , standard
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Fig. 20. Aggregated level approximation of the VD curve for low and high motion scenes from The Terminator. a) Scene 384, MC I. b) Scene 441, MC V.

TABLE V
INTERPOLATION POINTS FOR THE PIECEWISE POWER CURVE ESTIMATION

deviation , and mean PSNR value from the given inter-
polation points. On the frame level, we first estimate the indi-
vidual frame sizes and the corresponding frame qualities
for the intermediate quantization scale settings . From the thus
estimated frame size and quality values we calculate the (esti-
mated) mean, standard deviation, and PSNR values as given in
(1), (2), and (8) for each and intermediate . Thirdly, we con-
sider the macroblock level, where we estimate the size of each
individual macroblock , , of frame as .
We estimate the frame overhead of frame as , with

(16)

for the given interpolation points. The frame sizes of the mac-
roblock level are then calculated as

(17)

From these frame sizes we determine the coefficient of variation
as in the two previous levels, but use the frame level quality
estimation for the VD curve estimation.

Intuitively, the accuracy of the piecewise power curve fit-
ting approach varies with the number of available interpolation
points, i.e., more available encodings yield better approxima-
tions. We follow the reasoning in [8] and assume in the fol-
lowing that extremely high or extremely low quantization scale
settings, i.e., or , will most likely not be needed
for general applications. We subsequently focus in our evalu-
ation only on the region of . We consider three
different numbers of available interpolation points as outlined
in Table V and examine their suitability for an approximation
of the VD curve. We base our evaluation on the common GoP

structure (i.e., pattern 7 in Table II) and uniform quantization
scale settings for all frame types.

B. VD Approximation Results

We present the VD approximation results for the low motion
scene 384 and the high motion scene 441 from The Terminator
for all three scenarios specified in Table V. In Fig. 20, we il-
lustrate the approximations for the aggregated level. We imme-
diately observe that the approximation with only two samples
of the encodings does not capture the VD behavior at all. We
furthermore observe that even with four interpolation points,
the approximation does not capture the VD behavior for both
scenes very well. The fit for the more pronounced hump in the
VD curve for the low motion scene is visibly worse than for
the high motion scene. In addition we note that for the medium
to high qualities, the estimation yields a better result and fol-
lows the more linear slope closer. In more extensive evaluations
which are not included here due to space constraints, see [62]
for details, we have observed that with an increase of interpola-
tion points the approximation of the VD curve at the aggregate
level yields a better fit to the original in both cases. We have
also observed that the frame level approximation gives approxi-
mately the same performance as the aggregate level approxima-
tion. We have furthermore observed that the individual statistics
(i.e., frame size mean and standard deviation, and PSNR quality)
are approximated very well with both aggregate and frame level
approximation for a small number of samples. The approxima-
tion of the typically highly nonlinear VD curve appears to pose
a particular challenge.

In Fig. 21 we plot the approximation at the macroblock level.
Similar to the two other levels, the VD approximation with two
interpolation points gives a poor fit. We observe however, that
with three interpolation points the fit becomes fairly good, and
becomes even closer with four interpolation points. We con-
clude that the macroblock level yields the best approximation
for a given number of sample points.

VI. VD IMPLICATIONS FOR STATISTICAL MULTIPLEXING

Having studied the characteristics of the VD curve and its
approximate modeling, we now proceed to examine its impact
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Fig. 21. Macroblock level approximation of the VD curve for low and high motion scenes from The Terminator. a) Scene 384, MC I. b) Scene 441, MC V.

on the video transport in communication systems and networks.
In particular, we provide in this section a methodology for as-
sessing the statistical multiplexing gain from the VD character-
istics and examine the implications of the rate variability-distor-
tion (VD) characteristics of encoded video on statistical multi-
plexing, which is a key element in many video traffic manage-
ment schemes.

