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Abstract Multimedia streaming from miniaturized sensors is attractive for a wide range of
web-based applications, including surveillance and Internet of Things (IoT) applications.
This paper profiles the power consumption in a wireless video sensor node. We compare
the power consumption of video streaming frameworks based on a manifest file, such as the
Hypertext Transfer Protocol (HTTP) Live Streaming (HLS), with a Wireless Video Sensor
Network Platform compatible Dynamic Adaptive Streaming over HTTP (WVSNP-DASH)
framework. The WVSNP-DASH framework is based on independently playable video seg-
ments that convey the metadata required for playback in their names (and do not require
a manifest file). The power consumption components of the video capture and storage

Parts of this work were conducted while Y. Liu visited Arizona State University, Tempe, sponsored by
the China Scholarship Council.

� Martin Reisslein
reisslein@asu.edu

Adolph Seema
adolph.seema@asu.edu

Tejas Shah
tpshah1@asu.edu

Lukas Schwoebel
lukeschwoebel@gmail.com

Yu Liu
yliu581@asu.edu; liuy@bupt.edu.cn

1 School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe,
AZ 85287-5706, USA

2 Favendo GmbH, Gena, Germany

3 School of Information and Communication Engineering, Beijing University of Posts
and Telecommunications, Beijing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-017-5565-1&domain=pdf
http://orcid.org/0000-0003-1606-233X
mailto:reisslein@asu.edu
mailto:adolph.seema@asu.edu
mailto:tpshah1@asu.edu
mailto:lukeschwoebel@gmail.com
mailto:


21418 Multimed Tools Appl (2018) 77:21417–21443

pipeline are evaluated. The presented extensive power profiling measurements provide real-
world empirical data on architectural design decisions for multimedia sensor nodes suitable
for IoT applications. Our measurement results indicate that the name-based WVSNP-
DASH framework is well suited for flexible low-power web-based video streaming from
miniaturized sensors.

Keywords Dynamic adaptive HTTP streaming (DASH) · HTTP live streaming (HLS) ·
Power measurement · Video streaming · Wireless video sensor

1 Introduction

1.1 Motivation: low-power video streaming from sensors

Wireless sensor networks and the emerging Internet of Things (IoT) increasingly involve
applications that require multimedia streaming [12, 14, 32, 39, 43, 46, 66, 67, 80, 99, 101],
e.g., the capturing and real-time web-based network delivery of a surveillance video feed
[92]. Low-power operation is a key requirement for video streaming from miniaturized sen-
sors, that are often resource-constrained and rely on limited battery power [15, 42, 60, 63,
68, 70]. Web-based video streaming has evolved in recent years toward the streaming of seg-
ments with a fixed video playback duration over the Hypertext Transfer Protocol (HTTP) [3,
13, 45, 65, 79, 88, 93, 104]. The popular HTTP Live Streaming (HLS) [62] and the Motion
Picture Experts Group’s Dynamic Adaptive Streaming over HTTP (MPEG-DASH) [85, 89]
are based on a manifest file that conveys the video meta information required for playback.
The manifest file based streaming introduces dependencies between the individual video
segments and the manifest file that need to be maintained by the video server node, e.g., a
miniaturized video sensor node. Maintaining these dependencies may be quite demanding
for power-constrained sensor nodes.

In an attempt to simplify video streaming from power-constrained sensor nodes, a name-
based video segment streaming framework, the co-called Wireless Video Sensor Network
Platform compatible Dynamic Adaptive Streaming over HTTP (WVSNP-DASH) frame-
work, has recently been introduced in [78]. WVSNP-DASH is not a modification of the
existing MPEG-DASH [85, 89] framework. Instead, WVSNP-DASH is a fundamentally
different approach to achieve the dynamic adaptive streaming over HTTP (DASH) func-
tionality in resource constrained sensor networks. We note that the acronym “DASH” is
sometimes used only in the context of the MPEG; however, we interpret “DASH” more
broadly to refer to “dynamic adaptive streaming over HTTP”. Alternatively, the acronym
“HAS” for “HTTP adaptive streaming” could be used to refer to the general adaptive stream-
ing paradigm. However, we feel that the terminology “dynamic adaptive streaming over
HTTP (DASH)” is more descriptive and more widely recognized and therefore use “DASH”
for our WVSNP-DASH.

The WVSNP-DASH segment naming syntax conveys elementary metadata and thus
obviates the need for maintaining dependencies to a manifest file. Rather, the WVSNP-
DASH video segments are independently playable video files that facilitate flexible
low-power streaming from miniaturized sensor nodes. We briefly note that the WVSNP-
DASH naming syntax is designed to convey all the meta-data necessary for dynamic
adaptive streaming. More specifically, the naming syntax conveys the file name to uniquely
identify the video stream (i.e., sequence of video segments), the highest video quality avail-
able for the stream, the video quality of the considered segment, the playback mode (LIVE
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or VOD), the total number of segments available for the video stream, the index (number)
of the considered segment, and the video container format. This meta data is sufficient to
enable a client to retrieve and play the video segments following the DASH principles [78].
A main motivation for this study is to investigate the power consumption characteristics of
the relatively new name-based streaming framework [78] in comparison to the conventional
manifest file based streaming framework.

1.2 Contributions

This article presents a rigorous empirical measurement study of power consumption for
video streaming from miniaturized multimedia sensor nodes. Our first main contribution is
a comparison of the power consumption of two frameworks for capturing, storing, trans-
mitting, and playing back web-based video segments: Manifest file based video streaming
vs. segment name based streaming. Specifically, we conduct measurements to compare the
power consumption of the commercial manifest file based HLS framework against a pro-
totype of the name-based WVSNP-DASH framework. Our measurement results indicate
that WVSNP-DASH consumes substantially less power than HLS for video capture and
LIVE streaming. The name-based WVSNP-DASH segment streaming obviates the mainte-
nance of the manifest to segment file dependencies in HLS, which increase the sensor node
power consumption. For video on demand (VOD) streaming of already captured and stored
video segments, WVSNP-DASH and HLS have comparable power consumption since the
manifest file to segment dependencies have been pre-configured during the video capture.

