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Abstract—Video streaming from sensors and miniaturized
devices is attractive for a wide range of web-based applications,
e.g., remote surveillance. Existing web-based video streaming
frameworks, such as the hypertext transfer protocol (HTTP) live
streaming (HLS) and the motion picture experts group’s dynamic
adaptive streaming over HTTP (MPEG-DASH), have dependen-
cies between the individual video segments and a manifest file that
contains video metadata. Also, existing web-based video players
are limited to fetching video segments over TCP/IP networks. The
video segment dependencies complicate video segment distribu-
tion by resource-constrained source nodes, which may employ
non-TCP/IP protocols, such as Zigbee. This paper proposes and
evaluates a wireless video sensor network platform compatible
DASH (WVSNP-DASH) framework and a WVSNP-DASH player
(WDP) for flexible web-based access of video from sensors and
other miniaturized source nodes. The WVSNP-DASH framework
is based on independently playable video segments with a spe-
cific naming syntax that conveys elementary metadata so as to
facilitate flexible search, transfer, distribution, and playback. The
WDP employs elementary processes of version 5 of the hypertext
markup language (HTML5) for video buffering and playback.
Video segments are fetched into the HTML5 file system space,
permitting flexible video fetching over a wide range of protocols,
including sensor network protocols. Comparative evaluations of
a WDP prototype with optimized HLS and MPEG-DASH players
indicate that WDP has low client (receiver) load, while providing
significant potential for power savings on the source node serving
the video streams.

Index Terms—Dynamic adaptive HTTP streaming (DASH),
HTTP live streaming (HLS), HTML5 file system (FS), video
distribution, video streaming, wireless video sensor.

I. INTRODUCTION

A. State-of-the-Art: Segmented Video Streaming With
Manifest File Dependencies

Segmented video streaming has become common for the
distribution of web-based video content over Internet
Protocol (IP) communication networks. The popular
HyperText Transfer Protocol Live Streaming (HLS) and
the Motion Picture Experts Group Dynamic Adaptive
Streaming over HTTP (MPEG-DASH) [1]–[4] distribute
streaming video through video segments with fixed playback
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duration. Segmented video streaming can adapt to varying
congestion levels on IP networks through switching the
video quality (and bit rate) when transitioning from one
segment to the next. Adaptation is important for video
streaming in IP networks in order to maximize performance
trade-offs [5], [6]. The different video segments can flexibly
provide adaptive video streaming in a wide range of contexts,
such as IP Television (IPTV) [7] as well as the emerging
hybrid broadband broadcast television (HbbTV) [8]–[10] and
other innovative distributions strategies [11]–[15].

An important structural characteristic of the existing seg-
mented video streaming frameworks, such as HLS and MPEG-
DASH, is that they rely on special manifest files and ini-
tialization segments to convey the video meta information.
These manifest files require special segment generation tools
and create dependencies between the segments of a given
video stream. These dependencies need to be initialized and
maintained by the video server and the client playing back
the video. Another important characteristic of state-of-the-art
players for DASH streaming video is that they can only inter-
act with video server nodes operating the TCP/IP networking
protocol stack. Also, as reviewed in detail in Section II, the
existing adaptive segmented video streaming frameworks are
not directly supported by version five of the Hypertext Markup
Language (HTML5).

B. Motivation: Video Acquisition by and Distribution From
Miniaturized Devices and Sensors

Miniaturized devices, such as smart watches and sensors,
are becoming ubiquitous and have increasingly multimedia
capabilities [16]–[19]. Video data from miniaturized devices
and sensors has the potential to enhance a variety of entertain-
ment, residential, and industrial services. Additionally, general
multi-dimensional (2D and 3D) data, e.g., from infrared sen-
sors, heat maps, Light Emitting Diode (LED) pixel sensor
maps, x-rays, and many other wirelessly linked remote acqui-
sition devices and sensors are becoming ubiquitous and can
augment multimedia services.

Miniaturized devices and sensors have tight resource con-
straints, including limited power (which typically has to be
supplied by batteries) [20]. Initializing and maintaining the
dependencies between the individual video segments and the
manifest files can become a significant burden for power-
constrained devices and sensors. Also, the file dependencies
restrict the independent caching and distribution of video
segments by storage-constrained video acquisition devices.

Resource-constrained devices often communi-
cate through non-TCP/IP protocol stacks, such as
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Zigbee [16], [17], [21], [22]. However, the existing seg-
mented video streaming frameworks are not designed to
communicate with non-TCP/IP protocol stacks and thus limit
video streaming to video acquisition devices with a TCP/IP
networking stack. Moreover, since existing DASH players do
not directly support adaptive playback through HTML5, they
require complex plug-ins that invite security vulnerabilities
or have very limited cross-platform support [23], [24].