First we augment the frame size notation defined in Sec-
tion III-A from an individual video stream to multiple different
streams. We let , , index the ongoing streams.
We let denote the size (in bit) of video frame of
stream encoded with quantization scale and assume that
all streams have the same number of frames . In order to fix
ideas in describing our methodology we adopt the video traffic
model with random phase shifts defined in [63]. In this model
the frame size is modeled by a steady state random variable,
whereby the distribution of the random variable is given by
the histogram of the frame sizes. We adapt the model of [63]
to our context as follows. We let be a random variable
denoting the frame size of stream encoded with quantization
scale . The distribution of is given by

(18)

where denotes the indicator function, which is 1 if is
true and 0 otherwise. We let denote the frame period (dis-
play time) of a given video frame in seconds. In order not to ob-
scure our main points we consider an elementary frame based
real-time video streaming scenario, where each individual video
frame is transmitted at the constant bit rate during one
frame period of length and the streams are statistically multi-
plexed onto a bufferless link, as illustrated in Fig. 22. Loss oc-
curs at the link whenever the aggregated traffic from the ongoing
video streams exceeds the link bandwidth .
We measure the loss in terms of the long run fraction of frame
periods during which loss occurs, i.e., we define the loss proba-
bility as

(19)

Fig. 22. Bufferless statistical multiplexing model.

and require that the loss probability be less than
some minuscule .

In order to determine whether a set of streams can be
supported without violating the statistical quality of service
requirement that the loss probability be less than we need to
determine the loss probability. This could be done using discrete
event simulation, which however tends to be computationally
very demanding. We outline two alternative approaches—a
central limit based approach and a large deviations based
approach—which require relatively little computational effort
and give accurate results. The Central Limit approach models
the aggregate traffic load as a Normal random variable with
mean and variance and approximates
the loss probability by the probability that a Normal random
variable with the specified mean and variance exceeds the link
capacity in one frame period. Note that for each video
stream , the mean and the variance of the frame
size as a function of the quantization scale can be obtained
from the traditional rate-distortion curve in conjunction with
the rate variability-distortion curve of the video encoding.
Also note that by using piece-wise approximation models, see
Section V, a few sample encodings of each of the multiplexed
videos are sufficient to obtain the frame size mean and variance
for the range of quantization scales and thus to assess the
loss probability at a range of quantization scales. The outlined
Central Limit based approach is computationally very simple
and requires only the rate-distortion and rate variability curves
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of the encoding, however, it tends to slightly underestimate
the loss probability especially in the range of very small loss
probabilities, as we will study numerically in Section VII-A.

The large deviations based approach is very accurate for the
entire range of loss probabilities, but requires a more specific
characterization of the frame sizes. In particular, the large de-
viations approach requires the logarithmic moment generation
function of the frame size , where
denotes the real valued transform variable. For each of the mul-
tiplexed video streams the function can be explicitly
expressed in terms the histogram (18), as

(20)

where and denote the smallest and largest frame
size, respectively. The individual logarithmic moment gener-
ating functions are then used to compute the logarithmic mo-
ment generating function of the aggregate traffic as

, which in turn is employed to compute the
large deviations estimate of the loss probability as

(21)

In (21), is the unique solution to , and the
prime denotes derivative with respect to . This computation of
the large deviations estimate can be computationally demanding
due to the direct computation of the logarithmic moment gen-
erating function for the different values from the histogram.
In addition, when assessing the stream admissibility and utility
for a range of quantization scales for different streams , the
direct computation requires the histogram of the frame sizes for
each quantization scale for each stream .

The computation of the large deviations estimate can be made
computationally more efficient as we describe next. Following
the general series expansion technique developed in [64, p. 206]
we can expand the logarithmic moment generating function of
stream encoded with quantization scale as

(22)

The series expansion coefficients can be expressed as

(23)

where

(24)

We found in our numerical work that a relatively small number
of coefficients is sufficient for a good series approxi-
mation, leading to a significantly reduced computational effort
when computing the moment generating function for different
for a given (fixed) quantization scale . To make the calculation
of the moment generating function for a range of different quan-
tization scales more efficient, we use the following technique.

Fig. 23. Maximum number of supported streams J as a function of PSNR
quality for Star Wars, and link bandwidth C = 50 Mbps.