Our second main contribution is a detailed set of measurements for power profiling the
major power consumption components of video capture and storage at a multimedia sensor
node. We profile the main sensor node design aspects that influence the power consumption,
including the video library tools (FFmpeg [21] vs. GStreamer [28]), the interface used in the
data movement pipeline from camera to sensor node board [USB vs. Camera Serial Interface
(CSI)], as well as hardware (HW) acceleration of video coding versus software (SW) only
encoding. We find that the GStreamer video library tools consume less power than FFmpeg
tools. Also, the CSI interface and HW encoding are preferable for low-power sensor nodes.
Overall, our measurements provide an empirical power consumption reference for designers
of wireless multimedia sensor nodes.

2 Background and related work

Numerous studies have noted the critical role that power plays in sensor network design
and operation [8, 17, 18, 25, 41, 48, 51, 55, 61, 69, 100]. However, relatively few studies
have examined the power measurement and management in sensor nodes [37, 72, 102]. In
this section, we first briefly summarize the background on power measurements and then
review existing sensor node power measurement studies.

2.1 Sensor node power measurement methods

The energy consumption of an electrical device is calculated by the product of current I ,
voltage V , and time t . Voltage and time can be measured directly. However measuring
the current is challenging and the existing current measurement approaches present sev-
eral tradeoffs and limitations that we summarize in the following. The existing in-system
power monitoring tools include PowerTop [2], powerstat [23], software libraries, such as
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PowerAPI [9, 58, 59] for process specific monitoring, and kernel specific libraries, such
as powerman [22] and powerscripts [5]. These in-system methods affect the device under
test (DUT) since they are power-consuming processes within the node. Also, these methods
require that the operating system has been booted before they can commence measuring.
Thus, these in-system methods cannot measure the node power consumption during the boot
loader stages and the power-up part of the node.

The survey [35] reviews different approaches for measuring energy consumption in wire-
less communication devices. One popular approach is to place a shunt resistor in series
with the total load circuit [33]. The current draw is the same across the whole circuit which
implies a current draw of V/R across the shunt resistor. The shunt resistor method is simple;
however, if the voltage over the resistor gets too large, the device under test may mal-
function. This malfunction is avoided by using a very low shunt resistor value. The low
shunt resistor value, however, makes the measurement of highly dynamic signals difficult.
The higher the dynamic range of the current, the lower the accuracy of the low measured
currents. The accuracy for low currents can be improved with the Voltage to Frequency Con-
version method [47], which connects the shunt resistor to a voltage to frequency conversion
block. Highly dynamic low as well as high currents can then be measured with the same
high accuracy from the conversion block.

Another current measurement technique is the inductor method, usually used in current
clamps for heavy engineering tools. Current is determined by sampling the voltage induced
in the clamp inductor by the electric field around the wire supplying the load circuit. The
inductor technique supports high sampling rates. The drawbacks of the inductor method
include a required calibration after each measurement and noise susceptibility.

The Coulomb counter method uses two capacitors, which are charged and discharged in
turn [57]. The capacity of the capacitor is used to calculate the discharge time. The temporal
resolution of the Coulomb counter method depends on the current draw. Since the current
drawn typically varies, the temporal resolution also varies. Low current draws result in low
frequency, and hence low temporal resolution.

2.2 Sensor node power measurement studies

Low-cost power measurement techniques based on the shunt resistor and the current clamp
for wireless sensor networks have been examined in [54]. A Sensor Node Management
Device (SNMD), i.e., a wire-based testbed infrastructure, based on a shunt resistor has been
studied in [34] for a wireless sensor node. A Scalable Power Observation Tool (SPOT) based
on a shunt transistor has been introduced in [40].

Complementary to our measurement study, the energy efficiency of HW accelerated
cryptography modules on sensor nodes has been examined in [31] with the SANDbed
testbed [34] equipped with Sensor Node Management Devices (SNMDs) [31, 34]. The
measurements revealed about 76 % energy savings with a VaultIC420 HW module com-
pared to using only SW. The study [52] compared power measurements with the internal
power meter of a Stargate sensor node platform with multimeter measurements. The energy
efficiency of transmitting uncompressed raw video data vs. compressed video data was
examined in [10], while the energy efficiency of a specific motion detection application was
examined in [44, 53].

The study [86] examined the energy consumption for ambient monitoring of temperature,
humidity, and light levels in a sensor node. In [30], the Avrora simulation tool [90], has been
used to validate energy measurement from a SANDbed wireless sensor network testbed. In
[84, 91], the energy consumption of wireless sensor node transmissions over WiFi and the
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TCP/UDP transmission protocols has been modeled and verified through measurements.
The energy saving effect of introducing multiple tiers in a wireless sensor network has been
studied in [64]. The energy consumption of wireless sensor networks specific to agriculture
applications has been investigated in [6, 27, 38].

The study [103] has examined MPEG-DASH client network scheduling by measuring
client power consumption over fourth generation Long Term Evolution networks (4G LTE).
The study [26] proposed an energy-efficient adaptive streaming algorithm for an MPEG-
DASH client that is connected to multiple networks, such as LTE and WiFi. The proposed
algorithm exploits the multiple networks to find opportunities for low-power streaming.
Both studies [103] and [26] are complementary to the present study in that they focus on
MPEG-DASH and specifically the client’s adaptive segment fetching algorithm to reduce
client power consumption. In contrast, we focus on the server node/network side and con-
sider HLS and WVSNP-DASH. To the best of our knowledge, the present study is the first to
thoroughly compare power measurements of manifest file based HLS and segment file name
based WVSNP-DASH. A preliminary comparison that considered only one video quality
and client operating system (OS) for one LIVE streaming segment duration and different
VOD segment durations was included in [78]. In contrast, we thoroughly examine video
capture, LIVE video streaming, and VOD streaming for different segment lengths in com-
bination with different video qualities and client OSs. Furthermore, we thoroughly examine
the power consumption characteristics of different video library tools, camera interfaces, as
well as HW and SW video encoding. We note for completeness that analytical models of
sensor node power consumption have been developed in [16, 73–76].