C. Contributions: Name-Based Distribution and Playback
of Independently Playable Video Segments

This paper addresses the limitations of existing segmented
video streaming frameworks for streaming from miniaturized
devices outlined in the preceding section. Specifically, we
introduce an alternative to the segmented video streaming with
dependencies to a manifest file. This novel segmented video
streaming framework is well suited for video streaming from
miniaturized wireless devices and sensors and we refer to it
therefore as Wireless Video Sensor Node Platform (WVSNP,
may be pronounced “WaveSnap”) compatible DASH frame-
work, abbreviated as WVSNP-DASH. Each video segment
in the proposed WVSNP-DASH framework is an indepen-
dently playable file carrying its essential metadata in its
name. The proposed WVSNP-DASH framework includes a
specific name syntax for video segments. The name syntax
conveys essential meta information about the video segment;
thus eliminating dependencies to manifest (and initialization)
files. The proposed WVSNP-DASH framework is highly back-
ward compatible and interfaces with wireless video acquisition
devices and sensor networks without special re-design of video
file formats, video containers, sensor nodes, or networks.
WVSNP-DASH is video container agnostic and encapsu-
lates any container, codec, or Digital Rights Management
(DRM) [25], as long as the web browser supports it.

This paper also presents the design of a WVSNP-DASH
Player (WDP) that is based on core elements of HTML5. The
WDP provides a user interface to the WVSNP-DASH frame-
work by allowing client (playback) devices to retrieve and play
video from miniaturized video aquisition/sensor nodes. WDP
does not rely on any plug-in or back-end engines. Instead,
WDP employs elementary downloading through HTTP as well
as the HTML5 Filesystem (FS) together with the HTML5
video tag for managing video segment retrieval, transmission,
and playback. The video segment fetching into the HTML5 FS
enables video segment delivery from non-TCP/IP networks,
such as Zigbee networks. The video segments are displayed
on the HTML5 canvas element.

The WVSNP-DASH framework is evaluated with a WDP
prototype that is compared with optimized HLS and MPEG-
DASH framework players. To the best of the authors’ knowl-
edge, this is the first evaluation of DASH video streaming from
sensor nodes. This study thus provides empirical baseline per-
formance data for the streaming of sensor video with different
frameworks.

II. BACKGROUND AND RELATED WORK

A. HTML5 Video Playback

Playback of video is supported by most modern web
browsers as a feature of HTML5 [26]–[29]. Generally, HTML5

based video players utilize the HTML5 video tag to download
and play full-length video files. However, the HTML5 <video>
tag is not uniformly nor completely implemented by common
web browsers, requiring players to implement work-arounds if
the video tag fails to open, play, or render the <video> source.

Also, with HTML5, adaptation of the video bit rate or pre-
sentation quality would require the re-download of the entire
video file. Media Source Extensions (MSEs), which have been
developed by the World Wide Web Consortium (W3C) [30],
could serve as a basis for adaptive streaming in HTML5 based
video players. However MSE support is inconsistent in popu-
lar web browsers, limiting the cross-browser compatibility of
an MSE based player design.

Alternatively, web browser video plug-ins (see [31]–[34]),
could adapt the video streaming through slicing the full-length
video file and monitoring the download of the different pre-
sentation qualities (versions). However, such plug-ins can give
rise to a multitude of security and incompatibility issues as
well as the burden on the user to update and maintain the
plug-ins [23], [24].

Zhu et al. [35] recently designed a pure HTML5 based
video player that uses the canvas element to display video
in different web browsers. The player circumvents the prob-
lem of accommodating different video codecs by decoding the
received video chunks using JavaScript in the browser into an
intermediate format. The intermediate format is then passed
to the browser’s video tag for decoding with the native video
decoder of the browser. However, performing both the video
decoding to an intermediate format and the video drawing
on the canvas in the browser leads to very high CPU load,
which is prohibitive for mobile devices. A player based on
3D graphics rendering has been proposed in [36].

The proposed WDP design does not require MSE, nor plug-
ins; instead, WDP relies only on the legacy single <video> tag
reference. Also, WDP does not use any extra decoder module;
instead, WDP uses the decoder engine native to the browser,
resulting in no extra CPU load for the video decoding.

