
IEEE SENSORS JOURNAL, VOL. 16, NO. 8, APRIL 15, 2016 2575

ZM-SPECK: A Fast and Memoryless Image Coder
for Multimedia Sensor Networks

Naimur Rahman Kidwai, Ekram Khan, Senior Member, IEEE, and Martin Reisslein, Fellow, IEEE

Abstract— The set partitioned embedded block (SPECK)
algorithm is an efficient block-based image coder to encode
wavelet transformed images. SPECK uses linked lists to track
significant/insignificant coefficients and block sets, thereby having
a large memory requirement that increases with the encoding
rate. Furthermore, multiple memory read/write operations and
list management slow down the algorithm. In addition, the imple-
mentation of the traditional discrete wavelet transform (DWT) is
memory intensive and time-consuming. Therefore, it is difficult
to implement image coding using the traditional DWT and
SPECK algorithm on low-cost visual sensor nodes. Most of the
existing studies on low-memory implementations of the SPECK
algorithm attempt to replace the dynamic memory of linked
lists by a static memory in the form of fixed-length state
tables/markers. In this paper, a fast and memoryless image coder
is proposed, which uses the fractional wavelet filter to calculate
the DWT coefficients of the image and a zero-memory listless
SPECK algorithm for quantization and coding of the DWT
coefficients. The proposed algorithm, referred as zero-memory
SPECK (ZM-SPECK), completely eliminates the linked lists
and only uses a few registers to perform some low-level arith-
metic/logical operations. The elimination of linked lists also
reduces the memory access time, thereby making ZM-SPECK
faster than the original SPECK algorithm. Simulation results
show that the proposed ZM-SPECK coder outperforms the
contemporary state-of-the-art wavelet image coders in terms
of memory requirement and computational complexity, while
retaining their coding efficiency. The proposed ZM-SPECK image
coder is thus very well suited for image communication in visual
sensor networks.

Index Terms— Fractional wavelet filter, memory efficient image
codec, SPECK, visual sensors, wireless multimedia sensor
networks.

I. INTRODUCTION

A. Motivation

WDESPREAD use of wireless networks (e.g., Wi-Fi and
cellular networks), has led to an exponential growth of

image communications through handheld portable multimedia
devices (e.g. digital cameras, smart phones, and tablets).
Also, developments in micro-electromechanical systems,

Manuscript received September 29, 2015; revised January 15, 2016;
accepted January 16, 2016. Date of publication January 19, 2016; date of
current version February 24, 2016. The associate editor coordinating the
review of this paper and approving it for publication was Dr. Anna G. Mignani.

N. R. Kidwai is with the Department of Electronics and Communication
Engineering, Integral University, Lucknow 226026, India (e-mail:
naimkidwai@gmail.com).

E. Khan is with the Electronics Engineering Department, Aligarh Muslim
University, Aligarh 202002, India (e-mail: ekhan.el@amu.ac.in).

M. Reisslein is with the Goldwater Center, School of Electrical, Computer,
and Energy Engineering, Arizona State University, Tempe, AZ 85287-5706
USA (e-mail: reisslein@asu.edu).

Digital Object Identifier 10.1109/JSEN.2016.2519600

and wireless communication together with low-cost imaging
devices, have led to the development of wireless networks of
visual sensors [1]–[4], called visual sensor networks (VSNs) or
wireless multimedia sensor networks (WMSNs). The low-cost
sensor nodes are severely constrained in terms of resources.
The transmission of real-time images to a more resourceful
hub or sink node over a band-limited wireless channel is a
challenging task. On-chip random access memory (RAM)
available on low-cost sensor nodes is limited, and has become
a major constraint for the processing of large images on the
sensor nodes [5]. The on-chip RAM available on most of the
low-cost sensor nodes is of the order of 10 kB [6]. For sensor
nodes equipped with a visual sensor (or camera) to capture
images and transmit them over WSNs, there is
a need for memory-efficient and low-complexity image
codecs [7]–[12].

For efficient compression of images, a number of
image coding algorithms [13]–[26] have been developed. The
contemporary image coding methods, such as JPEG2000 [13],
embedded zero tree of wavelet coefficients (EZW) [15], set
partitioning in hierarchical trees (SPIHT) [16], virtual
SPIHT (VSPIHT) [18], set partitioned embedded block
coding (SPECK) [20], wavelet block tree cod-
ing (WBTC) [25], and wavelet lower tree (LTW) [26]
support a wide range of functionalities. However, they have
high computational complexity, high memory requirement, or
generate non-embedded bit-streams.

Most wavelet-based image coding algorithms achieve
compression by aggregating a large number of insignifi-
cant coefficients either in spatial trees (zero-trees) [14]–[18],
or in spatial blocks (zero-blocks) [19]–[24], or spatial block-
trees [25]. Among them, SPIHT [16] and SPECK [21] are
the most popular coding algorithms due to their superior
compression and low computational complexity (high energy
efficiency) [27], [28]. A common feature of these algorithms
is that they use multiple linked lists to track the locations of
significant/insignificant coefficients or sets (blocks or trees).
The SPECK [21] algorithm uses only two lists instead of
three in SPIHT [16]. However, the continuously (dynamically)
growing lists in these codecs not only result in variable
and data-dependent memory requirements, but also necessitate
memory management as the list nodes are added, deleted,
sorted, or moved among the lists. This significantly increases
the encoding/decoding times due to multiple memory accesses
and increased memory read/write operations. These problems
become more severe for encoding/decoding of high-resolution
images using portable devices with limited resources.

1558-1748 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2576 IEEE SENSORS JOURNAL, VOL. 16, NO. 8, APRIL 15, 2016

B. Related Work

Over the years, significant efforts have been made to reduce
the memory requirements of wavelet-based coders [29]–[47].
The memory requirements for these coders can be divided into
two parts: transform memory (memory required for wavelet
and inverse wavelet transforms) and coding memory (memory
requirement for encoding/decoding of wavelet coefficients).
The overall codec memory is either the sum of two mem-
ories or the maximum of the two, depending on whether
the two stages run in parallel or sequentially. Traditional
implementations of the discrete wavelet transform (DWT) of
images generally require a large memory. A number of efforts
have been made to reduce the transform memory [29]–[36].
The line-based implementations of the wavelet transform with
or without the lifting scheme [29], [30] are among the earliest
efforts in this direction. The line based approach requires about
26 kB of on-board memory (or RAM) for a six level transform
of a 512×512 gray scale image [6]. Another approach to
reduce memory is to apply the DWT on a block-by-block
basis, rather than on the entire image [31], [32]. However, the
block-based approach requires almost the same memory as
the line-based approach [6]. Strip-based low memory wavelet
transform architectures have been proposed in [33]–[35].
Recently, the Fractional Wavelet Filter (FrWF) has been
proposed [36], which requires only a few kB of memory to
compute the DWT of images and is therefore suitable for
implementation in memory-constrained portable multimedia
devices and sensor nodes.

In order to reduce the coding memory (for encoding/
decoding of wavelet coefficients) of zero tree and zero
block coding algorithms, generally one of the following three
approaches is used: reducing the number of elements in
lists [25], reducing the number of lists [37]–[39], or replacing
lists with state-tables or markers (listless approach) [40]–[47].
The listless approach uses fixed-size static memory in the
form of state-tables/markers, in place of lists. For example,
No-list SPIHT (NLS) [41] uses 4 bits/coefficient marker, while
the implementation in [42] uses 3 bits/coefficient marker.
Motivated by the NLS algorithm, a number of listless SPECK
algorithms have been developed. Among them, the listless
SPECK (LSK) algorithm [43] uses 2 bits/coefficient marker,
the no-list implementation of SPECK proposed in [44] uses
0.75 bits/ coefficient marker, while the no-list implementation
of SPECK [47] uses 0.25 bits/coefficient marker to keep track
of blocks and coefficients to be significance tested.

Although, the listless implementations of state-of-the-art
wavelet image coders achieved significant memory reductions,
the overall memory requirement is still very high for low-
cost sensor nodes. To the best of our knowledge, only limited
efforts have been made to minimize the overall memory
requirements of image coders. The wavelet image two line
coder (Wi2l) [48] which combines FrWF with line-based
BCWT [49], [50], has made significant progress towards
overall low-memory image coding. However, the Wi2l coder
produces a non-embedded bit-stream, which is a major draw-
back since embedded bit-streams are highly desirable for scal-
able image transmission over heterogeneous networks [15].