3 Evaluation setup

3.1 Power measurement setup

Figure 1 illustrates our power measurement setup, which is based on the inductor power
measurement method. To measure current, a 10 μA resolution current clamp is placed
around the wire that powers the board. Voltage is measured by connecting the oscilloscope
probe to the 5 V jack on the board. The oscilloscope probe and the current clamp are con-
nected to a digital oscilloscope with up to 100 MHz bandwidth, up to 1 giga samples/s
sampling rate, and 8-bit (12-bit enhanced resolution). We adopted the described inductor
power measurement setup and did not use a plug-in power meter because we could not
find a meter for less than US$ 500 at the current resolutions that we expected for low-
power circuits. Additionally, we adopted the measurement approach with current clamp and
oscilloscope because of its convenient built-in data collection capabilities. The data output
capabilities of the oscilloscope we used are rarely available on plug-in power meters at rea-
sonable cost. The oscilloscope provides reliable sampled data which can be output to “.csv”
files in different sampling resolutions. This is hard to find at USD$ 500 or less in plug-in
power meters. We double checked the current clamp measurements with a 24-bit ADC open
meter tool, the so-called Mooshimeter [56], which is a low-cost high-accuracy meter that
simultaneously logs current and voltage.

3.2 Multimedia sensor (server) node setup

The server node was implemented with an NXP i.MX6 ARMCortex-A9, 1.2 GHz Quad core,
2 GB node development board. The server node captured video with a USB webcam or a
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Fig. 1 Illustration of power measurement setup: an inductor based current clamp with 10 μA resolution
measures the current drawn by the server node board. The current and the voltage measurements are logged
by an oscilloscope and laptop computer

Camera Serial Interface (CSI) attached Wandcam [19]. The captured video segments were
served over WiFi or wireline Ethernet, via a streamlined low-footprint mongoose HTTP
server.

3.3 Video client setup

A WVSNP-DASH Player (WDP) prototype [78] was used to play back streamed WVSNP-
DASH segment files. Streamed HLS video segments were played back with the JWPlayer 6
with the HLSProvider plug-in. The Google Chrome (version 32) web browser was used as
the default client display outlet. The clients ran on a Ubuntu 13.10 64 bit, Dell OptiPlex 360
with Intel Core2 Duo E7300 2.66 GHz CPU and 2 GB RAM. The evaluations were also run
with a client operating on a Macbook Air Mid 2012 with i5-3427U 1.8 GHz CPU and 4 GB
RAM. For additional checks, the same Macbook Air was rebooted into a Windows 7 64 bit
client.

The streamed video was played back using the Application Programming Interface (API)
for the HTML5 File System (HTML5 FS), HTML5 Canvas, and the HTML5 Video Ele-
ment. At the time when this study was designed, the HTML5 FS was emerging as a
seamless uniform cross-platform standard. We acknowledge that the Media Source Exten-
sions (MSEs), which have recently been developed by the World Wide Web Consortium
(W3C) [96], can be used to form an alternative API. Power profiling of the MSEs is an
interesting direction for future research.
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3.4 Test video

A typical surveillance video was captured on the Arizona State University (ASU) campus.
The 10 minute ASU video (without audio) shows the scenery and everyday outdoor activity
on the ASU campus. Video on demand (VOD) and LIVE streaming used the ASU video.
Generally, LIVE streaming refers to the capture of a live event scene, e.g., a sporting or
cultural event, with a video camera and the real-time video encoding and network transmis-
sion to receivers that wish to watch the live event on their video receivers. In contrast, VOD
streaming refers to the network transmission of video that has been captured and encoded
a priori, e.g., a documentary on a scientific topic, or a pre-recorded lecture video. For the
LIVE video capture and streaming, the node camera was pointed at the full-screen display
of the pre-recorded video while measurements were conducted in real time. Positioning and
focusing the node camera to see only the full-screen video display made the LIVE video
essentially identical to the pre-recoded video. We consider a “SMALL” video quality with
320×180 pixel resolution, 150 kb/s bit rate, and 15 frames/s, and a “BIG” video quality with
640 × 360 pixel resolution, 500 kb/s, and 25 frames/s. For HLS streaming, the video was
segmented into MPEG2 Transport Stream (M2TS) [83] segments, which are the required
video container format for HLS. For WVSNP-DASH, which flexibly allows arbitrary video
container formats, the video was segmented into independent MP4 segments. The segments
were created for 2, 5, 10, and 15 second segment lengths.

3.5 Measurement procedure

Initially, we conducted measurements starting from the pre-boot time through the end of
the video capture, as illustrated for a typical measurement run in Fig. 2. We observed four
major phases (stages): pre-boot, boot, idle, and video capture/streaming. We verified that

Fig. 2 Smoothed plot of server node current as a function of time for SMALL video capture and LIVE
transmission of 2 s segments over WiFi with Ubuntu client (see second row in Table 2). We observe four
temporal phases (stages): Pre-boot (up to 7 s), boot (7–55 s), idle time (55–105 s), and capture with LIVE
streaming (from 105 s onwards to end of 10 minute video; only the first 150 s of video are plotted). The first
three stages are characteristic of the test board and are essentially identical for all measurement runs. The
averages reported in this paper were obtained for the video capture/streaming phase, which is characteristic of
the examined video capture and streaming approaches. The current consumption is highly variable over time
(see SD values in Table 2) and was smoothed for plotting to avoid visual clutter. The current consumption
tends to slightly decrease over the course of the capture and streaming so as to give the averages reported in
Table 2, i.e., 80.5 mA for WVSNP-DASH and 90 mA for HLS
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the measurement data were essentially the same for the first three stages, which are charac-
teristic of the node booting up. For all actual measurements that are reported in this paper,
we collected measurements starting from the end of the idle time (stage 3) through the end
of the capture of the ten minute test video and the associated streaming. That is, all reported
averages correspond to the video capture and streaming phase and do not consider the node
boot-up.

