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A Genetic Algorithm-Based Methodology for
Optimizing Multiservice Convergence

in a Metro WDM Network
Hyo-Sik Yang, Martin Maier, Martin Reisslein, Member, IEEE, and W. Matthew Carlyle

Abstract—We consider the multi-objective optimization of a
multi-service arrayed-waveguide grating-based single-hop metro
WDM network with the two conflicting objectives of maximizing
throughput while minimizing delay. We develop and evaluate
a genetic algorithm based methodology for finding the optimal
throughput-delay tradeoff curve, the so-called Pareto-optimal
frontier. Our methodology provides the network architecture
(hardware) and the Medium Access Control (MAC) protocol
parameters that achieve the Pareto-optima in a computation-
ally efficient manner. The numerical results obtained with our
methodology provide the Pareto-optimal network planning and
operation solutions for a wide range of traffic scenarios. The
presented methodology is applicable to other networks with a
similar throughput-delay tradeoff.

Index Terms—Arrayed-waveguide grating, genetic algorithm,
medium access control protocol, metropolitan area network,
multi-objective optimization, Pareto-optimal, wavelength-division
multiplexing (WDM).

I. INTRODUCTION

OPTICAL single-hop wavelength division multiplexing
(WDM) networks have the potential to provide high

throughput and low delay connectivity in metropolitan and
local area settings, as demonstrated by recent studies [1]–[6].
The throughput-delay performance of these single-hop WDM
networks is typically very sensitive to the setting of thearchitec-
ture parameters(e.g., degree of underlying arrayed-waveguide
grating (AWG), degree of employed combiners and splitters)
and the medium access control (MAC)protocol parameters
(e.g., length of frames in timing structure, number of control
slots, node back-off probability). For good network perfor-
mance, these parameters must be set properly, which is a
challenge due to the large search space of possible parameter
combinations and the typically computationally demanding
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evaluation of a particular parameter combination. Importantly,
in single-hop WDM networks, the objectives to maximize
the throughput while minimizing the delay are typically con-
flicting. With certain combinations of parameter settings, the
networks achieve a small delay and moderate throughput, which
is perfectly suited fordelay-sensitivetraffic with moderate
throughput requirements, such as voice traffic. On the other
hand, certain combinations of parameter settings achieve a
large throughput but introduce some moderate delays, which is
perfectly suited forthroughput-sensitivetraffic that can tolerate
some delays, such as Internet (FTP, HTTP, e-mail) and Frame
Relay traffic. Typically, these different types of traffic dominate
during different times of the day, as illustrated in Fig. 1(a)–(c)
[7]. During office hours, voice traffic dominates the network
load. Whereas Internet and Frame Relay traffic play a major
role in the evening and at night, respectively. By carrying
these heterogeneous traffic types in a single converged network
the utilization of the network resources can be significantly
increased, as illustrated in Fig. 1(d). The resulting multi-service
network enables revenue-generating services in an efficient and
cost-effective way [8], [9]. This is very important especially in
cost-sensitive metropolitan and local area networks.

The challenge of multi-service convergence lies in i) pro-
viding the different types of small delay—moderate throughput
and large throughput—moderate delay service at different
times of the day in a given fixed installed network, and ii) pro-
viding these different service types efficiently, e.g., achieving
the largest possible throughput in the small delay—mod-
erate throughput regime. Optimizing the parameter setting in
single-hop WDM networks for multi-service convergence thus
gives rise to a so-called multi-objective optimization problem.
This multi-objective optimization problem does not have a
single solution; instead, the solution is a Pareto-optimal tradeoff
curve between throughput and delay. Roughly speaking, this
tradeoff curve gives the smallest achievable delay as a function
of the desired throughput, or conversely, the largest achievable
throughput as a function of the tolerable delay. Finding the
optimal tradeoff curve as well as the combinations of parameter
settings that attain this optimal tradeoff curve is a challenging
problem. This is due to the large search space of parameter
combinations and the typically demanding evaluation of an
individual parameter combination. The optimal tradeoff curve,
however, is crucial for 1) the planning and provisioning of new
networks, i.e., to determine the best architecture (hardware)
parameters, and 2) the efficient operation of installed network
hardware. The Pareto-optimal throughput-delay tradeoff curve
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Fig. 1. Different types of traffic dominate during different times of the day.

can thus be used in a two-step optimization process as follows.
First, we optimize anewnetwork by finding the optimal archi-
tecture (hardware) parameter values. Second, after fixing the
architecture, we optimize the protocol (software) parameters for
anexistingarchitecture. Specifically, we operate the network at
different points of its Pareto-optimal throughput-delay tradeoff
curve according to the traffic type that dominates at a given
time of the day. The network protocol parameters are tuned
to provide varying degrees of i) small delay (and moderate
throughput) service, or ii) large throughput (and moderate
delay) service as the traffic changes with the time of the day.
This tuning requires detailed knowledge of the optimal tradeoff
curve, which can be precomputed with our methodology and
stored in tables for fast look-up.