B. DASH Video Streaming and Playback

According to the Dynamic Adaptive Streaming over HTTP
(DASH) specification [37], [38], a web-based DASH video
player must be able to adapt the video presentation quality
level during playback by switching among different quality
versions of the video stream. A plug-in free player must sup-
port the playback of chunks (segments) derived from a video
stream via an HTML5 video element. DASH players support
interactions, such as jump backward (rewind, RW) or for-
ward (fast forward, FF) by fetching the video segment for
the desired playback point. However, existing DASH players
must first process the manifest file and play the initializa-
tion segment before such playback jumps. The WDP does
not require an initialization segment and thus provides truly
random segment playback on demand.

Quacchio et al. [39] proposed a DASH player that uti-
lizes a custom-built Web-kit based browser to achieve cus-
tomized handling of the HTML5 video elements. The proposed
player design relies heavily on plug-ins to achieve adap-
tive streaming. In order to facilitate the adoption of the
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MPEG-DASH standard [37], [40], [41], the DASH Industry
Forum developed a reference player, namely dash.js [42].
The dash.js player employs media source extensions (MSEs).
Several derivatives of the dash.js player (see [31], [43]), have
recently been proposed. These derivatives require specific web
browsers and extensive plug-in support. Similarly, there are a
variety of DASH video players available that work only in
conjunction with specific web browsers and require plug-ins
or rely on the Real Time Messaging Protocol running over
TCP/IP.

More importantly, a thorough literature search and examina-
tion of a wide range of available proprietary player solutions
revealed that none of the existing video players are designed
to integrate with non-TCP/IP networks, such as resource-
constrained wireless sensor networks (WSNs) employing the
Zigbee protocol. Overall, these recent DASH player develop-
ments do not comply with the cross-platform design goal of
HTML5, instead they are limited to specific web browsers
with their respective plug-ins. In contrast to the recent DASH
player developments, the goal of the proposed WVSNP-DASH
framework is to make video data from sensor networks as
widely accessible as possible with little effort, if any, from
the consumer device user.

We note for completeness that recent research has
sought to provide additional features, such as subtitles and
annotations [44], [45], in DASH video streaming as well as
examined the implications of the adaptive DASH streaming
on network resource requirements [46]–[49]. Other comple-
mentary related research has sought to optimize the video
encoding for DASH streaming [50], [51] and improve buffer
management algorithms and segment scheduling [52], [53].

C. Video Sensor Networking

There has been a recent focus on the lower layers of the
Internet protocol stack for integrating sensor networks into
the overall Internet of Things (IoT) [54]–[56]. A widely con-
sidered approach is IP version 6 based Low power Wireless
Personal Area Networks (6LoWPAN), which covers radios
and firmware that compress IPv6 packet headers into smaller
6LoWPAN headers suitable for low-data-rate IEEE 802.15.4
personal area network standards, such as Zigbee, operating
in sensor networks [57], [58]. The proposed WVSNP-DASH
framework and WDP are designed to directly work within
these low-data-rate mesh networks. Also, some platforms and
gateways have been introduced to make the sensor data acces-
sible over IP networks and to enable interactions between
networked sensors and consumer devices [59]–[62].

Video sensor focused services may be viewed as com-
ponents in service based frameworks [63] to serve as a
cloud-based repository directories of sensor data using
service oriented architectures (SOA), infrastructures, and
protocols [64]–[67]. However, video sensors are typically not
designed to take advantage of SOA data exchange structures.
In particular, sensor data cloud repositories presently have no
concept of video as search-able or addressable sensor data.
The name syntax of the proposed WVSNP-DASH framework
enables cloud repositories to offer video segments as part of
data sets and services.

A multimedia playback framework based on MPEG-DASH
within an information centric network [68] has recently
been proposed in [69]–[71]. The framework in [70] encom-
passes named addressing and routing within the context of
TCP/IP networks. The name-based structure of the proposed
WVSNP-DASH framework is complementary to the frame-
work in [69] and [70] and compatible with information centric
networking. At the same time, the proposed WVSNP-DASH
framework is designed to work beyond TCP/IP networks so
that it makes the video data on sensor nodes employing other
(non-TCP/IP) network protocols readily available to consumer
electronics. The proposed framework can furthermore readily
be combined with efficient sensor network routing techniques,
e.g., routing based on virtual coordinates [72]–[74].

III. WVSNP-DASH FRAMEWORK

A. Independent Video Segments

The WVSNP-DASH framework facilitates multimedia
acquisition, storage, distribution, and playback through assign-
ing a unique name to a given independently playable multime-
dia object. If a node has a WiFi, Zigbee, or Bluetooth radio,
a video object source can be uniquely named for WDP to
be able to fetch the object. This WVSNP-DASH design of
independently playable media objects with a specific naming
syntax enables video data object distribution across networks,
including cross-network data transfers between traditional IP
networks and sensor networks.