For each particular experimental condition (as per the experimental design specified in
Section 3.6), the oscilloscope SW tool sampled more than 14,000 data points from a ten
minute measurement run. Our measurements indicated that the voltage was always constant
very close to 5 V. We report therefore only the measured current in milli Amperes (mA). In
particular, we randomly sampled one current measurement per a 10/15 second period, which
corresponds to ten frame periods of the SMALL video quality. The reported averages and
standard deviations (SDs) are based on the resulting 900 samples from a 10 minute mea-
surement run. Differences between the independently measured experimental conditions
were analyzed with the two-sided independent sample t-test [94]. Unless otherwise noted,
all discussed differences were found to be statistically significant at the p < 0.001 level.

3.6 Experimental design

Throughout, this study considers consumed electrical current [in milli Ampere] as the main
dependent (response) variable. As noted in the preceding subsection, the server node cir-
cuit board voltage was essentially constant at 5 V. Thus, the consumed electrical current is
indicative of the power consumption (see Section 2.1). We consider two main types of fac-
tors (varied independent variables), namely the streaming framework and the node data path
components. The streaming framework factor is investigated in Section 4 by comparing the
WVSNP-DASH name-based segment streaming framework [78] with the HLS manifest file
based streaming framework [62] while keeping all the node data path component factors
constant. In the investigation of the streaming framework factor, we consider a few common
auxiliary (secondary) factors, namely, the video segment length (2, 5, or 10 seconds), the
video quality (SMALL video with low quality and BIG video with high quality), the net-
work link (wireless WiFi vs. wired Ethernet), and client operating system (Linux Ubuntu,
Windows, or Mac).

Subsequently, in Section 5, we fix the streaming framework factor to the WVSNP-DASH
framework and fix the auxiliary video quality factor to the BIG video and investigate the
server node data path factors. (The auxiliary factors network link and client operating sys-
tem are not relevant for this server node investigation.) In particular, we investigate the
following server node data path factors: video library tool (FFmpeg vs. GStreamer), cam-
era interface data path (USB vs. Camera Serial Interface), and video encoder (H.264, JPEG,
or MPEG4 implemented in hardware or software). (For the streaming framework compari-
son in Section 4 these server node data path factors were set to FFmpeg, USB, and H.264
in software.) In addition, we consider the video segment length (2, 5, or 10 seconds) as an
auxiliary factor in data handling along the node data path.

3.7 Threats to validity

As an empirical quantitative study, our study on power profiling of multimedia sensor nodes
faces a range of threats to validity [20, 71, 97, 98]. This section outlines these threats to
validity and steps undertaken to mitigate the threats. In order to address construct valid-
ity [98], i.e., that the current measurements really represent the power consumed in the
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multimedia sensor node, we verified that the voltage at the sensor node board stayed at a
constant 5 V for the entire durations of the measurement runs. More specifically, the voltage
was supplied by an industrially certified consumer power adapter with a nominal voltage
setting of 5 V and an accuracy specification of ± (0.05 % + 2 mV). The corresponding
voltage uncertainty is 5 V ·(0.05 %) + 2 mV = 4.5 mV.

Threats to internal validity [98] can be other factors that were not explicitly measured but
could influence the outcomes of the experiments. In our study, the environmental conditions
during the measurements, such as temperature and wireless interference, could influence the
outcomes of the experiments. In order to mitigate the influence of the environmental con-
ditions, we conducted all measurements in the same environmental setting and kept all the
characteristics of the environment essentially constant, e.g., we conducted all measurements
in the same temperature controlled lab room. We controlled the sensor node and, if applica-
ble, the streaming client so that only the processes related to the experiment were running
during the data collection. The WiFi network setup was deliberately set to the peer-to-peer
(P2P) configuration to avoid effects due to access point negotiations with other possible
clients on the network.

External validity [98] addresses the generalization of the experimental results to other
settings. In order to ensure external validity, we considered the widely employed HLS
approach as representative benchmark for manifest file based streaming. Also, we consid-
ered the full range of typically considered segment lengths ranging from 2 s to 10 s and
compared with progressive streaming of the full video. We also considered two video quality
levels as well as wireless and wired network transmission to clients with different operating
systems. Moreover, the node data path investigations considered the two dominant multi-
media tool sets (FFmpeg and GStreamer) as well as the two main commercially employed
camera interfaces (USB and CSI) as well as a range of video encoding approaches, both
with software and hardware implementation. A limitation of our study is that we did not
conduct measurements for all possible combinations of all considered factors. In order to
keep this research project feasible and to be able to concisely present insightful results in a
journal article, we conducted measurements for selected combinations of factors that are of
high interest for multimedia systems and provide interesting contrasting insights. Neverthe-
less, we believe that the measurement results are overall applicable to a wide set of practical
multimedia systems.

4 Framework power profiling: WVSNP-DASH vs. HLS

This section compares the current consumption of WVSNP-DASH and HLS for video cap-
ture (without streaming), video capture and LIVE streaming, as well as VOD streaming (of
previously captured segments). For the framework comparison in this section, the video was
captured with the USB camera and the FFmpeg video library tools. The video was H.264
encoded in software (with the x264 software library of FFmpeg).

4.1 Video capture

4.1.1 WVSNP-DASH vs. HLS comparison

For an initial WVSNP-DASH vs. HLS comparison, we examine their video segment cap-
ture in isolation. Table 1 reports the consumed currents for only the video capture at the
server (camera) node, without any networking or transmission. We observe from Table 1
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that WVSNP-DASH consumes less current than HLS for the 2 and 10 s segments (statisti-
cally significant at p < 0.001 levels); while consuming very slightly more current than HLS
for the 5 segments (this difference is not statistically significant, p = 0.25). For the inter-
pretation of these current consumption measurements, it is important to keep in mind that
the examined WVSNP-DASH prototype system and the commercial HLS system utilize
FFmpeg differently for segment capture. The commercial HLS system captures video seg-
ments with an optimized built-in (native) HLS function of FFmpeg, which achieves highly
efficient SW-based capture. In contrast, the WVSNP-DASH prototype captures video seg-
ments by interpreting a bash script at run time. The script newly invokes FFmpeg for the
capture of each individual segment. Thus, the WVSNP-DASH prototype consumed extra
current for each context switch of launching an FFmpeg process, encoding and storing the
video segment, and then shutting down the FFmpeg process for each individual video seg-
ment capture. On the other hand, the commercial HLS system invoked FFmpeg only once
at the start of the video stream capture and captured the remaining segments with the same
optimized FFmpeg process (from the original invocation context). Despite the inefficient
script loop that opens and closes FFmpeg for every segment, the examined WVSNP-DASH
prototype tends to consume less power than HLS (except for the 5 s segments where
WVSNP-DASH and HLS have essentially equivalent current consumption). This indicates
that when WVSNP-DASH were to employ an optimized native capture application (which
HLS already uses), WVSNP-DASH would significantly reduce the current consumption
compared to HLS.