The low-memory block-tree coder (LMBTC) [51] is a low
memory version of WBTC [25] and uses only a few markers.
Combining LMBTC with FrWF drastically reduces the overall
memory requirement, while retaining the embedding prop-
erty. However, the memory requirement of the FrWF-based
LMBTC coder depends on the number of wavelet decompo-
sition levels and the image size, and the use of markers in
LMBTC increases its computational complexity. Thus, there
is still a need to design an efficient, feature-rich, and low-
memory image coder for portable multimedia devices and
visual sensor nodes.

C. Contribution

In this paper, we propose a fast memory-less SPECK
algorithm combined with FrWF that significantly reduces the
overall memory requirement of an image coder. The memory
requirement at the transform stage is reduced due to FrWF
and the memory requirement of the encoding stage is reduced
by the proposed listless SPECK algorithm. The algorithm
encodes the wavelet coefficients of an image with the partition-
ing rules of SPECK. However, the proposed algorithm does not
require any lists/ state-tables/ markers, and therefore requires
no static or dynamic memory. For this reason, the proposed
coder is named the Zero-Memory SPECK (ZM-SPECK)
image coder. The heart of the coding algorithm is the exploita-
tion of linear indexing features. The proposed coder uses only
a few registers to perform arithmetic and logical operations
and does not require memory for encoding/ decoding of
coefficients. It generates an embedded bit-stream, has reduced
computational complexity, and has coding efficiency compa-
rable to that of the original SPECK algorithm.

A summary of a preliminary form of the ZM-SPECK
algorithm was presented in [52]. The preliminary form
of the ZM-SPECK algorithm was implemented to encode
conventional DWT coefficients and a limited set of initial
performance results was presented in [52]. In contrast, this
paper gives a complete presentation of a refined form of the
ZM-SPECK algorithm. Moreover, we combine the
ZM-SPECK algorithm with the FrWF-based DWT to
build a very low memory image coder. The use of FrWF
reduces the transform stage memory drastically (compared to
conventional DWT), which in turn reduces the overall memory
of the proposed image coder. We present a comprehensive
performance evaluation of the image coder built from the
FrWF-based DWT and the ZM-SPECK coding algorithm in
this paper.

Recent advances in low-memory image coding, such as
LMBTC [51], have reduced the memory requirements of the
coding stage to less than the memory requirements of the trans-
form stage. For sequential transform and coding stages, the
overall memory requirement is the maximum of the memory
required at the transform and coding stages. One may thus
question the need of further reductions of the coding memory
requirements below the memory required for the transform
stage as they presently do not reduce the overall memory
required for the image coder. However, we believe that through
ZM-SPECK we are pushing the coding memory requirements



KIDWAI et al.: ZM-SPECK: A FAST AND MEMORYLESS IMAGE CODER FOR MULTIMEDIA SENSOR NETWORKS 2577

to their absolute minimum in this study. We expect that future
research will reduce the memory requirements of the transform
stage. Future low-memory transform approaches can then be
combined with our low-memory coding approach to achieve
reductions of the overall image coder memory requirement.

The rest of the paper is organized as follows. Section II
presents brief background on the FrWF, SPECK, and listless
SPECK (LSK) algorithms. Section III first explains the proper-
ties of linearly indexed wavelet coefficients that are exploited
in the proposed ZM-SPECK algorithm and then introduces
the proposed ZM-SPECK algorithm. The simulation results
and related discussions are presented in Section IV, and the
paper is concluded in Section V.

II. BACKGROUND

In this section we briefly review the FrWF scheme to
compute the DWT of images as well as the SPECK and listless
SPECK (LSK) algorithms.

A. Fractional Wavelet Filter (FrWF)

One of the major difficulties in applying the conventional
2D-DWT to images on a resource-constrained platform is the
high amount of required working memory. 2D-DWT imple-
mentations generally require the original and/or transformed
images to be placed in the processor’s on-board memory, so
that low-pass and high-pass filtering can be separately applied.
On personal computers (PCs), which are equipped with very
large RAM, this is not a major concern. However, applying the
DWT to images on memory-constrained platforms, e.g., digital
cameras and visual sensor nodes, is difficult due to limited
on-board memory. To overcome this problem, the Fractional
Wavelet Filter (FrWF) [36] has recently been proposed as an
alternative to the DWT in resource-constrained environment.

A typical sensor node platform consists of a microcontroller
extended with external flash memory (MMC or SD card). The
image data and computed coefficients are stored on the SD
card. For an image of size N × N pixels, the FrWF uses three
buffers namely, s, LL_HL, and LH_HH, each of size N bytes.
The buffer s stores the current input line, whereas buffers
LL_HL and LH_HH store the resulting LL/HL and LH/HH
sub-bands destination lines, respectively [53]. For the first level
of decomposition, the algorithm reads the image data line-by-
line from the SD-card while it writes the subbands line-wise
to a different destination on the SD-card. For each subsequent
decomposition level, the LL subband of the previous level is
considered as the input data and the same process is repeated.
Note that the input samples for the first level are the image
pixels, each of size one byte, whereas the input samples for
the higher levels are either of four bytes (floating point filter)
or two bytes (fixed point filter). The filtering does not use
in-place memory, rather for each level, a new destination
matrix is allocated on the SD-card. However, as the SD-
card has plenty of memory, it does not affect the sensor’s
resources. The memory (in bytes) required for the wavelet
transform of an N×N image with L-level decomposition using
FrWF with floating-point and fixed-point filters are 9N and 5N
bytes, respectively, for the first decomposition level (L = 1),

and 12N
2(L−1) and 6N

2(L−1) bytes, respectively, for higher decompo-

sition levels (L ≥ 1) [6].
Although, the FrWF significantly reduces the transform

stage memory, there is scope of further memory reduction in
the implementation of FrWF. From the above discussions, it is
clear that the memory consumption to implement the first level
(L = 1) of wavelet transform using FrWF is the highest and
the memory requirement decreases for higher transform levels.
Since the higher levels of transform are performed after the
first level, we propose that the memory consumed for the first
decomposition level can be reused for the subsequent higher
decomposition levels of the wavelet transform. Therefore, the
memory required for the computation of the wavelet transform
of an image using FrWF will be the same as that required for
the first transform level.

B. SPECK Image Coding Algorithm

SPECK [21] is a block-based algorithm to quantize and
encode the wavelet coefficients by exploiting similarities
among coefficients within a subband. The algorithm consists
of three stages: initialization, sorting, and refinement passes,
and uses two linked lists: the list of insignificant sets (LIS)
and the list of significant pixels (LSP).

The algorithm is initialized by setting threshold T = 2b,
where b = �log2(max(∀(i,j)){C(i, j)})� is the most significant
bit-plane number and {C(i , j)} represents the set of wavelet
coefficients. The transformed image is initially partitioned into
two sets: a root set S (consisting of a block of LL-band
coefficients), and a set I (set of remaining coefficients). The
LIS is then initialized with the coefficients of the S block and
the list LSP is initially left empty.

The sorting pass tests the significance of each set (block of
coefficients) of types S and I of the LIS against the current
threshold. The significance of S blocks is checked first. If a
set S is found to be significant, it is partitioned using quad
partitioning, resulting in four equal sized subsets which are
added to the LIS. A subset of size 1×1 corresponds to a
single coefficient, and when a coefficient is found significant
for the first time, its sign bit is also coded and the coefficient
is sent to the LSP. If an I -block is found to be significant,
it is partitioned using octave-band partitioning, resulting in
four sets: three sets of type S and one of type I . The size of
each of these three S sets is equal to the size of the chopped
portion of set I . The three S sets of octave band partitioning
are processed in the regular image-scanning order, after which
the newly formed reduced I set is processed. Once all sets
in the LIS have been processed for a particular threshold,
the refinement pass is initiated, which refines the quantization
of the pixels in the LSP (pixels tested significant during the
previous passes). The threshold is then reduced by a factor
of two and the sequence of sorting and refinement passes
is repeated for sets in the LIS against this lower threshold.
The sets in the LIS are processed in increasing order of their
size. The entire process is repeated until the desired bit-rate
is achieved.