We obtain the coefficients , , for a small
number of sample encodings for different quantization scales

for each video . For a given video and coefficient index ,
we then construct a piecewise approximation of the coefficient

across the full range of quantization scales , using the
approximation techniques described in Section V.

A. Numerical Results

In this section we present numerical examples to illustrate the
use of the methodology described in the preceding section as
well as the typical characteristics of the multiplexing behavior
as a function of the video quality. For the illustrative examples
presented here we use the Star Wars video sequence, which has
been widely used in video multiplexing studies, for all ongoing
video streams. Each stream has its own independent random
phase, which models the random start time and user interac-
tivity for the stream. We denote for the maximum number
of simultaneous video streams that can be supported by the link
while maintaining the loss constraint, which we verify with the
LD approach. In Fig. 23 we plot the maximum number of sup-
ported connections as a function of the PSNR quality. The
video is encoded with GoP pattern 7 with the same quantiza-
tion scale for all frame types and the link capacity is set to

. We plot the maximum number of supported
streams for peak rate allocation and two nonzero ,
namely and , as well as mean rate allocation,
which is obtained by dividing the link bandwidth by the average
bit rate of the video. We consider both the frame based real-time
streaming of the video as well as the GoP based streaming of the
video, where the frames are aggregated over a GoP
and transmitted at a constant rate over the duration of one GoP.
This GoP smoothing reduces the variability of the video traffic
at the expense of an increase in the delay of the video streaming
by roughly two GoP durations. We observe that the introduction
of a small loss probability results in a significant increase in
the maximum number of supported streams over the peak rate
allocation. This increase appears to be especially significant for
video streams with lower PSNR quality; and we will examine
this effect shortly in more detail. We also observe that the in-
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Fig. 24. Multiplexing gain g(�) as a function of PSNR video quality for Star
Wars and bandwidth C = 50 Mbps.

crease in the number of permitted streams for a given increase
in the loss requirement appears particularly significant for low
PSNR qualities. Increasing the permitted loss probability from

to for frame based streaming at 31 dB of
PSNR video quality, for instance, allows for approximately 50
additional streams. We also observe that GoP streaming allows
generally for more streams than frame based streaming, espe-
cially for low video qualities.

To further examine the statistical multiplexing effect for dif-
ferent video qualities and different permitted loss probabilities
, we examine the statistical multiplexing gain achieved by al-

lowing for an . The statistical multiplexing gain is defined
as

(25)

where denotes the maximum number of supported con-
nections for lossless transmission (i.e., peak rate allocation). In
Fig. 24 we plot the multiplexing gain as a function of the
PSNR quality for frame based streaming with different . We
observe that the multiplexing gain as a function of the PSNR
video quality exhibits a “hump”, similar to the corresponding
VD curve (see Fig. 19). The explanation for this behavior of
the multiplexing gains is as follows. At very low quality and at
very high quality, the variability of the video traffic is relatively
low (compared to the quality region where the traffic variability
peaks). For the lower variability traffic, the peak rate allocation
allows for a relatively larger number of streams, i.e., a higher
long run average utilization of the link (defined as the sum of
the average bit rates of the supported streams divided by the
link bandwidth). For the higher variability streams, the utiliza-
tion is lower. When statistically multiplexing with some nonzero
permitted loss probability , the statistical multiplexing effect
(i.e., the effect of temporarily high bit rates in some streams
being compensated for by the temporarily low bit rates in other
streams) becomes stronger when more streams are multiplexed,
i.e., for lower stream quality. As a result, the statistical multi-
plexing gain is small for high quality streams because relatively
few streams can be supported and the utilization with peak rate
allocation is already relatively high. The statistical multiplexing
gain is the highest in the region where the VD curve peaks since

the number of streams with statistical multiplexing is relatively
high and the utilization with peak rate allocation is the lowest.
For very low quality streams, the number of streams with sta-
tistical multiplexing is higher, but so is the number of streams
with peak rate allocation, resulting a somewhat smaller statis-
tical multiplexing gain. In summary, we conclude from the typ-
ical results shown here as well as our more extensive numer-
ical investigations in [62] that the highest multiplexing gains are
achieved around the peak of the VD curve, i.e., in the region of
high variability.