4.1.2 Stream segmenter in HLS vs. independent WVSNP-DASH segments

Figures 3 and 4 illustrate the conceptual structure of the video segment capture-store-
stream processing flows of WVSNP-DASH and HLS. Note in Fig. 4 that HLS has a Stream

Fig. 3 Conceptual structure of WVSNP-DASH capture-store-stream flow: The sensor (server) node stores
the captured video in independently playable video segments that convey essential meta data through their
file names
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Fig. 4 Conceptual structure of HLS capture-store-stream flow: The stream segmenter creates the video
segments in dependency to the manifest file, which conveys metadata for playback

Segmenter stage that manages the manifest file required in HLS. The stream segmenter con-
tinuously re-reads and updates the manifest file during the video segment capture [7, 83,
95]. More specifically, the segmenter stage keeps track of the segments as they are created
relative to the initialization segment file, i.e., the segmenter has to buffer information about
the initialization segment file and update it as dependent segments are created. (HLS initial-
ization segments have extra file header information and other metadata that help players or
browsers decode the complete video stream [82, 83, 95].) The segmenter also keeps track
of the manifest file and updates the manifest file every “refresh” time, which is set at invo-
cation. Moreover, the segmenter keeps track of all segments in relation to each other. The
stream segmenter stage thus adds to the workload during video segment capture.

WVSNP-DASH does not have a stream segmenter stage, see Fig. 3. More specifically,
WVSNP-DASH only has information provided at invocation for the type of segment to
create. This information is identical for each segment, except for the incrementing index.
Thus, there is no “segmenting” closed-loop control needed for reopening and updating files
(as done in the HLS segmenter). This simple capture operation allows WVSNP-DASH
to capture video segments with the same or somewhat lower current consumption than
HLS despite the inefficient WVSNP-DASH prototype operation (with script-based FFmpeg
initializations for each segment).

4.1.3 Impact of segment length

Table 1 reveals another interesting result: Capturing short two-second segments does not
necessarily result in higher current cost as one might expect due to the more frequent file
operations inherent in handling more files for the same captured video duration. In partic-
ular, the measurement results in Table 1 indicate that shorter segments generally tend to
reduce the consumed current for both WVSNP-DASH and HLS. (All segment length com-
parisons are statistically significant at the p < 0.001 level; except the WVSNP-DASH 5 s
vs. 10 s and the HLS 2 s vs. 5 s differences are not statistically significant.) These results
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indicate that for most examined comparison scenarios, keeping the large file for a long
video segment open and updating the file consumes slightly more power than working with
small files for short segments that do not have to be open for too long. More specifically, the
results indicate that the current cost of opening and closing small files quickly and therefore
swapping files for short segments in and out of dynamic memory is slightly lower than the
cost for keeping memory, cache, and SD card synchronized while the large file for a long
segment is open and being appended to. The longer the video segment, the longer the file
will need to be open and appended to during capture.

4.2 Video capture with LIVE video streaming

4.2.1 LIVE streaming vs. capture

Table 2 reports the measured current consumption for the simultaneous capture and LIVE
streaming of WVSNP-DASH and HLS video segments. An initial comparison between
Tables 1 and 2 indicates that simultaneous video capture and LIVE streaming results in sig-
nificantly higher current draw and thus higher power consumption than video capture alone.
This is because with simultaneous video capture and LIVE streaming, the server node cap-
tures, encodes, stores, and serves (transmits) the video segments at the same time; whereas,
for video capture, the server node only captures, encodes, and stores the video segments.

4.2.2 WVSNP-DASH vs. HLS comparison

We observe from Table 2 that WVSNP-DASH tends to have generally lower sensor node
power consumption than HLS for the considered link and client OS scenarios and segment
lengths. (All comparisons are statistically significant at the p < 0.001 level; except the 5 s
Eth. Win., BIG WVSNP vs. HLS comparison is only significant at the p = 0.003 level, and
the 5 s WiFi, Ub., BIG WVSNP vs. HLS comparison is not statistically significant.) The
power savings with the WVSNP-DASH framework are achieved through the avoidance of
a manifest file. Manifest file based streaming frameworks, such as HLS and MPEG-DASH,
must continuously update the manifest file during the video capture and LIVE playback
[7, 83, 95]. In particular, for LIVE streaming, the manifest file needs to be continuously
updated and re-transmitted with every newly generated segment. Additional processing to

Table 2 Averages and standard deviations (SD) of current (mA) consumed by the server node while
capturing and LIVE streaming of 2 s and 5 s WVSNP-DASH vs. HLS segments

2 seconds 5 seconds

Video type WVSNP HLS WVSNP HLS

Link, Client OS,

Vid. Qu. Avg SD Avg SD Avg SD Avg SD

WiFi, Ub., BIG 85.05 24.50 106.24 30.82 98.30 28.96 95.80 29.56

WiFi, Ub., SM. 80.52 20.66 90.04 24.80 87.58 23.33 92.84 25.34

Eth., Win., BIG . . . . 100.17 27.98 104.23 29.98

Eth., Mac, BIG . . . . 91.59 26.04 101.75 29.73
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create special subsequent segments different from the initialization segment adds to the
power consumption of HLS for LIVE video. Another reason is that LIVE HLS requires
an additional stream segmentation stage (see Fig. 4) in the capture stage, which needs to
be fully active during LIVE playback consuming more power than WVSNP-DASH which
does not have a stream segmentation stage (see Fig. 3).