Though SPECK is an efficient algorithm with low com-
putational complexity, it uses linked lists to track the set



2578 IEEE SENSORS JOURNAL, VOL. 16, NO. 8, APRIL 15, 2016

Fig. 1. Block diagram of of proposed image codec: The Fractional Wavelet
Filter (FrWF) computes the wavelet transform coefficients, which are encoded
with the novel zero-memory SPECK (ZM-SPECK) algorithm.

partitioning and refinement pixels. The use of linked lists in
SPECK necessitates large run-time system memory, increases
the coder’s complexity due to multiple accesses of memory,
and requires proper memory management, therefore limiting
its applications in memory-constrained environments, such as
handheld multimedia devices and WMSNs. To overcome this
limitation, a listless SPECK (LSK) algorithm was proposed
by Latte et al. [43], which is discussed in the next section.

C. Listless SPECK (LSK)

LSK [43] is a listless implementation of the SPECK [21]
algorithm. LSK follows the partitioning rules of SPECK with-
out using any list. State information is kept in a fixed-size array
that corresponds to the array of coefficient values, with two
bits per coefficient to enable fast scanning of the bit planes.
LSK uses special markers similar to those used in NLS [41],
which are updated at partitioning. The skipping of blocks of
insignificant coefficients is efficiently accomplished using a
recursive Z-scanning scheme, also known as linear indexing.
The linear indexing offers computational and organizational
advantages, allowing the indexing of the array coefficients
with one index, instead of two indices. The LSK algorithm
uses static memory in the form of 2 bits/coefficient marker
memory to track the significant/ insignificant pixels/sets.

Replacing dynamic memory by static memory is advanta-
geous, but the memory requirement of the coder is still high,
therefore limiting its use in memory-constrained environments.
Our proposed ZM-SPECK algorithm, described below, is an
attempt to develop an efficient image coder for such applica-
tions, as it does not require any static or dynamic memory
for coding of wavelet coefficients. Furthermore, the memory
required at the transform stage of the encoder is reduced by
using the FrWF, instead of the forward DWT.

III. PROPOSED MEMORY-EFFICIENT IMAGE CODER

The low processing power and limited RAM of sensor
nodes are the major constraints in the processing of images
on wireless nodes. A low-complexity image coder with high
coding efficiency and low memory requirement is needed
for resource-constrained WSNs. The compression can also
save energy within the network, as the coding energy is
typically lower than the transmission energy [48]. We combine
FrWF with the novel zero-memory SPECK (ZM-SPECK)
algorithm to design a new image coder. The block diagram
of the proposed codec is shown in Fig. 1. The input image
is first transformed using the FrWF and then quantized and
coded using the ZM-SPECK algorithm. The bit-stream thus
generated is transmitted and the received bit-stream is decoded

Fig. 2. Illustration of linear indexing for an 8×8 image with 2-level
DWT: (a) linear index, (b) subbands at different resolution levels, and (c) linear
index of each subband and size.

by the ZM-SPECK decoder. Finally, the image is reconstructed
using the traditional inverse DWT.

The proposed zero memory SPECK (ZM-SPECK)
algorithm is a novel implementation of the SPECK algorithm
without the use of any lists or markers. The objective is
to reduce the dynamic memory required by the codec to
encode/decode wavelet coefficients. In order to reduce the
memory requirement at the transform stage, the proposed
image codec uses the FrWF. The transformed image, which
is usually stored in raster fashion, is then converted into a
linear index array [54], described in Subsection III.A. The
ZM-SPECK algorithm avoids the use of lists by exploiting
the properties of linear indexing.

A. Linear Indexing

Linear indexing allows the addressing of a two dimensional
(rows, columns) array with a single index. Let M and N be
the numbers of rows and columns of a 2-D array X, and let
m and n be the row and column indices of a coefficient in
that array. The linear index � of the 2-D array X, varying in
the range of 0 to M N−1, can be obtained by interleaving the
bits of the binary representations of m and n [54]. Fig. 2(a)
illustrates the linear indexing of a 2-D array for an 8×8 image
with two level dyadic wavelet transform.

In a dyadic wavelet transformed image, the resulting sub-
bands form a pyramidal structure, in which low resolution
subbands are at the top of the pyramid and higher resolution
subbands are towards the bottom of the pyramid. At each reso-
lution level (except the topmost), there are three subbands, one
each in the three spatial resolutions, as illustrated in Fig. 2(b).
The linear indexing arranges the wavelet transformed coeffi-
cients in Z-scan order by positioning the coefficients belonging
to low resolution subbands earlier in the linear-indexed array,
than the coefficients of higher resolution subbands. Further,
the number of coefficients in any subband is related to the
number of coefficients in the LL-subband (with some integer
power of 4 as multiplicative factor), as evident from Fig. 2(c).
The linear indexing can be utilized to support the operations
on coefficient positions that are needed for tree- or block-
based wavelet image coding algorithms. The symbols and set



KIDWAI et al.: ZM-SPECK: A FAST AND MEMORYLESS IMAGE CODER FOR MULTIMEDIA SENSOR NETWORKS 2579

TABLE I

SET STRUCTURES IN 2-D ARRAY (USED IN ORIGINAL SPECK [21]) AND LINEAR INDEX ARRAY (USED IN PROPOSED ZM-SPECK)

structures used in the original SPECK algorithm, which uses
2D indexing, and the proposed algorithm, which is based on
linear indexing, are defined in Table I.

In order to understand the usefulness of linear indexing
in block-based wavelet image coding algorithms, such as
SPECK, consider an L level wavelet transformed image of size
M × N . The number of subbands in the transformed image
is 3L+1. Let k (k = 1, 2, 3, . . . , 3L+1) represent the index of
the subbands, whereby k = 1 is the index of the LL-subband.
Then, the number of coefficients (which we refer to as set
length λ) in each subband set, at various resolution levels, is

λRO OT = M N

4L
, for k = 1, 2, 3, 4 (resolution level L)

λp = 4pλRO OT , where p =
⌊

k − 2

3

⌋
, for k ≥ 5.

⎫⎪⎬
⎪⎭

(1)

We have observed several interesting properties of the linear
indexing for square size (M = N = 2p , p is an integer) dyadic
wavelet transformed images that are useful for tracking the
wavelet coefficients [55]:

Property 1: If Sλ
i represents a subband set, then the set

length λ is one of the factors of starting index i . In particular,
the set length λ of a subband set is the highest integer power
of 4 by which starting index i of the set is completely divisible.
Thus, for a set Sλ

i with linear starting index i , the set length λ
can be evaluated as.

λ = max[4t ], subject to
i

4t
∈ I+ & t ∈ I+,

I+ → Set of positive integers. (2)

Property 2: The initial index i and set length λ of a given
set Sλ

i are sufficient to obtain the indexes and set lengths of
the quad-partitioned subsets of the set Sλ

i .
In linear indexing, the first quad-partitioned subset is

obtained by setting the set length to one fourth of the set
length of the original set. For the remaining three subsets, the
set lengths remain equal to that of the first subset (Table I)
and can be evaluated from its starting index using Eqn. (2).

Property 3: The octave bands (set I in SPECK) can be
identified as the set of coefficients with starting index i such
that set length λ, obtained from i using Eqn. (2), is equal to
the index i itself.

In the SPECK algorithm, an I set represents the set of
coefficients of the transformed image that have not yet been
processed as S sets. After processing the S sets, the I set is
processed and if the I set is found significant, it is partitioned
into three S sets and one I set [21]. With linear indexing,
an I set can be identified using Property 3 and the starting
addresses and set lengths of all sets generated due to octave
band partitioning can be determined. The initial I set will be
a set of coefficients starting from index λRO OT to the last
coefficient of set �. That is, the initial I set can be defined
as I = �(i : MN − 1) = {Si

i ∪ Si
2i ∪ Si

3i ∪ �(4i : MN − 1)},
where i = λRO OT and �(i : MN − 1) denotes the set of
contiguous elements starting from index i to index MN − 1 in
the linearly indexed array �. Thus, once an I set is identified,
all its subsets due to octave band partitioning can be obtained
without using any lists or markers.