VII. NETWORK UTILITY: ASSESSMENT METHODOLOGY AND

TYPICAL CHARACTERISTICS

A key consideration for a video service provider that employs
statistical multiplexing is the utility (revenue) earned from the
service. As we have demonstrated in the preceding section, the
statistical multiplexing of the videos is critically affected by the
VD curve of the videos, and therefore the VD curve needs to be
taken into consideration when assessing the earned utility. We
provide in this section a methodology for assessing the utility
(revenue) from the VD curve and examine the typical char-
acteristics of the utility for open-loop encoded video. We let

denote the average quality of video stream encoded
with quantization scale . Note that if the utility depends only
on the number of supported streams (irrespective of their video
quality), then the revenue is maximized by streaming the lowest
quality for each stream . On the other hand,
if we assume that the utility for the content provider is maxi-
mized by the highest multiplexing gain, then it would be prefer-
able to stream the videos with , i.e., with the highest vari-
ability. These initial observations do not consider the quality of
the streamed video.

In a more realistic scenario, the revenue from the video
streaming is likely determined by the number of supported
streams as well as their quality. To capture this effect we adopt
utility functions which are widely employed in microeconomics
to relate the preferences of consumers (in our case clients) to
specific goods or services (in our case the average video quali-
ties ). In our context the utility function models the value
(utility) that a video stream of a given quality has for a user.
A widely employed type of utility function in microeconomics
are functions with diminishing marginal utility. With such
functions, the marginal increment in the utility of a good for
a fixed increment in the quality of the good decreases as the
absolute quality level increases. Such functions appear also
appropriate in our context because a client currently receiving
a low quality video (encoded with a large quantization scale)
typically perceives a noticeable increase in quality if the video
quality is slightly increased (the quantization scale reduced).
On the other hand, for a client receiving a high quality video, a
slight further increase in quality is typically barely noticeable
[65]. A typical utility function [43], [48] reflecting this behavior
is given by

(26)

where is a tuning parameter quantifying the value of the
quality increases to the user receiving stream . Note that the
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Fig. 25. Maximum network utility as a function of PSNR video quality for Star Wars. (a) Effect of different values for �, u = 1. (b) Effect of different values for
u, � = 10 , frame-based streaming.

minimum quality video (with the largest quantization scale) is
assigned a utility of one in this definition. We assume that the
minuscule losses at the multiplexer do not deteriorate the video
quality; the incorporation of the impact of the losses on the video
quality is left as future work, as outlined in Section VIII. The
total network utility earned from the video streaming as a func-
tion of the vector of quantization scales , is
obtained by summing the utilities for the individual supported
streams, i.e.,

(27)

whereby the techniques from Section VI are used to assess
whether a set of streams can be supported for a permissible
loss probability. The function can now be maximized to
determine the largest network utility value and the quantization
scales attaining that value.

A. Numerical Results

For simplicity of exposition we consider in our illustrative
numerical work a homogeneous streaming scenario where all
ongoing streams have the same utility parameter and
are obtained from the Star Wars video with random phase shifts.
In this scenario, the overall network utility is obtained by multi-
plying the utility for a given stream by the number of supported
streams, i.e., , and we refer to
as the maximum network utility.

In Fig. 25 we plot the maximum network utility as a func-
tion of the PSNR video quality for different parameters in the
utility function definition and for different permitted loss prob-
abilities . The values calculated with the large deviations
approach and plotted in Fig. 23 are used. The bandwidth is set
to . We observe from Fig. 25(a) that the max-
imum network utility exhibits a characteristic hump similar to
the VD curve and the statistical multiplexing gain. We further-
more observe from Fig. 25(b) that for larger utility parameter ,
i.e., when more value is assigned to the video quality, the peak
in the maximum utility tends to drift toward higher video quali-
ties. In other words, the largest network utility value is achieved

Fig. 26. Maximum utility evaluated with Normal approximation (APP) and
Large Deviations (LD) approach as a function of PSNR video quality, frame
based streaming, u = 1.

by statistically multiplexing fewer streams, but each stream has
a higher quality. Examining Fig. 25(a) more closely, we observe
that higher permitted loss probabilities and GoP smoothing re-
sult in significant increases in the maximum utility, except for
very high PSNR qualities. For a permissible loss probability of

, for instance, GoP based streaming gives approxi-
mately 13% higher utility than frame-based streaming around
the peak of the maximum utility curve.