In this paper, we develop a genetic algorithm based method-
ology for solving the multi-objective optimization problem of
maximizing throughput and minimizing delay in single-hop
WDM networks. We consider the arrayed-waveguide grating
(AWG)-based network [2] as an example throughout this paper.
Our methodology finds the optimal tradeoff curve and the pa-
rameter combinations attaining the curve in a computationally
efficient manner. Our work enables network planners to select
the (hardware) network architecture parameters that give the
best performance. In addition, our methodology enables the
operators of (fixed) installed network hardware to optimally
tune the throughput-delay performance along the optimal
tradeoff curve by changing the (software) network MAC
protocol parameters.

While we focus on the AWG-based network [2] in this
work, our methodology applies analogously to networks with
a similar throughput-delay tradeoff. Our genetic algorithm
based approach takes an analytic characterization of the mean

throughput and the mean delay of the network as input. This
analytic characterization may involve highly nonlinear equa-
tions (or possibly systems of equations); we only require that
the equations can be solved numerically. Our methodology may
also be applied to networks that are analytically intractable and
require simulations to obtain the (mean) throughput and the
(mean) delay. The computational effort required to obtain the
optimal throughput-delay tradeoff curve for a given traffic load
with our approach depends on the effort required to evaluate
the throughput and the delay for a particular combination of
network parameters and the size of the exhaustive search space.
The number of parameter combinations that our approach
needs to evaluate to obtain the optimal tradeoff curve is usually
on the order of thousand times smaller than the exhaustive
search space. In typical scenarios, our approach requires less
than one day of CPU time on a 933 MHz PC to find the optimal
tradeoff curve, whereas the exhaustive search would require
several years of CPU time.

This paper is organized as follows. In the following section
we review the related work on optimizing optical WDM net-
works, including works that employ genetic algorithm based ap-
proaches. In Section II, we formulate the multi-objective opti-
mization problem of maximizing throughput while minimizing
delay. We briefly review the AWG-based single-hop WDM net-
work [2], which is used as an example throughout the paper.
We give the two objective functions (throughput and delay),
we identify the decision variables in the optimization and dis-
cuss the constraints on the decision variables. In Section III, we
develop our genetic algorithm based methodology for finding
the Pareto-optimal throughput-delay tradeoff curve. First, we
briefly review the notion of multi-objective optimization and
explain why we base our solution methodology on genetic al-
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gorithms. We then discuss and evaluate in detail the individual
components of our methodology. In Section IV we apply our
methodology to the AWG-based single-hop WDM network and
study its optimal throughput-delay tradeoffs in detail. We sum-
marize our conclusions in Section V.

A. Related Work

We now give a brief overview of the literature on optimiza-
tion in optical WDM networks, which may be broadly cate-
gorized into studies addressing i) wide-area wavelength-routed
mesh WDM networks (typically envisioned as Internet back-
bone networks), ii) WDM ring networks, and iii) WDM net-
works with a physical star topology (typically employed in the
metro/local area with a central passive star coupler (PSC) or
AWG). The design and operation of wavelength-routed mesh
(wide area) WDM networks have been optimized extensively,
including aspects such as the routing and wavelength assign-
ment, as well as the design of optimal logical topologies, see for
instance [10]–[13], and references therein. Also, optimality is-
sues in planning and operation of survivable wavelength-routed
WDM networks have been thoroughly investigated, see for in-
stance [14], [15] and references therein. The optimal placement
of wavelength converters in WDM mesh networks is studied in
[16], while [17] studies the optimal amplifier placement. The
optimal setting of physical parameters in optical networks, such
as the power budget and detection thresholds, have also been
investigated, e.g., [18], [19]. General strategies for the optimal
planning of optical networks are explored in [20].