All WVSNP-DASH video segments have the same type
and format; in particular, each segment is a complete video
file. The sensor (server) node only processes the video file
data when creating the video file. A created video file is then
always ready to be fetched and transmitted without any fur-
ther pre-processing on the sensor (server) node. This approach
reduces sensor (server) node power consumption compared
to the existing HLS and MPEG-DASH frameworks, see
Section V-C.

The WVSNP-DASH framework is conceptually similar to the
MSE-based MPEG-DASH [42] in that it does not require the
browser to directly support DASH via the video element.
MSE only exposes the HTML5 media element to its interface,
which then allows flexible appending of media segments to
this exposed element. The browser continues to perform the
traditional decoding and rendering. The intelligence required to
parse manifest files, request segments, and switch adaptively is
left to the player client script. This is somewhat of an improve-
ment over HLS in that HLS requires browsers to be re-written
and the video tag to be modified to support manifest files;
MSE avoids these modifications by preprocessing the stream
and passing video chunks to the video tag as if each chunk
was a traditional HTML5 supported video file. WDP further
simplifies this concept by not requiring the server to specially
format multimedia data, as MPEG-DASH and HLS do.

B. WVSNP-DASH Segment Name Syntax

The WVSNP-DASH framework prescribes a video segment
naming syntax that uniquely names each video segment. The
syntax of the segment name has complete information for a
WVSNP-DASH player (WDP) to be able to play back the
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video files stored in a remote network node. The client should
be able to play back an entire video-on-demand (VOD) set or
live video based solely on the meta information gleaned from
parsing the segment name.

The WVSNP-DASH segment naming syntax
follows the simplified Backus-Naur Form [75]
<filename>-<maxpresentation>-<presentation>
-<mode>-<maxindex>-<index>.<ext>
The components of the name syntax are defined as follows:

• <filename>: This is a unique string for each video
stream (set of video segments). The <filename> repre-
sents the path, e.g., through an IP address or a URL, to
the video stream, or represents a unique prefix describing
the stream.

• <maxpresentation>: This integer defines the index
of the highest presentation quality (e.g., quality version)
available for the stream.

• <presentation>: The actual presentation quality of
this video-segment file. A lower index defines a lower
quality of the stream, whereby 0 is defined as the lowest
index denoting the lowest available video quality.

• <mode>: This string indicates the playback mode of this
segment, e.g., video on demand (VOD) or live playback
(LIVE).

• <maxindex>: This integer gives the total number of
segments available for playback for the current video
stream.

• <index>: This integer gives the index of this segment
within the finite set of segments of this stream.

• <ext>: This string indicates the video container format
of this segment, e.g., .mp4 or .webm. The player decides
if the container format and encoded video can be played
back and informs the user accordingly.

This simple WVSNP-DASH video segment name syntax con-
tains the complete information needed by the WVSNP-DASH
client to retrieve and play the video segments in a sensor
network.

C. Implications

The simplicity of this name syntax has far-reaching impli-
cations as it transfers most of the video playback and retrieval
complexity to the player. The player is the consumer of the
video data, and thus knows what it wants to do with the video
data and how to interpret the video data.

The WDP introduced in this paper demonstrates the concept
of the uniqueness of the video segment name. Since WSNs are
resource constrained in terms of power, computing resources,
and storage space, WVSNP-DASH enforces that video files
within a sensor network are captured and stored as complete,
individually playable video files of short duration, preferably
no longer than ten seconds (the impact of the segment length
is examined in Section V-C).

Recall that with HLS and MPEG-DASH, the player requires
the manifest file in conjunction with the individual video seg-
ment files for playback. In contrast, the WVSNP-DASH video
segment name syntax ensures that the name of the segment,
or any other future network video object, conveys sufficient
information for the player to decide how to fetch and play

the video segments. The manifest files required by HLS and
MPEG-DASH introduce incompatibility issues as they require
browsers to support manifest files as well as live playback
maintenance of the manifest files. By communicating all player
pertinent metadata through the segment file name, WVSNP-
DASH avoids these incompatibility issues and is thus highly
backward compatible.

Another important feature of the WVSNP-DASH frame-
work is random playback of any segment, as needed by
the player. In particular, WVSNP-DASH has no special
initialization segment, which is necessary for HLS and
MPEG-DASH players to understand how to play a video. Each
WVSNP-DASH video segment has enough metadata (in its
name) to start playing the video. This feature enables unlimited
“crawler type” network search algorithms. These can be used
by future information centric network (ICN) routers and con-
tent distribution networks (CDNs) [68]. Future active players
may start playing the video as soon as a segment is discovered.