The results presented so far have used the large deviations
approach to determine the admissibility of a set of streams. In
Fig. 26 we plot the maximum network utility obtained when
employing the Normal approximation to determine the stream
admissibility and compare with the large deviations based re-
sults. We observe that the Normal approximation gives gener-
ally fairly accurate results, especially for the larger permitted
loss probability . For the smaller loss probability

the Normal approximation slightly overestimates (by typ-
ically less than 5%) the achievable utility. Overall, we may con-
clude form the typical results shown here and our more extensive
evaluations [62] that the Normal approximation gives a fairly
good assessment of the utility. Note that the Normal approxi-
mation requires only the rate-distortion (RD) function and the
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rate variability-distortion (VD) function of the encoded video,
both of which can be obtained with high accuracy by a piece-
wise linear approximation based on a few sample encodings.

VIII. CONCLUSION

We have examined the relationships between video quality,
bit rate variability, and the utility from a streaming service with
statistical multiplexing for open-loop encoded video. We have
found that the rate variability-distortion (VD) curve of open-
loop encoded video exhibits typically a characteristic “hump”
behavior and have investigated how this hump behavior is in-
fluenced by the different motion levels in the video content,
the video encoding parameters and traffic smoothing. We have
found that the bit rate variability is the highest and the hump in
the VD curve is most pronounced for low motion video scenes.
We have also found that larger quantization scales for the predic-
tive frame types in MPEG (compared to the quantization scale
for the intra coded frames) and shorter GoP patterns tend to in-
crease the level of bit rate variability. Furthermore, we have ob-
served that traffic smoothing within a scene is highly effective in
reducing the bit rate variability within the scene, whereas traffic
smoothing over a long video is less effective in reducing the bit
rate variability of the video.

We have described a methodology for assessing the ad-
missibility of a set of video streams on a link subject to a
statistical quality of service criterion and for assessing the
utility (revenue) earned by a service provider when statistically
multiplexing video of different quality levels over the link.
In summary, the methodology first determines whether a set
of streams can be supported while ensuring a small long run
loss probability. The utility from the supported streams is
then computed by adding the utilities corresponding to the
quality levels of the individual streams. Our numerical work
for homogeneous streaming scenarios indicates that the sta-
tistical multiplexing gain and the utility as a function of the
video quality level typically exhibit a characteristic “hump”
similar to the VD curve. The peaks in these functions are
typically in the vicinity of the quantization scale attaining
the peak in the VD curve. Finally, we have demonstrated
that the Normal approximation which relies on the first and
second moment of the video traffic (as a function of the
quality level) is quite accurate in assessing the network utility
in the bufferless statistical multiplexing model.

There are many exciting avenues for future work. One avenue
is to incorporate the effect of the lost video traffic on the video
quality, which becomes important for large loss probabilities.
To incorporate the effect of these losses in our utility evaluation,
the quality of a stream could be modeled as a function of both
the quantization scale and the loss probability limit , i.e., as

, using for instance the models studied in [23], [24], [26],
[65]–[67]. This adjusted quality can then be employed
in the utility evaluation, e.g., by using a utility function such
as (26). Another interesting and important direction for future
work is to examine in detail the VD characteristics of layered
encoded video and the corresponding statistical multiplexing
and utility behaviors both without and with consideration of the

effect of loss on the video quality. Yet another interesting di-
rection is the examination of video encoded and streamed with
some level of rate-adaptation (control) in the context of the VD
curve.
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