WDM ring networks (including SONET/SDH rings) have re-
ceived a great deal of attention and a wide range of aspects
of ring networks, including the placement of add–drop multi-
plexers, traffic grooming strategies, the provisioning of wave-
lengths and hardware components to ensure network surviv-
ability, as well as MAC protocols and wavelength assignment
have been optimized, see for instance, [21]–[24].

WDM networks with a physical star topology are typically
studied in the context of single-hop networks [25] or multi-hop
networks [26]. For multi-hop networks, much research has gone
into the design of optimal virtual topologies (see for instance
the survey [26]). For single-hop networks most optimization ef-
forts have focused on the optimal scheduling, see for instance
[27] and [28]. Our optimization methodology is orthogonal to
these studies in that our methodology optimizes the architec-
ture and MAC protocol parameters of the network without as-
suming any particular scheduling mechanism. (To fix ideas a
simple FCFS scheduling policy is used in [29], where the mean
throughput and the mean delay of the network considered in
this paper are derived.) A unique aspect of our work is that we
jointly optimize the networkarchitecture(hardware) and the
MAC protocol parameters (software). Generally, the existing
works, in isolation optimize either hardware or software pa-
rameters. We also note that most of the existing literature on
single-hop WDM networks considers networks based on a cen-
tral PSC, which is a broadcast device and hence does not allow
for spatial wavelength reuse. In contrast, we consider a net-
work based on an AWG, which provides wavelength-sensitive

routing and thus allows for spatial wavelength reuse. This allows
for increased concurrency and as we demonstrate in this paper,
makes the AWG based network a promising candidate for effi-
ciently achieving multi-service convergence in metro area net-
works. (The wavelength routing property of the AWG has re-
cently also been exploited in other networking contexts, e.g., in
optical packet switches [30].)

Another distinguishing feature of our work is that we explic-
itly consider a multi-objective optimization problem, whereas
most of the existing literature focuses on optimizing a single
objective function. Optical network optimization with multiple
conflicting objectives is considered only by a few studies. In
[31] reconfiguration policies to accommodate changing traffic
(routing) patterns or the failure of network components in a
PSC-based single-hop WDM network are studied. It is found
that maximizing the degree of load balancing and minimizing
the number of transceiver retunings are conflicting objectives.
The problem is formulated in a Markov decision process frame-
work, which is used to evaluate reconfiguration policies. The re-
configuration policy that achieves the desired balance between
the two conflicting objectives is determined by selecting proper
cost functions and weights for the objectives. In [24] it is noted
that minimizing the number of nodes (optical add–drop multi-
plexers) and minimizing the number of rings in a stack of WDM
rings are conflicting objectives; the tradeoff is quantified and a
heuristic for finding a spectrum of designs is developed. Sim-
ilarly, in [22], [23] it is observed that the objectives to mini-
mize the number of optical add–drop multiplexers and to mini-
mize the number of wavelengths in a WDM ring network are
conflicting and a number of designs that strike different bal-
ances between the objectives are proposed. In [32] a multi-ob-
jective optimization problem to find the wavelength assignment
in a mesh WDM network that minimizes the path lengths while
maximizing the fiber utilizations is formulated and solved using
genetic algorithms.

A wide range of optimization methods are employed in
the reviewed optical network optimization studies. Some use
traditional optimization methods that are guaranteed to find the
global optimum, such as integer linear programming, employed
for instance in [10], [15]. However, due to the complexity of the
problems and the prohibitive computational effort required for
solving them with traditional methods, novel algorithms and
heuristics are developed (e.g., [13]) and heuristic algorithms,
such as Tabu-search (e.g., in [11]), simulated annealing (e.g., in
[12]), and genetic algorithms (in [17], [32]–[36]) are applied.
We note that the use of evolutionary (genetic) algorithms in the
design of general wide area mesh network topologies that mini-
mize the network cost is studied in [37]. Genetic algorithms are
compared with simulated annealing for optimizing the topo-
logical design of a network in [38] and it is found that genetic
algorithms give better performance than simulated annealing.
The existing studies employing genetic algorithms for optical
network optimization typically optimize asingleobjective, e.g.,
minimize the number of amplifiers [17], minimize the network
cost [35], [36], or maximize the number of connections while
satisfying power constraints [33]. In contrast, in this paper we
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Fig. 2. Architecture of AWG based WDM network.

consider amulti-objective optimization problem—minimize
delay while maximizing throughput.