Thus, in a linear-indexed dyadic-transformed image, the
starting index of a subband set can be used to identify its
length (number of elements in that subband). This property
of linear indexing allows tracking the partitioned sets (octave
and quad partitioned sets) without any lists or markers. These
properties of linear indexing motivate us to implement the
SPECK algorithm without LIS, which is one of the main
contributions of this study.

B. Proposed ZM-SPECK Algorithm

Consider an image X of size N × N pixels which
is L-level wavelet transformed using the FrWF. The trans-
formed coefficients are stored in a linear array �, that has
Npix = N2 elements. The transformed image � exhibits a
hierarchical pyramidal structure defined by the number of
wavelet decomposition levels. The coefficients in the linear-
indexed array are automatically arranged according to the
scanning order depicted in Fig. 2(b). That is, the coefficients
of lower resolution subbands (lower indexed subbands) are
at the beginning of the array, whereas coefficients of higher
resolution subbands are positioned towards the end of the
array. The set length of the root set (LL-subband) SλROOT

0 is
λROOT = N2/4L . The encoding algorithm with the pseudo
code given in Table II is performed for each bit plane, starting
with the bth bit-plane (b is the most significant bit-plane
number) and decrementing b by 1 down to 0 or until a
prescribed bit budget is achieved.



2580 IEEE SENSORS JOURNAL, VOL. 16, NO. 8, APRIL 15, 2016

TABLE II

PSEUDO CODE OF PROPOSED ZM-SPECK ENCODER

ZM-SPECK follows the set partitioning rules of SPECK,
but does not use any lists, state tables, or markers to encode
coefficients. The functionalities of the LIS of the original
SPECK are performed in the proposed ZM-SPECK algorithm
by exploiting the linear indexing properties. By using the linear
indexing, the set length of the next set to be processed can
be calculated from the starting index of the new set using
Eqn. (2), which is highest power of 4 that completely divides
the starting index.

As ZM-SPECK does not use any lists or markers, the
pixels or set states in a coding pass (or bit-plane) are not
preserved (and therefore not known in the subsequent passes).
Therefore, in the ZM-SPECK algorithm, each pass begins with

the starting index ‘0’ and the set length as the length of the
root set. The algorithm is initialized by choosing the root set
(LL-subband) as S set. After an S set has been processed,
the index is incremented by the set length, giving the starting
index of the next S set. The set length of the new S set to be
processed is identified with Property 1 of the linear indexing.
During the process, a set may be found significant and needs
to be quad-partitioned. The quad partitioned subsets should
be processed first, before proceeding to the next set. This can
be readily achieved in the linear indexed array without any
reference to the original set, as explained in the following
paragraph.

1) Processing of Quad Partitioned Subsets: Let sets Sλ
i ,

Sλ
i+λ, . . . have to be processed (in that order). Set Sλ

i is checked
for its significance according to Eqn. (3). If set Sλ

i is found
significant, then it is quad-partitioned resulting in four subsets

Sλ/4
i , Sλ/4

i+λ/4, Sλ/4
i+2λ/4, and Sλ/4

i+3λ/4 which replace the original

set Sλ
i . Now, the set Sλ/4

i is processed first, followed by
the processing of the three subsets Sλ/4

i+λ/4, Sλ/4
i+2λ/4, Sλ/4

i+3λ/4,
and then Sλ

i+λ (in order). The algorithm differentiates the
quad-partitioned sets from set Sλ

i+λ, as the set length of set
Sλ

i+λ is four times the set length of the quad-partitioned sets.
To perform this function, ZM-SPECK performs an additional
bitwise AND operation of the initial index of the current set
with three times the previous set length. If the output of the
AND operation is non-zero, then the current set has the same
length as the previously processed set. Otherwise (if the AND
operation gives zero output), the current set has a set length
four times longer than the previous set.

2) Processing of Octave Band Partitioned Subsets: Initially,
the first I set used in SPECK is the set of the remaining
coefficients of the linear-indexed array �, formed by chopping
off SλROOT

0 from � and is referred to as I = �(λRO OT :
Npix −1). In ZM-SPECK, the presence of an I set is identified
by the fact that the starting index i and the set length λ
computed from the starting index are equal for the first Sλ

i
set resulting from octave band partitioning. Octave band
partitioning can be identified by choosing the first set as Si

i
and the next two sets having the same length, followed by the
next three sets of length 4i, and the process continues, until
the last three sets, each of set length Npix/4.

3) Significance Test for Merged Refinement and Sorting
Pass: The LSP used in SPECK is avoided in ZM-SPECK
by merging the refinement pass into the sorting pass. This
merging is achieved through a modified significance test
function. Specifically, in ZM-SPECK, the significance �b (·)
of a set (S or I ) or a coefficient against a threshold T = 2b,
where b is the bit-plane index, is determined as follows:

�b(S) =

⎧⎪⎨
⎪⎩

0 i f max(S) < T

1 i f T ≤ max(S) < 2T

NU L L i f max(S) ≥ 2T .

(3)

According to Eqn. (3), a set is significant if it includes
either a newly significant pixel, or a pixel requiring refinement,
or both. However, the significant bit ‘1’ will be generated
only if it contains at least one newly significant coeffi-
cient (i.e., the maximum valued coefficient has a magnitude



KIDWAI et al.: ZM-SPECK: A FAST AND MEMORYLESS IMAGE CODER FOR MULTIMEDIA SENSOR NETWORKS 2581

Fig. 3. Bit-stream in sorting pass of (a) SPECK and (b) ZM-SPECK.

between T and 2T ). A magnitude of the largest coefficient
of the set greater than or equal to 2T implies that at least
one coefficient has already been found significant in earlier
passes and therefore needs to be refined in the current pass.
For such cases, the set is treated as significant but no extra
bit will be put out by the encoder. Thus, no coding overhead
occurs in processing the sets having refinement pixels as no
bit is generated during the significance test. A significant set
is iteratively partitioned until smallest sets of length 4 are
obtained. Once a smallest-size set is found significant, each
coefficient of the set is tested for its significance/refinement
and the sign bit is encoded for a newly significant coefficient.
The decoder can readily identify the sets with pixels requiring
the refinement using the significance test in Eqn. (3). That is,
in a set with a refinement pixel, the maximum valued pixel
will have magnitude greater than or equal to 2T , and therefore
the decoder can be synchronized with the encoder. These facts
are exploited in ZM-SPECK to avoid the use of LSP.

The ZM-SPECK algorithm generates the bits in a different
order than the SPECK algorithm, as illustrated in Fig. 3. The
SPECK algorithm generates all refinement bits at the end
of each (except the most significant) bit-plane, whereas the
ZM-SPECK algorithm distributes the refinement bits over the
bit-plane. Due to this re-organization of bits (compared to
SPECK), ZM-SPECK may slightly degrade the decoded image
quality (compared to the original SPECK), if the bit-budget is
exhausted in the middle of a bit-plane. This is due to the fact
that some of the bits are used in refinements of the coefficients.
Therefore, the number of new significant coefficients (which
are mainly responsible for increasing the decoded image
quality) coded at that bit-budget may be reduced. However, if
the bit-budget is exhausted at the end of a pass (or bit-plane),
ZM-SPECK has the same performance as SPECK.

The ZM-SPECK algorithm performs all multiplication and
division operations by integer powers of 2, which can be
implemented by bit shifting operations. Further, the addition
operations needed during set partitioning can be implemented
with bitwise OR operations.

4) ZM-SPECK Decoder: The ZM-SPECK decoder is sym-
metric and follows the same algorithm as the encoder with
using input instead of output, and sets the bits and signs
of coefficients with an additional step to identify the sets
that contain coefficients requiring refinement. The decoder
performs mid-tread de-quantization for coefficients that are not
fully decoded.

5) Summary: The ZM-SPECK algorithm generates an
embedded bit-stream with progressive transmission and does

not use any lists or markers, thereby reducing the
memory requirement and computational cost involved in
appending/sorting the dynamic memory or markers. Since the
decoder uses similar significance tests for each set as the
encoder, the decoder complexity is of the same order as
the encoder complexity.