For instance, as detailed in Section IV-B, a segment
name: src=filename-1-1-VOD-45-7.mp4 can be eas-
ily passed to the player. Based on the meta information
contained in this name, the player can initiate the stream-
ing process of segments 7 to 45 by fetching all segments
and playing them one after another. The random playback
feature of WVSNP-DASH enables the player to perform arbi-
trary fast forward (FF) and rewind (RW) of the video. The
naming syntax of WVSNP-DASH also enables the player
to take advantage of all DASH features, such as adaptive
switching.

IV. WVSNP-DASH PLAYER (WDP)

A. Design and Implementation

The WDP design goal is to rely only on widely supported
HTML5 features, so as to achieve broad cross-platform sup-
port. Selecting HTML5 features that are reliably supported
by most browsers is generally difficult. Therefore, the first
prototype version of WDP is constrained to using only offi-
cial core HTML5 features. WDP combines the advantages of
common support for HTTP downloading via Asynchronous
JavaScript and XML (AJAX) (through the XMLHttpRequest
functionality) [23] as well as the HTML5 File System (FS)
Application Programmers Interface (API) [76]. The HTML5
FS is run-time memory allocated to a process running on a
browser. Data objects in this protected (sandbox) space can
be cached for future use by the same URL on the same
browser. Other URLs in separate tabs or other browser win-
dows cannot access this memory space. Both AJAX and the
FS API are used as they are broadly supported HTML5
features [23], [76]. Where the FS API is not yet fully sup-
ported, third party wrappers such as IndexedDB [77] are
used to mimic the FS API. This approach helps to keep the
design logic intact across browsers as well as to maintain
compatibility as official support improves.

B. Flow

1) Compatibility Test: The entry point of the player is the
browser detection and compatibility test module illustrated
Fig. 1. This module tests if the browser supports the core
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Fig. 1. Illustration of compatibility test flow.

HTML5 features used by WDP. AJAX tools check support for
downloading, saving, and playing back the requested video via
FS API or a suitable wrapper. If an MPEG-DASH manifest
file is provided, and the browser supports MSE, the DASH-
JS player (a precursor of dash.js) is launched for playback as
an independent module within the WDP modular architecture.
Alternatively, for an HLS manifest file, the native video player
of the web browser is set up with HLS. If the URL (name) of
a requested video does not match the WVSNP-DASH video
segment name syntax, and neither the HLS nor MPEG-DASH
manifest syntax, WDP assumes a traditional HTML5 compat-
ible video file. The HTML5 video file is then played back
in the browser’s native HTML5 video element as legacy full-
length video. Otherwise, the default is to play WVSNP-DASH
video.

The WDP design is relatively future proof in that WDP
works on any browser with support for the HTML5 core
elements. Also, any future new video codec, such as
H.265/HEVC or VP9, or any future video container format,
that can be played as a whole video via an HTML5 <video>
element, is supported by WDP.

2) Buffering and Playback Processes: The player consists
of two main processes running in parallel: a buffering pro-
cess and a playback process. Each process has its own writing
(buffer) and reading (player) counters. The buffering process
runs continuously in a loop to fetch segments from the remote
server node into the HTML5 FS, see top part in Fig. 2. Each
loop iteration handles one video segment (file) for the cur-
rently selected video stream and presentation quality. The file

Fig. 2. Overview of WVSNP-DASH player (WDP): video segments are
fetched from the remote sensor (server) node into the HTML5 file system
(FS) by the buffering process. The playback process plays the current segment
from one hidden video element to the canvas element, while the other hidden
video element loads the next segment from the HTML5 FS.

is represented as a binary large object (Blob) [78]. A Blob
is a data structure that encapsulates raw binary data and can
be fed directly to an HTML5 <video> element. For VOD, the
buffering process runs continuously until the last segment has
been downloaded. However, the user may restart the process
with an arbitrary segment by changing the presentation quality
or fast-forwarding to a point beyond the buffer line.

The playback process is at least three segments behind the
buffering process. As shown in Fig. 2, in order to stich the
segments seamlessly together, there are two hidden <video>
elements which contain consecutive video segments. When
one segment ends, the corresponding <video> element triggers
an event, which in turn triggers the playback of the next video
segment from the other <video> element. The now unused
<video> element is linked to the subsequent segment by load-
ing the segment from the HTML5 FS. Similar to the buffering
process, the file is loaded as raw binary data in a Blob variable
and fed directly to the <video> element.