4.2.3 Impact of video quality

We observe from Table 2 that SMALL quality segments (see Section 3.4 for definition of
SMALL and BIG quality segments) result generally in lower current draw than BIG quality
segments due to their lower data rate and size.

4.2.4 Impact of segment length

We furthermore observe from Table 2 that for WVSNP-DASH, capturing and LIVE stream-
ing short 2 s segments consume less current than 5 s segments. (The segment length
comparisons for WVSNP-DASH are statistically significant at the p < 0.001 level; the BIG
HLS segments do not follow this trend, while for the SMALL HLS segments, the length
comparison is statistically significant only at the p = 0.018 level.) This result is consistent
with the observations for current consumption for capturing different segment lengths (see
Section 4.1.3). Similar to the capturing of long video segments in large files, the simultane-
ous capturing and LIVE streaming of long video segments requires sensor node operations
with large files. In particular, for long video segments, large files need to be packaged,
saved, and streamed, requiring file open and close operations for large files as well as writing
to and reading from large files. The more extensive file operations required for simulta-
neous capturing and streaming lead generally to more pronounced power reductions with
short segments in Table 2 compared to the power reductions for only capturing in Table 1.
Overall, the current consumption results in Table 2 support the capturing and streaming of
LIVE video with short 2 s segments in WVSNP-DASH (while the segment length results
for HLS are inconclusive). Short video segments are generally preferable for DASH LIVE
video streaming due to the critical temporal aspect of LIVE video applications, i.e., many
LIVE video applications prefer to have as little time lag as possible between the live events
captured in the video and the corresponding playback of the video segment containing the
events on the client side.

4.3 VOD Video Streaming

4.3.1 General WVSNP-DASH vs. HLS comparison

Table 3 compares the current consumed by the server node while streaming WVSNP-DASH
vs. HLS for 2 s, 5 s, and 10 s Video On Demand (VOD) segments. We observe from Table 3
that the results are overall mixed: the WiFi streaming scenarios do not exhibit a clear trend,
either WVSNP-DASH or HLS consume less current, depending on the specific scenario.
For the Ethernet scenarios, HLS tends to consume less current than WVSNP-DASH. For
VOD streaming, all video segments are already available at the start of the streaming, i.e.,
all initialization files and manifest files have been precomputed for HLS (during the video
segment capture). For VOD, the manifest files and segments are static and the indices do
not need to be continuously updated (unlike for normal HLS LIVE streaming, where the
manifest file needs to be continuously updated and re-transmitted with every new generated
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segment), saving HLS some power in VOD operation compared to LIVE operation. Also,
during VOD streaming, the Stream Segmenter stage is not active in HLS, therefore saving
power compared to LIVE streaming. WVSNP-DASH has the same video segment structure
and segment fetch operation for both VOD and LIVE streaming.

One would think that HLS will save more power than WVSNP-DASH given that
WVSNP-DASH segments have complete self-initializing header data for each segment.
That is, each WVSNP-DASH segment contains a file header with the video file proper-
ties and video container metadata, e.g., compression type, bit rate, and size, needed for
decoding at the client (player) side [78]. This would imply that each WVSNP-DASH seg-
ment is slightly larger than HLS video segments that follow an HLS initialization segment.
Surprisingly, our measurements indicated that for the same video resolution and quality,
WVSNP-DASH segment files are on average smaller than the corresponding HLS segment
files. The sizes vary widely within a range from segment to segment due to motion based
video compression. On average, for 2 s segments, the HLS BIG segments are 21 % larger
than the corresponding WVSNP-DASH segments, while the SMALL HLS segments are 28
% larger. For 5 s segments, the HLS BIG segments are 14 % larger than the corresponding
WVSNP-DASH segments, while the HLS SMALL segments are 9.7 % larger. For 10 sec-
ond segments the HLS BIG segments are on average 11.5 % larger, while the HLS SMALL
segments are 9.7% larger.

The HLS segments are larger because the HLS design is based on the MPEG 2 Transport
Stream (M2TS) [83] with a 188-Byte packet size, which was originally chosen for compat-
ibility with Asynchronous Transfer Mode (ATM) systems. The packet size gets larger with
additional headers, e.g., for synchronization, time code, and broadcasting meta-data. On the
other hand, WVSNP-DASH is container agnostic, i.e., one can select whichever container is
most efficient for WVSNP-DASH streaming. The MP4 container used by WVSNP-DASH
in our evaluations follows an atom/box structure in a hierarchical form with four Bytes for
the atom length, four Bytes for the atom name, and optional Bytes for any data the segment
holds. The length of a box is determined by its own size plus all atoms in the level imme-
diately below it. A basic WVSNP-DASH MP4 segment has three boxes: ftyp, moov, and
mdat. Our segment file size measurement results indicate that the MP4 container utilized
in WVSNP-DASH requires on average less overhead than the default HLS M2TS con-
tainer. Generally, smaller segment files consume less power than large segment files; thus,
the more efficient MP4 containers that become possible with WVSNP-DASH are generally
preferable for low-power streaming.

4.3.2 Segmented vs. progressive (full) video streaming

In additional evaluations, we have measured the current consumption for progressive VOD
(download) streaming of the full ten minute BIG video. We measured for WiFi transmission
to the Mac an average current of 43.25 mA (SD = 9.44 mA) and for WiFi transmission
to Windows an average current of 43.90 (SD = 8.72 mA). These currents for progressive
streaming tend to be generally higher than for the corresponding segmented VOD video
streaming considered in Table 3. (The differences to segment streaming are statistically
significant at the p < 0.001 level for all scenarios, except for the Mac HLS 2 s and 5
s scenarios. Thus, the higher current consumption for progressive streaming compared to
segmented streaming are conclusive for WVSNP-DASH, while for HLS this result is not
conclusive for streaming to a Mac client.) This is because progressive download requires
a large file in the server node. This large file requires relatively large amounts of energy
for opening the file (before reading from the file). In particular, with progressive download,
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the whole file is opened and a portion of the file (according to Byte ranges) is transmitted.
However, when downloading the full video, the client has no control over how the HTTP
server delivers the video data. More specifically, HTTP communication follows an open-
loop communication paradigm. That is, the client requests the full video, but depending on
the load and activity on the server node, the server node may switch contexts in between
the transmission of Byte ranges of video data or may round robin schedule the video data
transmission with its other processes. Whenever the server node switches to a different
context, it has to close the video file. When the server node switches the context back to
video data transmission, the large file has to be opened again and the node has to seek to the
latest previously transmitted Byte range. The opening and closing of large full video files
and the remembering of the position of the last transmitted video data Byte range consumes
power.