C. Memory Requirement

In order to estimate the memory requirement of the image
coder shown in Fig. 1, suppose that the transform and coding
stages are performed sequentially. Let MT and MC denote
the memory requirements of the transform and coding stages,
respectively. The total memory required for coding an image,
MTOTAL is

MTotal = max(MT , MC ). (4)

It may be noted that MT depends on the image size
and the implementation of the discrete wavelet transform
(conventional dyadic transform, lifting-based DWT, or FrWF).
For an image of size N×N , the conventional DWT requires
2N2 memory elements of four byte each for floating point
filter coefficients for low pass and high pass filtering of the
coefficients, while the memory required in floating point FrWF
is only 9N bytes.

The coding memory MC depends on the implementa-
tion of the quantization and encoding algorithm used to
encode the wavelet coefficients. The original SPECK algo-
rithm implements the set-partitioning rules by maintaining
two lists, namely LIS and LSP, which are responsible for the
large memory consumption of the SPECK algorithm. For a
512×512 image, LIS and LSP require 18 bits to store the
address of a set and a coefficient, respectively. Assuming that
the numbers of entries in the LIS and LSP are approximately
one-fourth of the number of pixels in the image, the total
list memory required to implement the SPECK algorithm is
approximately 512×512×(18+18)/4 = 288 KB. Similarly,
the listless SPECK algorithm [43], which uses 2 bits per
coefficient marker, needs 64 KB of memory to store static
markers. On the other hand, the proposed ZM-SPECK algo-
rithm does not use any lists or markers. Therefore, ZM-SPECK
does not require any static or dynamic memory to store the
state information. Thus, for ZM-SPECK-based wavelet image
coding, the total memory requirement is equal to the memory
required at the transform stage, which can be minimized by
using the FrWF instead of the conventional or lifting-based
DWT.

D. Computational Complexity

In the SPECK algorithm, every time a quad or octave par-
titioning of significant S or I sets is performed, four new sets
are generated that result in appending four new entries to the
LIS and deletion of one previous entry form the LIS. In addi-
tion, SPECK necessitates memory management and multiple
accesses of linked lists, thereby increasing the time complex-
ity of the algorithm. On the other hand, in the proposed
ZM-SPECK coder, quad partitioning is emulated by using
one-fourth of the original set length as the new set length.



2582 IEEE SENSORS JOURNAL, VOL. 16, NO. 8, APRIL 15, 2016

Octave partitioning is emulated by using the starting
index of the I set as the set length of the first S set.
ZM-SPECK identifies a new set to be processed by com-
puting the set-length from its starting index using a bit-wise
AND operation. It may be noted that the cost of computation
of the new set length in ZM-SPECK is much lower than the
complexity of SPECK due to appending of memory, multiple
accesses of memory, and complex memory management.

Thus, the ZM-SPECK coding algorithm not only achieves
the absolute lowest memory (zero memory) requirement
but also reduces the computational complexity compared to
SPECK. The ZM-SPECK decoder has an additional step
(in comparison to the SPECK decoder) of identifying sets
with coefficients to be refined, thereby requiring significance
testing of sets. Thus, the complexity of the ZM-SPECK
decoder is almost of the same level as the ZM-SPECK encoder
complexity.

IV. SIMULATION RESULTS

In this section the rate-distortion (R-D) performance,
memory requirement, and computational complexity of the
image coder formed by combining the FrWF transform stage
with the ZM-SPECK coding stage is evaluated and compared
with other state-of-art coders on twelve standard gray scale
(8 bit/pixel) images of dimensions 256×256, 512×512, and
1024×1024 pixels. The test images are taken from a stan-
dard image database (http://sipi.usc.edu/database). The images
of dimension 256×256 are ‘Bird’, ‘Cameraman’, ‘Clock’,
‘Goldhill’, of dimension 512×512 are ‘Lena’, ‘Barbara’,
‘Baboon’, ‘Cycle’, and of dimension 1024×1024 are
‘Airplane (U-2)’, ‘Airport’, ‘Man’, ‘Pentagon’. All images are
wavelet transformed with five levels of decomposition using
the Daubechies 9/7 filter, by either the fractional wavelet
filter (FrWF) or the traditional DWT. Floating point trans-
formed coefficients are quantized to the nearest integers, and
read into a linear indexed array. These coefficients are then
encoded using the SPIHT [16], SPECK [21], WBTC [25],
NLS [41], LSK [43], LMBTC [51], and proposed ZM-SPECK
algorithms. In sensor networks, decoding of the bit-stream is
typically done at workstations which are not constrained in
memory and processing power. Therefore, the reconstruction
is done using the traditional inverse DWT. All image cod-
ing algorithms are implemented using MATLAB7.0 and are
executed on a Windows 8.1 Netbook with Intel atom CPU
Z 3735F @ 1.33 GHz with 2 GB RAM and 32GB MMC
card. For a fair comparison, wavelet transforms (both DWT
and FrWF) and all coding algorithms are implemented on
the same platform. Since the coders generate embedded bit-
streams, the images are encoded only once at a bit rate of
1 bit/pixel, and are decoded at different bit rates from the same
embedded bit-stream. Unless otherwise specified, all reported
results are averages of the results obtained for all test images
of the corresponding size.

A. Coding Efficiency

Coding efficiency is generally measured in terms of the
average number of bits per pixel in the coded bit-stream to
achieve a minimum desired quality of the reconstructed image.

TABLE III

IMAGE QUALITY IN TERMS OF PSNR, NUMBER OF PIXEL COEFFICIENTS
FOUND SIGNIFICANT FOR FIRST TIME, AND NUMBER OF REFINEMENT

BITS GENERATED BY SPECK, ZM-SPECK, AND LMBTC
FOR THE IMAGE ‘LENA’ (512×512)

The objective quality of the reconstructed image is measured in
terms of the Peak-Signal-to-Noise-Ratio (PSNR), defined as:

PSN R = 10 log10
2552

mse
(5)

where mse is the mean square error of the reconstructed
image g(x, y) with respect to the original image f(x, y). For an
N × N size image, mse is defined as:

mse = 1

Nx N

N∑
x=1

N∑
y=1

[ f (x, y) − g(x, y)]2. (6)

Since ZM-SPECK uses the set partitioning rules of
SPECK, it is of interest to compare their coding efficiencies.
Table III compares the coding efficiencies of the SPECK [21],
LMBTC [51], and proposed ZM-SPECK algorithms for the
image ‘Lena’ of size 512×512 pixels. It is worth to emphasize
here that the performance of all codecs is exactly the same,
irrespective of whether the wavelet transform is implemented
using the conventional DWT or the FrWF. We observe from
Table III that the coding efficiencies of ZM-SPECK and
SPECK are generally equivalent, with only small PSNR vari-
ations in the range −0.31∼0.17 dB. It should be noted that
both algorithms have the same coding efficiency if an image
is decoded at a bit-rate that exhausts exactly at the end of a
bit-plane.

However, if an image is decoded at a bit-rate that exhausts
in the middle of a bit-plane (or pass), ZM-SPECK has slightly
inferior coding efficiency compared to SPECK (see Table III,
e.g., for 0.01 and 0.05 bpp). This is because ZM-SPECK
merges the sorting and refinement passes into the sorting
pass and treats the refinement pixels at par with newly found
significant pixels, except that no significance bit is outputted
for refinement pixels. Due to the merging of the sorting and
refinement passes in ZM-SPECK, some bits which are used
for finding significant coefficients in SPECK, are consumed for
refining coefficients that have been found significant in earlier
passes of ZM-SPECK. Therefore, ZM-SPECK has fewer bits
(particularly at the early stages of a bit-plane) for searching of
new significant coefficients. Since a bit corresponding to a new



KIDWAI et al.: ZM-SPECK: A FAST AND MEMORYLESS IMAGE CODER FOR MULTIMEDIA SENSOR NETWORKS 2583

Fig. 4. PSNR vs Bit rate for ZM-SPECK, SPECK, SPIHT, WBTC, NLS, LSK, and LMBTC coders for image dimensions (a) 256×256, (b) 512×512, and
(c) 1024×1024 pixels.

TABLE IV

BD-PSNR GAINS (dB) OF ZM-SPECK IN THE

RANGE 0.005-0.1 BIT PER PIXEL

significant coefficient contributes more to the improvement of
the image quality (PSNR), than a bit used in the refinement
of a coefficient, a lower number of decoded new significant
coefficients implies lower PSNR.