Glitches in the form of resizing <video> elements or black
screens during the transitions from one <video> element to
the next are avoided with an HTML5 <canvas> element. Each
frame of the currently active video element is drawn on the
<canvas> element. During a transition, the last active frame is
displayed. With the canvas, the transition glitches caused by
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the slow JavaScript are not visible to the viewer. For streams
with continuous audio, longer video segments reduce glitches
in the audio track playback due to fewer transitions. Audio
fading techniques can be employed to seamlessly morph the
audio tracks of the video segments; such fading techniques are
beyond the video-specific scope of this paper.

The use of the HTML5 FS in conjunction with the HTML5
canvas for rendering video in WDP enables the rendering of
video that arrives to the player via other network mecha-
nisms, aside from basic HTTP/AJAX mechanisms [23]. For
instance, the WDP design allows the rendering of images
and data that arrive to the client via Common Gateway
Interface (CGI) frameworks [79], which are very impor-
tant for cross-network exchanges, e.g., between Zigbee and
Bluetooth networks. The WDP architecture can also read-
ily take advantage of peer-to-peer features of the client and
local hardware access features, e.g., via the emerging Web
Real Time Communication (WebRTC) interface [80]. WDP’s
networking flexibility, combined with WVSNP-DASH’s inde-
pendently playable video segments (i.e., no need for manifest
file or initialization segment), enables simultaneous stream-
ing and interweaving of video segments from different video
acquisition devices/sensors and different networks, e.g., from
Bluetooth, Zigbee, and WiFi networks.

V. WDP EVALUATION

A. Evaluation Set-up

A prototype of WDP was extensively compared with pop-
ular DASH players considering the following metrics:

• CPU load: Especially for mobile client (playback)
devices, the central processing unit (CPU) load dur-
ing video playback, which directly influences power
consumption and battery drainage, should be low.

• Memory consumption: The consumption of working
memory, which is limited in mobile devices, gives an
indication of the efficiency of resource handling.

• Power consumption: Low power consumption at the
server side, i.e., the video aquisition/sensor node,
which captures, stores, and serves the video files, is
critical [20].

For the prototype evaluation, a typical surveillance video
was captured on the campus of Arizona State University
(ASU). The 10 minute ASU video (without audio) contains
timelapse captures of everyday outdoor activity and scenery
around the ASU campus. The ASU video was used for both
VOD and LIVE video scenarios. For the LIVE video scenario,
a node camera was pointed at the full-screen display of the pre-
recorded video while measurements were captured in real time.
Focusing and positioning the node camera to see only the full-
screen video display made the LIVE video essentially identical
to the pre-recoded video. The H.264 encoded .mp4 video
was generated with 640 × 360 pixel resolution, 500 kb/s, and
25 frames/s. The video was segmented into MPEG2 Transport
Stream (TS) segments for HLS playback, independent MP4
segments for WVSNP-DASH playback, and ISO Base Media
File Format (BMFF) segments for MPEG-DASH [81]. The
segments were created for 2, 5, 10, and 15 second segment
lengths.

The WDP prototype was compared with HLS using the
JWPlayer 6 with the HLSProvider plug-in and with MPEG-
DASH using the DASH-JS player. The presented evaluations
were performed with the Google Chrome (version 32) web
browser running on a client operating on a Ubuntu 13.10
64 bit, Dell OptiPlex 360 with Intel Core2 Duo E7300
2.66 GHz processor and 2 GB RAM. The evaluations were
also run with a client operating on Macbook Air Mid 2012
with i5-3427U 1.8 GHz processor and 4 GB RAM as well
as a Windows 7 64 bit client booted on the same Macbook
and gave similar results, which are not included due to space
constraints.

The server node power consumption was measured from
an i.MX6 ARM Cortex-A9, 1.2 GHz Quad core, 2 GB node
development board. The server node captured video with a
USB webcam and generated and served video segments via
WiFi and a streamlined low-footprint mongoose HTTP server.
The performance metrics were sampled 14,000 times during
the 10 minute video transmission, which was replicated five
times.