In contrast, DASH clients request the HTTP server to send short video segments. These
short segments do not need to be opened, they only need to be transmitted. Overall, we
thus conclude that segmented videos are recommended for low-power streaming from a
multimedia sensor node. The video segments also facilitate duty cycling [11] of sensor node
applications and work well with the limited sensor node storage space.

4.3.3 Impact of segment length

We observe from Table 3 a general trend of VOD streaming of longer video segments con-
suming less power on the server node compared to shorter segments. (All comparisons with
a mean difference of more than 1.5 mA are statistically significant at the p < 0.001) level;
thus, the segment length results are statistically significant for most comparisons in Table 3.)
Shorter segments require more server open and close activities as well as more frequent seg-
ment fetches, whereby each segment fetch operation requires connection setup resources. In
additional evaluations, we found that 15 s segments consume slightly more current than 10
s segments. Overall, we conclude that for VOD, longer segment lengths up to 10 s are gen-
erally more power efficient than shorter segments. However, extending the segments length
beyond 10 s then increases power consumption (due to the handling of large files).

5 Power consumption of node data path components

This section examines the power consumption of the main components of the multime-
dia server node that are critical for the video capture and store data path. We focus on
the WVSNP-DASH video streaming framework in this path component study. Table 4
empirically shows the contribution of major video capture and store data path components.

5.1 FFmpeg vs. GStreamer

We first compare the use of the FFmpeg [21] and GStreamer (Gst) [28] video library
tools, which are standard open source multimedia frameworks used in many embedded
video systems. The top four rows in Table 4 indicate that GStreamer consumes substan-
tially less power than FFmpeg (with statistical significance levels p < 0.001). Specifically,
GStreamer consumes less power both for a USB attached camera and for a camera attached
with the specialized Camera Serial Interface (CSI), for all considered video segment
lengths. Based on this result, we employ GStreamer for the remaining evaluations in this
section.
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5.2 USB vs. camera serial interface (CSI)

The top six rows in Table 4 compare the attachment of a Logitech “webcam” via the general
USB interface with the attachment of a “wandcam” camera via the specialized camera serial
interface (CSI). We observe from Table 4 that the CSI camera consumes less power than
the USB camera (with statistical significance levels p < 0.001). This is because the USB
camera processes frames through an additional USB Video Class (UVC). The raw data
collected by the USB camera has to pass through multiple USB, peripheral, and other bus
stacks, increasing the required processing resources. Additionally, the USB camera requires
a SW hand-off of raw data on the board for video encoding to the SW/HW encoder which
increases the current consumption. The CSI stack is smaller and more specifically optimized
for the i.MX6 System-On-Chip (SoC), which has a direct path from the Wandcam CMOS
imager [19] driver to the encoder [81]. Specifically, the i.MX SoC has an accelerated path
from the CSI camera to the video processing unit (VPU) and onward to direct memory
access. Also, the ARM core on the i.MX6 SoC is completely decoupled from the video
capture to memory path [81].

5.3 Impact of segment length

The top ten rows in Table 4 compare capturing the full 10 minute video with capturing
2, 5, and 10 second segments. Generally, there are no pronounced differences in the cur-
rent consumption when capturing segmented video with the different segment lengths or
the full video. This is because FFmpeg and GStreamer have the capability of segmenting
videos while the capturing is ongoing without turning off the camera. However, similar to
the results in Section 4.1.3, we observe from Table 4 a tendency for shorter segments to
consume less current than longer segments or the full video. However, this segment length
effect is small compared to the effects of the examined node data path factors.

5.4 Hardware vs. software encoder

We observe from Table 4 that video capture with HW encoder consumes in most cases less
current than a SW encoder, except for JPEG and MPEG4 encoding with the USB attached
camera. (All HW vs. SW comparisons are statistically significant at the p < 0.0001 level;
except the Gst H.264 USB 2 s comparison is significant at only the p < 0.01 level and
the corresponding 5 s and 10 s comparisons are not significant.) HW encoding is mainly
performed by dedicated SoC components, such as a Video Processing Unit (VPU). In con-
trast, a SW encoder mainly utilizes the board’s CPU for the video processing. Dedicated
processors are generally more efficient if they rely on accelerated, optimized job-specific
instructions. For the considered i.MX6 SoC, the VPU is the HW accelerator for image and
video processing. As a result, significant reductions in consumed current can be achieved
with HW encoders that employ the VPU instead of the general CPU for video processing.

Considering HW or SW encoder in combination with either CSI or USB camera, we
observe from Table 4 that for the CSI camera, HW encoding consumes about 15 % less
current than SW encoding. As noted in Section 5.2, the USB stack adds processing layers
that consume substantial amounts of power and skew the difference in observed current
consumption for HW vs. SW encoder. As a result of the USB effects, we observe only
small current reductions for H264 video captured with USB camera and HW encoder vs.
the corresponding SW encoder scenarios in Table 4; namely a current reduction at the p <

0.0001 and p < 0.01 statistical significance levels for the full video and the 2 s segment
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length, respectively, and no statistically significant current reductions for the 5 s and 10 s
segment lengths.