If the bit-budget exhausts somewhere near the end of a bit-
plane, ZM-SPECK has slightly higher coding efficiency than
SPECK (for example at 0.005 and 0.03125 bpp in Table III).
This is due to the fact that although ZM-SPECK encodes fewer
new significant coefficients than SPECK, ZM-SPECK encodes
more refinement bits, and the overall gain in PSNR due to
refinement bits is higher than the loss of PSNR due to fewer
new significant coefficients. Further, we observe from Table III
that ZM-SPECK has higher coding efficiency than LMBTC for
almost all bit rates. This is because of the block-based nature
of ZM-SPECK.

Fig. 4 compares the coding performance of ZM-SPECK
with other state-of-the-art coders (SPIHT, SPECK, and
WBTC) and their listless versions (NLS and LSK, LMBTC)
for the test images of dimension 256×256, 512×512, and
1024×1024 pixels. We observe from Fig. 4 that in general,
the ZM-SPECK image coder has R-D performance equivalent
to the other coders. However, at very low bit rates, ZM-SPECK
outperforms other listless coders.

Table III and Fig. 4 indicate that the PSNR values of the
various coding algorithms at a specified bits/pixel setting are
very close to each other, suggesting a comparison in terms
of the Bjontegaard delta PSNR (BD-PSNR) [56]. Table IV
presents the BD-PSNR gain of ZM-SPECK with respect to
the other coders. We observe that ZM-SPECK outperforms
SPIHT, and other listless coders, such as NLS, LSK, and
LMBTC, but is slightly inferior to SPECK and WBTC.

B. Memory Requirement Analysis

The image communication through portable multimedia
devices and wireless sensor nodes is constrained mainly due to

TABLE V

MEMORY REQUIREMENTS (IN kB) OF WAVELET TRANSFORM AND

CODING STAGES OF SPIHT, SPECK, WBTC, Wi2l, NLS,
LSK, LMBTC, AND ZM-SPECK

low computational power and limited available memory. Many
low-cost sensor nodes have only on-board memory of the order
of 10 kB [6]. The memory requirement of an image coder
with sequential transform and coding stages is the maximum
of the memory required at the transform and coding stages.
The working memory (RAM) requirements of the ZM-SPECK
coder and other state-of-art wavelet-based image coders, such
as SPIHT [16], SPECK [21], NLS [41], WBTC [25], and
LMBTC [51] with floating point FrWF and conventional
DWT implementation for image sizes N × N (N = 256, 512,
and 1024) are compared in Table V. We observe from Table V
that transforming images using FrWF requires much less
memory than the conventional DWT. To be more specific, the
FrWF requires memory in the range of 2.25-9.0 kB,
whereas the conventional DWT requires 0.5-8 MB
of memory for wavelet transformation of images of size
varying from 256×256 to 1024×1024 pixels. This is because
FrWF stores only three image lines in memory, whereas the
conventional DWT stores the entire image/coefficients in the
system memory.



2584 IEEE SENSORS JOURNAL, VOL. 16, NO. 8, APRIL 15, 2016

Fig. 5. Coding complexity measured in terms of time for ZM-SPECK, SPECK, SPIHT, WBTC, NLS, LSK, and LMBTC coder with FrWF and DWT.
Encoding time for image dimensions (a) 256×256, (b) 512×512, and (c) 1024×1024 pixels. Decoding time for image dimensions (d) 256×256, (e) 512×512,
and (f) 1024×1024 pixels.

From Table V we also observe that ZM-SPECK
outperforms the other algorithms in terms of the coding mem-
ory requirement. This is because ZM-SPECK does not require
any static (for state tables/markers) or dynamic (for linked
lists) memory to store the significance states of coefficients
or sets. ZM-SPECK achieves essentially zero coding memory
requirements, irrespective of image size and bit rate. On the
other hand, the memory requirements of SPIHT, SPECK, and
WBTC grow with increasing bit-rate and image size. Their list-
less versions, namely NLS, LSK, and LMBTC, respectively,
require fixed-size static memory depending on image size, but
independent of the bit-rate. Although ZM-SPECK does not
require any memory to store state information in the form
of state tables, markers or linked lists, its execution requires
some program variables. Measurements indicated that the
ZM-SPECK program variables occupy approximately 44 bytes
of memory. Although the memory required by the Wi2l
coder is quite low (independent of bit rate, but dependent on
image size) [48], the Wi2l coder generates a non-embedded
bit-stream, making it unsuitable for scalable image transmis-
sion over heterogeneous networks.

The overall memory requirement of an image coder with
sequential transform and coding stages is the maximum of
the memory required at the individual stages. Therefore,
the memory requirement of the ZM-SPECK-based image
coder equals the memory required for the wavelet transform.
From Table V, we observe that for low resolution images
(256×256 and 512×512), the overall memory requirements
of the FrWF-based Wi2l and LMBTC codecs are the same
as those of the FrWF-based ZM-SPECK. For high resolu-
tion (1024×1024) images, the ZM-SPECK and Wi2l based
image coders require the least overall memory (of the order
of 9 kB) compared to all other coders. However Wi2l is a
non-embedded coder, which is not suitable for scalable image
network transmission.

From these results, it is evident that considering the over-
all memory requirement of an image coder (maximum of
transform memory and coding algorithm’s memory), FrWF
combined with the ZM-SPECK coding algorithm consumes
the least memory among all other options. Even for higher
resolution (1024×1024), the overall memory requirement of
FrWF + ZM-SPECK is of the order of 9 kB, and therefore



KIDWAI et al.: ZM-SPECK: A FAST AND MEMORYLESS IMAGE CODER FOR MULTIMEDIA SENSOR NETWORKS 2585

can be considered as feasible option for its implementation
on low-cost memory-constrained portable multimedia devices
and VSNs.

One may question the usefulness of the proposed
ZM-SPECK coder, as it does not significantly reduce the
overall memory requirements for low resolution images com-
pared to the FrWF-based Wi2l and LMBTC coders, especially
considering the fact that it is targeted for portable multimedia
devices and sensor networks (where low resolution images
are dominant). However, we believe that the ZM-SPECK
coder is an important advance in low-memory image coding
as it achieves an absolute zero coding memory requirement.
Thus, any future advances in reducing the transform stage
memory requirement, when combined with ZM-SPECK, will
immediately result in reduced overall image coder memory
requirements.

C. Complexity Analysis

We evaluate the computational complexity (encoding and
decoding speeds) of the proposed ZM-SPECK codec by esti-
mating the computational time required for encoding the trans-
formed coefficients (obtained with FrWF and traditional DWT)
and decoding the bit-stream at different bit-rates. The encoding
time is the total time required for calculating the transform
as well as the time required for encoding the transformed
coefficients. The decoding time at a given bit-rate is the
time required for decoding the corresponding number of bits
in a bit-stream as well as reconstructing the image. The
complexity of the ZM-SPECK codec is compared with other
state-of-art-coders, such as SPIHT, SPECK, WBTC, NLS,
LSK, and LMBTC, in terms of encoding and decoding times
in Fig. 5. The encoding and decoding times are measured on a
Windows 8.1 Netbook with Intel atom CPU Z 3735F @
1.33 GHz having 2 GB RAM and a 32 GB MMC card.

From Figure 5, it is evident that the FrWF based
ZM-SPECK encoder has the lowest complexity in comparison
to other state-of-the-art coders, but slightly higher complexity
than LSK [43]. This saving in encoding time is due to the fact
that ZM-SPECK does not use any lists or markers, therefore
avoiding multiple memory accesses. That is, the time involved
in reading and writing of memory is much more than the time
required for computing the set size in ZM-SPECK.

Comparing the decoding times, we observe that ZM-SPECK
has shorter decoding times compared to SPIHT and SPECK,
but has longer decoding time compared to NLS and LSK.
This is due to the fact that the ZM-SPECK decoder conducts
additional significance tests to identify the sets with refinement
coefficients. Therefore, the computational complexity of the
ZM-SPECK decoder is comparable to that of the ZM-SPECK
encoder.