B. Client Node CPU Load and Memory Consumption

We observe from Table I that for the 5 s LIVE scenario,
WDP has a similar CPU load as HLS (JWPlayer 6) while
the WDP memory consumption is somewhat lower than for
HLS. On the other hand, for the 5 s VOD scenario, WDP
has higher CPU load and memory consumption than HLS and
MPEG-DASH (DASH-JS). The higher CPU load and memory
consumption of WDP for the VOD scenario are mainly due
to the WDP buffering algorithm for VOD, which fetches all
segments as fast as the network bandwidth and the client FS
space allocation allow. In contrast, HLS buffers only approxi-
mately three segments and discards them after playback. WDP
stores all segments in the FS space leading to high memory
usage. This WDP approach facilitates power savings on the
server node by avoiding re-fetches during quality switches or
actions that reuse previously fetched VOD segments (such as
rewind).

The WDP LIVE buffering algorithm behaves similar to
HLS. As Table I indicates, WDP LIVE playback has lower
CPU load and memory consumption than HLS. This is remark-
able in that the WDP prototype uses a resource-heavy canvas
element as well as two video elements concurrently to render
the video, while HLS uses a highly optimized HLSProvider
Flash helper plug-in to the browser with only one video ele-
ment. MPEG-DASH (DASH-JS) playback, included for the
5 and 10 s VOD scenarios in Table I, has the lowest CPU load
and memory consumption. This MPEG-DASH result indicates
that using pure Javascript and MSE with one video element
can be more efficient than using a plug-in.

In order to further examine the high CPU load and mem-
ory consumption of WDP for VOD, the WDP prototype was
slightly modified to play segments directly in the video ele-
ments without multiplexing two video elements nor rendering
on the canvas. This modified WDP, which is denoted by
“WVSNP-no-c” in Table I, has significantly lower CPU load
and memory consumption than HLS as well as similar CPU
load and memory consumption as MPEG-DASH. This result
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TABLE I
AVERAGE AND STANDARD DEVIATION (SD) OF CPU LOAD AND

MEMORY CONSUMPTION (IN MEGABYTE) ON WIFI CLIENT

NODE AS WELL AS POWER CONSUMPTION (MEASURED

THROUGH DRAWN CURRENT) ON SERVER NODE

for WSNP-no-c, i.e., WDP without using the canvas element,
indicates that the high WDP CPU load and memory consump-
tion for VOD are mainly due to the canvas element. This
validates that the use of full (independently playable) video
segments does not increase client resource usage compared to
the manifest/initialization segment file approach.

C. Server Node Power Consumption

Since the voltage readings were generally consistent at 5 V,
only the current drawn by the server node during each sce-
nario is reported as a relative measure of power consumption in
Table I. The results for current in Table I indicate that the LIVE
scenarios have significantly higher currents and thus higher
power consumption than the VOD scenarios. This is because
the server node captures, transcodes, stores, and serves the
video segments at the same time. More importantly for the
LIVE scenario, the WDP prototype has only slightly higher
power consumption than HLS. In interpreting these power
results, it is important to note the differences in using ffmpeg
for segment capture in the compared frameworks. HLS cap-
tured and transcoded LIVE video in an optimized built-in

(native) HLS function of ffmpeg, which achieves highly effi-
cient software-based capture and transcoding. On the other
hand, WVSNP-DASH capture used a prototype-level bash
script that newly invoked ffmpeg for each LIVE segment cap-
ture. This means that the WVSNP-DASH prototype incurred
extra power, resources, and inefficiencies for each context
switch of launching ffmpeg, transcoding, storing, and then
shutting down the ffmpeg process for each video segment
capture. Moreover, WVSNP-DASH interpreted a script at run
time for every segment, adding to the resource usage. In con-
trast, HLS capture invoked ffmpeg only once at the start of
the video stream capture and captured the remaining seg-
ments with the same optimized ffmpeg (from the original
invocation context). These conceptual differences imply that
an optimized native WVSNP-DASH capture application has
considerable power savings potential for LIVE video in the
WVSNP-DASH framework compared to the already optimized
HLS framework.

A further potential for power savings arises from the
WVSNP-DASH operation without a manifest file. HLS and
MPEG-DASH require a manifest file that needs to be managed
and re-read and updated during the capture and/or playback.
For VOD, the manifest files and segments are typically static
and the indices do not need to be continuously updated.
However, for synchronization of LIVE video, the manifest
files typically have to be re-fetched regularly for LIVE video
synchronization. Additional processing to create special subse-
quent segments different from the initialization segment adds
to the power consumption of HLS and MPEG-DASH for LIVE
video.

For VOD, the results for current in Table I indicate that
longer segments generally reduce the power consumption.
Again, noting the inefficiencies in the WVSNP-DASH pro-
totype due to script interpretation and ffmpeg invocation for
each video segment, there are power saving potentials for
WVSNP-DASH compared to HLS and MPEG-DASH.

