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Note on Evaluation of AWG Port Utilization
Probabilities dl(1, j), j 6= 1, D, D − 1, and

dl(1, 1)
Michael Scheutzow, Patrick Seeling, Martin Maier, and Martin Reisslein

EVALUATION OF dl(1, j) FOR j 6= 1, D,D − 1
In this appendix we evaluate dl(1, j) for j 6= 1, D, D−1, i.e., the output port j is not a direct neighbor of

sender port D, and note that the dl(1, j) are the same for these AWG ports j. We evaluate the probability
dl(1, j) for the event that the considered multicast packet with l destinations is transmitted over the star
subnetwork and if it were transmitted over the AWG it would require one packet copy transmission to the
port j counting from the sender port. In particular, we evaluate the probabilities ∆i, i = 1, . . . , 5, for the
following five mutually exclusive events: ∆1 is the probability for the event of interest (namely that the
multicast packet is transmitted over the star subnetwork and if it were transmitted over the AWG it would
require one packet copy transmission to the port j counting from the sender port) with the additional
condition that at (or directly next to) the sending port there is no occupied RS node and one occupied RS
segment. ∆2 is defined analogously for no occupied RS node and two adjacent occupied RS segments. ∆3

is defined analogously for one occupied RS node and no occupied RS segment, ∆4 for one occupied RS
node and one occupied RS segment, and ∆5 for one occupied RS node and two occupied RS segments.
We obtain
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In (1) the factor
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is the probability of having s RS nodes at the destination port occupied and

no occupied RS nodes at any other AWG port. The factor
(
S−1
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)
/
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)
accounts for the probability of

having k − 1 of the internal segments at the destination port occupied. The factor (S − 1 + 1/2 + 1/2)
accounts for number of possible positions for the one occupied segment at the source port, which has
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S − 1 internal segments, plus the two border segments, each of which is associated with the considered
source port with probability 1/2. The factor 1

k

(
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l+1

)
is the probability that the sender lies in the one

occupied segment at the source port. To see this, note that the source node would fall on one of the
occupied RS nodes with probability s/(l +1). Hence, with probability 1− s/(l +1) the source node falls
on one of the occupied segments. The source node falls on a particular of the k segments, namely the
one occupied segment associated with the sending port with probability [1− s/(l +1)]/k. Similar to (??)
the three summands in the braces account for the scenarios where the ring-homed destination nodes are
(i) on the internal RS segments of the destination port, (ii) on the internal and one border segment of
the destination port, and (iii) on the internal and two border segments of the destination port.

Furthermore, we have
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The reasoning leading to (2) is analogous to the reasoning that resulted in (1) with the main difference
that there are S possible ways of having two adjacent occupied segments at the source port, and with
probability 1/4 these are assigned to the RS node between them. Also, the source node can now be on of
the two occupied segments at the source port, which is accounted for by the factor 2/k.

We also have
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where the factor
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is the probability that there is one occupied RS (sender) node at the

sending port and s−1 occupied RS (destination) nodes at the considered destination port. Hereby, 1/(l+1)
is the probability that the occupied RS node at the sender port is the source node of the multicast. The
reasoning for the three summands inside the braces is identical to the reasoning leading to (??).
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where there are two possible positions for placing the occupied segment adjacent to the occupied RS
node, and the occupied segment is associated with the occupied RS node with probability 1/2. The factor(

1
l+1 + 1

k
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is the probability that the sender is either the occupied RS node or on the one

occupied segment at the sender port.
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Finally,
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with which we obtain

dl(1, j) =
5∑

i=1

∆i. (6)

EVALUATION OF dl(1, 1)
In this appendix we evaluate dl(1, 1), which is equal to dl(1, D − 1). Analogous to the evaluation of

dl(1, j) above, we evaluate dl(1, 1) as the sum of the probabilities for five mutually exclusive events
detailed above. The main difference from the dl(1, j), j 6= 1, D, D − 1 is that now the border segment
between the source port and the destination port may be assigned to the destination port and thus not be
available for the positioning of the occupied segments at the source port. In addition, we need to consider
a distinction between the cases D = 2 and D ≥ 3. We incorporate this distinction through a factor ν

which we set ν = 2 for D = 2 and ν = 1 for D ≥ 3. We then obtain
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In the scenario accounted for by the first summand in braces in (7), the k − 1 occupied segments at the
destination port are all internal segments, thus S− 1 + 1/2 + 1/2 positions are available for the occupied
segment at the source port, as in (1). In the scenario where one of the border segments of the destination
port is occupied (second summand in (7)) then there are only S − 1 + 1/2 + 1/4 available positions for
the occupied segment at the source port, since with probability 1/2 · 1/2 the border segment is assigned
to the source port and not occupied by the destination port. For the scenario where both border segments
are occupied by the destination port (third summand in (7)), only S − 1 + 1/2 positions are available for
the occupied segments at the source port.

Analogously we obtain
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and
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whereby ∆3 is given by (3). With these ∆i we obtain

dl(1, 1) =
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∆i. (11)

Following the same principles we can calculate dl(k, j) for k ≥ 2, which are increasingly complex
expressions.