V. CONCLUSION

In order to meet the constraints of low-cost visual sensor
nodes and other portable multimedia devices, a low-memory
image codec is required. In this paper we have proposed a
novel FrWF-based ZM-SPECK image coder, which reduces
the memory required at the transform stage by using the FrWF,

and reduces the memory required at the coding stage through
a novel Zero Memory SPECK (ZM-SPECK) algorithm.
Simulation results demonstrate that the proposed FrWF-based
ZM-SPECK coder requires very low transform memory and
zero state memory for encoding/decoding of coefficients.
Moreover, ZM-SPECK has reduced computational complexity
compared to the original SPECK algorithm, while preserving
the SPECK coding efficiency. Due to these features, the
proposed coder is suitable for resource-constrained devices,
such as portable cameras, PDAs, and sensor nodes of wireless
multimedia sensor networks (WMSNs). The FrWF-based
ZM-SPECK coder is fast in comparison to other state-of-the-
art coders at the expense of increased decoding complexity.
Sensor nodes in WMSN are extremely resource constrained
while sensor hubs have more resources; therefore lower trans-
form and encoding memory and lower encoding complexity
with increased decoding complexity make ZM-SPECK a suit-
able candidate for implementation in sensor nodes.

The ZM-SPECK coding algorithm presented in this
article has important implications for future research on low-
complexity multimedia processing in sensor nodes: Future
research on low-memory image coding should focus on reduc-
ing the memory requirements of the wavelet transform. Since
ZM-SPECK requires zero memory for coding the wavelet
coefficients, any reductions in transform memory requirements
will immediately translate into reductions of the memory
required for the overall image coder.

REFERENCES

[1] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “Wireless multimedia
sensor networks: Applications and testbeds,” Proc. IEEE, vol. 96, no. 10,
pp. 1588–1605, Oct. 2008.

[2] T. Melodia and I. F. Akyildiz, “Research challenges for wireless multi-
media sensor networks,” in Distributed Video Sensor Networks. London,
U.K.: Springer, 2011, pp. 233–246.

[3] A. Seema and M. Reisslein, “Towards efficient wireless video sensor
networks: A survey of existing node architectures and proposal for a
Flexi-WVSNP design,” IEEE Commun. Surveys Tuts., vol. 13, no. 3,
pp. 462–486, Third Quarter 2011.

[4] B. Tavli, K. Bicakci, R. Zilan, and J. M. Barcelo-Ordinas, “A survey
of visual sensor network platforms,” Multimedia Tools Appl., vol. 60,
no. 3, pp. 689–726, Oct. 2012.

[5] A. Sharif, V. Potdar, and E. Chang, “Wireless multimedia sensor
network technology: A survey,” in Proc. 7th IEEE Int. Conf. Ind.
Inform. (INDIN), Jun. 2009, pp. 606–613.

[6] S. Rein and M. Reisslein, “Low-memory wavelet transforms for wireless
sensor networks: A tutorial,” IEEE Commun. Surveys Tuts., vol. 13,
no. 2, pp. 291–307, Second Quarter 2011.

[7] A. Chefi, A. Soudani, and G. Sicard, “Hardware compression scheme
based on low complexity arithmetic encoding for low power image
transmission over WSNs,” AEU-Int. J. Electron. Commun., vol. 68, no. 3,
pp. 193–200, Mar. 2014.

[8] M. Nasri, A. Helali, H. Sghaier, and H. Maaref, “Energy-
efficient wavelet image compression in wireless sensor network,” in
Proc. Int. Conf. Commun. Wireless Environ. Ubiquitous Syst., New
Challenges (ICWUS), Sousse, Tunisia, 2010, pp. 1–7.

[9] T. Ma, M. Hempel, D. Peng, and H. Sharif, “A survey of energy-
efficient compression and communication techniques for multimedia in
resource constrained systems,” IEEE Commun. Surveys Tuts., vol. 15,
no. 3, pp. 963–972, Third Quarter 2013.

[10] D.-U. Lee, H. Kim, M. Rahimi, D. Estrin, and J. D. Villasenor,
“Energy-efficient image compression for resource-constrained plat-
forms,” IEEE Trans. Image Process., vol. 18, no. 9, pp. 2100–2113,
Sep. 2009.

[11] B.-S. Chow, “A limited resources-based approach to coding for wireless
video sensor networks,” IEEE Sensors J., vol. 9, no. 9, pp. 1118–1124,
Sep. 2009.



2586 IEEE SENSORS JOURNAL, VOL. 16, NO. 8, APRIL 15, 2016

[12] E. J. Tan, Z. Ignjatovic, M. F. Bocko, and P. P. K. Lee, “Non-uniformly
tiled CMOS image sensors for efficient on-chip image compression,”
IEEE Sensors J., vol. 12, no. 8, pp. 2655–2663, Aug. 2012.

[13] D. Santa-Cruz, R. Grosbois, and T. Ebrahimi, “JPEG 2000 performance
evaluation and assessment,” Signal Process., Image Commun., vol. 17,
no. 1, pp. 113–130, Jan. 2002.

[14] A. S. Lewis and G. Knowles, “Image compression using the 2-D wavelet
transform,” IEEE Trans. Image Process., vol. 1, no. 2, pp. 244–250,
Apr. 1992.

[15] J. M. Shapiro, “Embedded image coding using zerotrees of
wavelet coefficients,” IEEE Trans. Signal Process., vol. 41, no. 12,
pp. 3445–3462, Dec. 1993.

[16] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Trans. Circuits
Syst. Video Technol., vol. 6, no. 3, pp. 243–250, Jun. 1996.

[17] Z. Xiong, K. Ramchandran, and M. T. Orchard, “Space-Frequency
quantization for wavelet image coding,” IEEE Trans. Image Process.,
vol. 6, no. 5, pp. 677–693, May 1997.

[18] E. Khan and M. Ghanbari, “Very low bit rate video coding using virtual
SPIHT,” IEE Electron. Lett., vol. 37, no. 1, pp. 40–42, Jan. 2001.

[19] J. Andrew, “A simple and efficient hierarchical image coder,” in Proc.
IEEE Int. Conf. Image Process. (ICIP), vol. 3. Oct. 1997, pp. 658–661.

[20] A. Islam and W. A. Pearlman, “Embedded and efficient low-complexity
hierarchical image coder,” Proc. SPIE, vol. 3653, pp. 294–305,
Jan. 1999.

[21] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient,
low-complexity image coding with a set-partitioning embedded block
coder,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 11,
pp. 1219–1235, Nov. 2004.

[22] C. Chrysafis, A. Said, A. Drukarev, A. Islam, and W. A. Pearlman,
“SBHP—A low complexity wavelet coder,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., vol. 4, Jun. 2000, pp. 2035–2038.

[23] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Trans. Image Process., vol. 9, no. 7, pp. 1158–1170,
Jul. 2000.

[24] S.-T. Hsiang and J. W. Woods, “Embedded image coding using zer-
oblocks of subband/wavelet coefficients and context modeling,” in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 3. May 2000, pp. 662–665.

[25] A. A. Moinuddin, E. Khan, and M. Ghanbari, “Efficient algorithm for
very low bit rate embedded image coding,” IET Image Process., vol. 2,
no. 2, pp. 59–71, Apr. 2008.

[26] J. Oliver and M. P. Malumbres, “Low-complexity multiresolution image
compression using wavelet lower trees,” IEEE Trans. Circuits Syst. Video
Technol., vol. 16, no. 11, pp. 1437–1444, Nov. 2006.

[27] L. W. Chew, L.-M. Ang, and K. P. Seng, “Survey of image compression
algorithms in wireless sensor networks,” in Proc. Int. Symp. Inf. Technol.,
Kuala Lumpur, Malaysia, Aug. 2008, pp. 1–9.

[28] R. Sudhakar, R. Karthiga, and S. Jayaraman, “Image compression using
coding of wavelet coefficients—A survey,” ICGST-GVIP J., vol. 5, no. 6,
pp. 25–38, Jun. 2005.

[29] C. Chrysafis and A. Ortega, “Line-based, reduced memory, wavelet
image compression,” IEEE Trans. Image Process., vol. 9, no. 3,
pp. 378–389, Mar. 2000.

[30] J. Oliver and M. Perez Malumbres, “On the design of fast wavelet
transform algorithms with low memory requirements,” IEEE Trans.
Circuits Syst. Video Technol., vol. 18, no. 2, pp. 237–248, Feb. 2008.

[31] C.-H. Yang, J.-C. Wang, J.-F. Wang, and C.-W. Chang, “A block-
based architecture for lifting scheme discrete wavelet transform,” IEICE
Trans. Fundam. Electron., Commun. Comput. Sci., vol. E90-A, no. 5,
pp. 1062–1071, May 2007.