In order to further examine the impact of the segmented
video streaming, the full 10 minute ASU video was streamed
via progressive download and the results are reported in the
bottom line of Table I. Table I indicates that 10 s segmented
HLS and MPEG-DASH streaming consumed less power com-
pared to full-video streaming. These results indicate that
segmented video streaming does not lead to higher server node
power consumption than streaming a full (unsegmented) video
to an HTML5 element. The 36.7 mA measured for HLS for
10 s VOD segments can be considered as the worst-case (max-
imum) current consumption expected of a WVSNP-DASH
using a specialized native capture. More generally, the compar-
ison of currents for 10 s VOD segments and full video down-
load indicates that segmented streaming can result in about
15 % power savings compared to streaming progressively
downloaded full videos. From further test evaluations, that are
not included due to space constraints, it was noted that there is
no benefit of using 15 s segments compared to 10 s segments.

In WVSNP-DASH, each video segment file has its own file
header. The file header contains all the video file properties and
internal video container metadata, such as duration, compres-
sion type, size, and bit rate, that are needed for decoding by
any player. In HLS and MPEG-DASH, most of this file header
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metadata is moved to the first segment and the remaining seg-
ments are merely fixed data elements (blocks) that cannot be
decoded independently. Thus, it might appear that WVSNP-
DASH introduces some overhead by including the file header
in each video segment file, whereas HLS and MPEG-DASH
are continuous streams with random access points due to pre-
set intracoded (I) frames. However, due to the self-contained
file headers in each WVSNP-DASH segment, there is no look-
up data that needs to be maintained and referenced at the server
node every time from the initial segment when there are quality
switches for dynamic adaptation. This reduction of server node
processing for managing the video segments has the potential
to reduce power in video sensor nodes. WVSNP-DASH seg-
ments can still be captured with specific I-frame positioning
to match efficient transcoding practices.

VI. CONCLUSION AND FUTURE WORK

This article presented the design structure of the
Wireless Video Sensor Network Platform compatible Dynamic
Adaptive Streaming over HTTP (WVSNP-DASH) framework.
The WVSNP-DASH framework specifies a naming syntax
for independently playable video segments. Existing DASH
frameworks convey video metadata through a manifest file
and begin video streaming with a special initialization video
segment; subsequent video segments depend on the mani-
fest file and initialization segment for playback. In contrast,
the WVSNP-DASH video segments convey essential metadata
through their name and can be played independently, i.e., each
individual WVSNP-DASH segment is fully playable without
reference to any other file or segment. This file independence
simplifies the video capture and video file segment creation
and streaming by a miniaturized video aquisition/sensor node.

This article also presented the design of the WVSNP-DASH
Player (WDP). WDP is based on core HTML5 features ensur-
ing wide cross-platform support. WDP fetches video segment
files into the HTML5 File System (FS) and plays them with-
out requiring plug-ins on the HTML5 canvas element. While
existing DASH players require specific plug-ins or protocols
running over TCP/IP, the fetching into the HTML5 FS in WDP
enables video playback from non-TCP/IP server nodes, e.g.,
video sensor nodes operating the Zigbee protocol.

The comparative evaluation of a WDP prototype against
optimized HLS and MPEG-DASH players indicated that the
WDP prototype has competitive client CPU and memory con-
sumption. Also, the independently playable WVSNP-DASH
video segments create significant potential for power savings
on the sensor node serving the video. To the best of the authors
knowledge the presented evaluation is the first to examine the
effects of different DASH frameworks on sensor node power
consumption.

The source code of the WDP prototype is freely available
from the authors so as to enable open-source based further
development [82]. Aside from the refinements of the WDP
prototype noted in Sections V-B and V-C, such as operat-
ing with a single ffmpeg initiation, there are a number of
important directions for future development and research. For
instance, Media Source Extensions (MSE) have recently been
increasingly adopted by web browsers, thus incorporating the

ability to use MSE into WDP where HTML5 FS is not
supported is becoming a useful feature for ensuring broad
cross-platform support. The modular WDP design is similar
to how dash.js, see Section II-B, utilizes MSE, facilitating the
WDP extension to MSE. Another future development direc-
tion is automatic dynamic quality level adaptation. The WDP
prototype manually selects the desired quality level of a video
stream. Dynamic adaptation have been extensively covered in
the literature (see [83]–[92]). A module can be added to WDP
for instantiating specific automated dynamic adaptation algo-
rithms. In the wider networking context, video streaming from
sensor networks requires moreover research on architectural
structures and protocol mechanisms for efficient interconnec-
tion with access and metropolitan area networks [93]–[96].
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