Aside from the H.264 (vpuenc, codec=6) encoder, we evaluated the SW jpegenc encoder
and AVI (vpuenc, codec=0) HW encoder, i.e., the Audio Video Interleaved (AVI) encoder,
which is based on the JPEG encoder, in conjunction with the AVI video container. Sur-
prisingly, we found that for the JPEG (AVI) encoder with USB capture in rows 11 and 12
of Table 4, the HW encoder consumes more current than the software encoder. This is an
unexpected result that requires follow-up in future research. Possibly, the implementation
of the HW encoder has performance issues or is not fully equivalent to GStreamer’s jpegenc
SW encoder. Nevertheless, the CSI capture with JPEG encoding results follow the expected
trend that HW encoding consumes less current than SW encoding. Thus, it is possible that
the current consumption for JPEG encoding (and analogously for the MPEG4 SW encoder
and HW (vpuenc, codec=12) encoder with MP4 video container) is skewed by the extra
USB processing.

Overall, we conclude that HW encoding of video captured with the CSI camera is more
energy-efficient than using a USB camera with the same HW codec. We also observe from
Table 4 for the CSI capture with HW encoding a slight trend of decreasing current consump-
tion as the segment length increases. For short segments there are more frequent application
layer software hand-offs of raw data to the HW encoder, i.e., the VPU, which result in
a slight under utilization of the VPU. Longer segments reduce the hand-off frequency,
increasing VPU utilization, and increasing the overall energy efficiency of the video capture.

6 Conclusion and future work

This paper presented extensive measurements for power profiling of Dynamic Streaming
over HTTP (DASH) frameworks for miniaturized wireless multimedia sensor nodes. Mani-
fest file based DASH frameworks, such as HTTP Live Streaming (HLS), convey video meta
data through the manifest file and begin video streaming with a special initialization video
segment; subsequent video segments depend on the manifest file and initialization segment
for playback. In contrast, the name based WVSNP-DASH framework conveys essential
meta data through the names of the video segment files, which can be played indepen-
dently; i.e., each individual WVSNP-DASH segment is fully playable without reference to
any other file or segment. This file independence simplifies the video capture and video
segment file creation and streaming by a sensor node.

Our measurements indicated reduced power consumption on the sensor node for video
capture and LIVE streaming with the WVSNP-DASH framework compared to the HLS
framework. We also found that capturing and LIVE streaming with short 2 s video segments,
which are preferable to avoid long time lags and large buffering requirements, consumes less
power than longer segments. For VOD streaming of previously captured video segments,
we found that both frameworks have comparable power consumption. We also measured
the power consumption characteristics of sensor node design choices for employed video
library tools, interfaces for the camera, and hardware vs. software video encoding. We found
that the video library tools from the GStreamer open source multimedia framework and the
Camera Serial Interface (CSI) have favorable power consumption characteristics. Also, we
extensively quantified the power savings due to hardware video encoding.

Overall, this study has provided extensive empirical baseline power consumption data for
key sensor node architectural design components. In summary, we recommend the name-
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based WVSNP-DASH framework instead of a manifest file based framework, such as HLS,
for capturing and streaming video from miniaturized multimedia sensor nodes. WVSNP-
DASH generally consumed less power for live video capture and real-time LIVE streaming.

An added WVSNP-DASH advantage is its flexibility: HLS is presently limited to the
MPEG2-TS video container, while WVSNP-DASH video segments can be encapsulated
into arbitrary video containers, such as MP4, AVI, MPEG2-TS, and WebM. WVSNP-DASH
is easier to implement for a server node and different OSs as it is officially playable on
different browsers (e.g., Chrome, Windows Internet Explorer, Firefox), while HLS is offi-
cially only playable on Safari or Chrome (at the time of these experiments). Additionally,
WVSNP-DASH segments can be flexibly cached and distributed as well as flexibly searched
and retrieved [49] due to their name based structure. On the other hand, video segment
files of manifest file based frameworks cannot be independently cached and distributed
by storage-constrained sensor nodes. Any work-around to centrally manage the manifest
file creates additional local network coupling, that will likely further increase the power
consumption in the server node or network.

We acknowledge that our measurement set-up and experimental procedures had a num-
ber of key limitations. First, our measurements did not consider the dynamic adaptation
feature of the HLS and MPEG-DASH streaming frameworks; rather, we streamed either a
SMALL or BIG video quality (see Section 3.4) for the full duration of a given measure-
ment run. Future measurement studies should examine the impacts of varying frequencies
of video quality switches on the power consumption. Second, we conducted the WVSNP-
DASH measurements with a prototype system that opened and closed the video capture
process for each segment with a power-inefficient script (whereas the compared commercial
HLS system employed an optimized capture process). Thus, WVSNP-DASH has signifi-
cant further power saving potential that should be quantified in future work. In particular,
future work should evaluate WVSNP-DASH capture with optimized capture processing
through a native application running on the server (camera) node (and not a script). Third,
we employed the FFmpeg capture with a USB interface and H.264 software encoding in the
comparison of the WVSNP-DASH and HLS frameworks in Section 4. In future evaluations,
it would be of interest to repeat the WVSNP-DASH vs. HLS framework comparison with
the node data path components that have been found to reduce power consumption in the
WVSNP-DASH framework in Section 5, namely GStreamer capture with the CSI interface
and hardware H.264 encoding.

There are many additional interesting directions for future research on low-power stream-
ing from miniaturized sensor nodes. One important direction is to investigate the impact of
different non-TCP/IP networking protocol stacks for resource-constrained sensor (server)
nodes, such as Zigbee [1, 4, 77, 87] and Bluetooth. The present study focused on the TCP/IP
networking protocol stack since the existing manifest file based DASH players are designed
to work only with video server nodes operating the TCP/IP networking protocol stack. Thus,
a comparison with the existing commercial manifest file based streaming framework was
only possible with the TCP/IP networking stack. Moreover, it would be interesting to com-
pare the LIVE streaming of multiple HLS streams from multiple distinct source nodes to
one player with the corresponding streaming of multiple WVSNP-DASH source nodes to
one player. Such a comparison would more comprehensively evaluate the cost of a mani-
fest file, by accounting for the cost for switching due to bandwidth and quality variations as
well as the cost for the switching among different sources (which may require route recom-
putations). Another important direction is to examine the impact of security and privacy
mechanisms [24, 29, 36, 50] on sensor node power consumption.
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