[32] Y. Bao and C.-C. J. Kuo, “Design of wavelet-based image codec in
memory-constrained environment,” IEEE Trans. Circuits Syst. Video
Technol., vol. 11, no. 5, pp. 642–650, May 2001.

[33] L. W. Chew, W. C. Chia, L.-M. Ang, and K. P. Seng, “Very low-
memory wavelet compression architecture using strip-based processing
for implementation in wireless sensor networks,” EURASIP J. Embedded
Syst., vol. 2009, no. 479281, pp. 1–16, Dec. 2009.

[34] L. W. Chew, W. C. Chia, L.-M. Ang, and K. P. Seng, “Low-memory
video compression architecture using strip-based processing for imple-
mentation in wireless multimedia sensor networks,” Int. J. Sensor Netw.,
vol. 11, no. 1, pp. 33–47, Jan. 2012.

[35] W. C. Chia, L. W. Chew, L.-M. Ang, and K. P. Seng, “Low memory
image stitching and compression for WMSN using strip-based process-
ing,” Int. J. Sensor Netw., vol. 11, no. 1, pp. 22–32, Jan. 2012.

[36] S. Rein, S. Lehmann, and C. Gühmann, “Fractional wavelet filter for
camera sensor node with external Flash and extremely little RAM,” in
Proc. ACM Mobile Multimedia Commun. Conf. (MobiMedia), Jul. 2008,
pp. 1–7.

[37] H. Arora, P. Singh, E. Khan, and F. Ghani, “Memory efficient set parti-
tionning in hierarchical tree (MESH) for wavelet image compression,” in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), vol. 2,
Mar. 2005, pp. 385–388.

[38] E. Khan, I. A. Arshad, and T. Varshney, “An error resilient and memory
efficient scheme for wavelet image coding,” J. Appl. Quant. Methods,
vol. 5, no. 2, pp. 350–357, Jun. 2010.

[39] M. Akter, M. B. I. Reaz, F. Mohd-Yasin, and F. Choong, “A modified-
set partitioning in hierarchical trees algorithm for real-time image
compression,” J. Commun. Technol. Electron., vol. 53, no. 6,
pp. 642–650, Jul. 2008.

[40] W.-K. Lin and N. Burgess, “Listless zerotree coding for color images,”
in Proc. 32nd Asilomar Conf. Signals, Syst. Comput., vol. 1, Nov. 1998,
pp. 231–235.

[41] F. W. Wheeler and W. A. Pearlman, “SPIHT image compression without
lists,” in Proc. IEEE Conf. Acoust., Speech Signal Process., vol. 4.
Jun. 2000, pp. 2047–2050.

[42] H. Pan, W.-C. Siu, and N.-F. Law, “A fast and low memory image coding
algorithm based on lifting wavelet transform and modified SPIHT,”
Signal Process., Image Commun., vol. 23, no. 3, pp. 146–161, 2008.

[43] M. V. Latte, N. H. Ayachit, and D. K. Deshpande, “Reduced memory
listless SPECK image compression,” Digit. Signal Process., vol. 16,
no. 6, pp. 817–824, Nov. 2006.

[44] N. R. Kidwai, M. Alam, E. Khan, and R. Beg, “A efficient memory
no list set partitioned embedded block (NLSK) wavelet image coding
algorithm for low memory devices,” Int. J. Signal Process., Image
Process. Pattern Recognit., vol. 5, no. 4, pp. 93–106, Dec. 2012.

[45] R. K. Senapati, U. C. Pati, and K. K. Mahapatra, “Listless block-
tree set partitioning algorithm for very low bit rate embedded
image compression,” AEU-Int. J. Electron. Commun., vol. 66, no. 12,
pp. 985–995, Dec. 2012.

[46] N. R. Kidwai, E. Khan, and R. Beg, “A memory efficient listless SPECK
(MLSK) image compression algorithm for low memory applications,”
Int. J. Adv. Res. Comput. Sci., vol. 3, no. 4, pp. 209–215, Jul./Aug. 2012.

[47] N. R. Kidwai, E. Khan, and R. Beg, “A memory efficient no list
SPECK (NSK) wavelet image coder for memory-constrained applica-
tions,” J. Remote Sens. GIS (STM J.), vol. 3, no. 3, pp. 1–16, Dec. 2012.

[48] S. Rein, S. Lehmann, and C. Guhmann, “Wavelet image two-line coder
for wireless sensor node with extremely little RAM,” in Proc. IEEE
Data Compress. Conf. (DCC), Mar. 2009, pp. 252–261.

[49] L. Ye, J. Guo, B. Nutter, and S. Mitra, “Memory-efficient image codec
using line-based backward coding of wavelet trees,” in Proc. IEEE Data
Compress. Conf. (DCC), Mar. 2007, pp. 213–222.

[50] L. Ye, J. Guo, B. Nutter, and S. Mitra, “Low-memory-usage image
coding with line-based wavelet transform,” Opt. Eng., vol. 50, no. 2,
pp. 027005-1–027005-11, Feb. 2011.

[51] M. Tausif, N. R. Kidwai, E. Khan, and M. Reisslein, “FrWF-based
LMBTC: Memory-efficient image coding for visual sensors,” IEEE
Sensors J., vol. 15, no. 11, pp. 6218–6228, Nov. 2015.

[52] N. R. Kidwai, M. Alam, E. Khan, and R. Beg, “A fast and memory
efficient wavelet based set partitioned embedded block image coding
algorithm,” in Proc. Int. Conf. Multimedia, Signal Process. Commun.
Technol. (IMPACT), Dec. 2011, pp. 320–323.

[53] S. Rein and M. Reisslein, “Performance evaluation of the fractional
wavelet filter: A low-memory image wavelet transform for multimedia
sensor networks,” Ad Hoc Netw., vol. 9, no. 4, pp. 482–496, Jun. 2011.

[54] G. Seetharaman, B. Zavidovique, and S. Shivayogimath, “Z-trees: Adap-
tive pyramid-algorithms for image segmentation,” in Proc. IEEEE Int.
Conf. Image Process. (ICIP)., vol. 3, Oct. 1998, pp. 294–298.

[55] N. R. Kidwai, “Efficient image coding for wireless sensor networks,”
Ph.D. dissertation, Dept. Electron. Commun. Eng., Integral Univ.,
Lucknow, India, Apr. 2014.

[56] G. Bjøntegaard, Calculation of Average PSNR Differences Between
RD-Curves, document VCEG-M33, Technical Report Video Cod-
ing Experts Group (VCEG), International Telecommunication Union-
Telecommunications Standardization Sector (ITU-T), Apr. 2001.

Naimur Rahman Kidwai received the B.Sc.(Engg.)
degree in electronics engineering from the Zakir
Hussain College of Engineering and Technology,
Aligarh Muslim University, India, in 1996, the
M.Tech. degree in digital communication from
Uttar Pradesh Technical University, Lucknow, India,
in 2006, and the Ph.D. degree from Integral Univer-
sity, Lucknow, in 2014. He is currently an Associate
Professor with the Department of Electronics and
Communication, Integral University.



KIDWAI et al.: ZM-SPECK: A FAST AND MEMORYLESS IMAGE CODER FOR MULTIMEDIA SENSOR NETWORKS 2587

Ekram Khan (SM’12) received the B.Sc.(Engg.)
and M.Sc.(Engg.) degrees from Aligarh Muslim
University (AMU), Aligarh, India, in 1991 and 1994,
respectively, and the Ph.D. degree from the Uni-
versity of Essex, Colchester, U.K., in 2003, all in
electronics engineering. He joined the Department
of Electronics Engineering, AMU, in 1993 where
he has been a Professor since 2009. His areas of
research are low-complexity image/video coding,
video transmission over wireless networks, and bio-
medical image processing. He is a Life Member of

the Institution of Electronics and Telecommunication Engineers, India, and
Systems Society of India.

Martin Reisslein (A’96–S’97–M’98–SM’03–F’14)
received the Ph.D. degree in systems engineering
from the University of Pennsylvania in 1998. He is
currently a Professor with the School of Electrical,
Computer, and Energy Engineering, Arizona State
University, Tempe.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