II. FORMULATING THE MULTI-OBJECTIVE

OPTIMIZATION PROBLEM

In this section we formulate the multi-objective optimization
problem of maximizing throughput while minimizing delay in
single-hop WDM networks. We first review the AWG-based
single-hop WDM network [2], which we use as an example net-
work throughout this paper.

A. Overview of AWG-Based Single-Hop WDM Network

The basic architecture of the single-hop WDM network [2] is
based on a AWG, as shown in Fig. 2. At each AWG input
port, a wavelength-insensitive combiner collects data from

attached nodes. Similarly, at each AWG output port, signals
are distributed to nodes by a wavelength-insensitive
splitter. (An Erbium Doped Fiber Amplifier (EDFA) is placed
at the output of each combiner and the input of each splitter to
compensate for the splitting/combining and fiber losses.) Each
node is composed of a transmitting part and a receiving part.
The transmitting part of a node is attached to one of the com-
biner ports. The receiving part of the same node is located at
the opposite splitter port. The network connects
nodes. At each AWG input port we exploit adjacent Free
Spectral Ranges (FSR’s) of the AWG, each FSR consists of

contiguous wavelengths. The total number of wavelengths
at each AWG input port is . The network runs an
attempt-and-defer type of MAC protocol, i.e., a data packet is
only transmitted after the corresponding control packet has been
successfully transmitted. In the MAC protocol, time is divided
into cycles. Each cycle consists of frames. Each frame con-
tains slots. The slot length is equal to the transmission time

of a control packet. Each frame is partitioned into the first,
, slots and the remaining ( ) slots. In the

first slots, control signals are transmitted based on a modified
slotted ALOHA protocol and all nodes must be tuned (locked)
to one of the Light Emitting Diode (LED) slices carrying the
control information. (This LED slice broadcast mechanism can
also be used to quickly update the protocol parameters in all net-
work nodes. By looking up the appropriate parameter settings
in a table precomputed with our methodology and broadcasting
them to the nodes with the LED slices in one single hop, the net-
work is able to adapt almost instantly to changing traffic condi-
tions and throughput-delay requirements.) In every frame within
the cycle, the nodes attached to a different AWG input port send
their control packets. Specifically, all nodes attached to AWG
input port , , (via a common combiner) send their
control packets in frameof the cycle. During the first slots
of frame , control and data packets can be transmitted simulta-
neously by the nodes attached to AWG input port. Transmis-
sions from the other AWG input port cannot be received during
this time interval. In the last ( ) slots of each frame, no
control packets are sent. The receivers are unlocked, allowing
transmission between any pair of nodes. This allows for spatial
wavelength reuse. In the considered traffic scenario, a node that
is not backlogged generates a new packet with probabilityat
the beginning of its transmission cycle. The generated packet is
long (has size slots) with probability , and is short (has size

slots) with probability . The parameters of
the considered network architecture and MAC protocol, as well
as the traffic parameters are summarized in Table I.

B. Objective Functions: Throughput and Delay

The two key performance metrics of single-hop WDM net-
works, such as the AWG-based network reviewed in the pre-
ceding section, are the mean throughput and the mean delay. The
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TABLE I
PARAMETERS OFNETWORK ARCHITECTURE ANDMAC PROTOCOL

typical goal of the optimization of single-hop WDM networks
is to maximize the throughput while minimizing the delay. For
the reviewed AWG-based network, the mean throughput and the
mean delay have been derived in [29] as functions of the param-
eters summarized in Table I. (The derivation in [29] considered
the case , i.e., . In our optimization, we allow
for , i.e., ; the objective functions for the special
case are derived in [39].) We briefly review here these
two objective functions of our optimization.

The average throughput of the network is defined as the av-
erage number of transmitting nodes in a slot and is given by

(1)

where is the expected number of successfully scheduled
long packets (of size slots) from a given (fixed) AWG input
port to a given (fixed) AWG output port per cycle (of length
slots), and is the expected number of successfully sched-
uled short packets (of length slots) from a given
(fixed) AWG input port to a given (fixed) AWG output port per
cycle. (We note that the throughput given by (1) may also be in-
terpreted as the average number of transmitted data packets per
frame; for convenience we will use this packets/frame interpre-
tation in our numerical work in Sections III and IV) and

are evaluated by modeling the control packet contention
and the data packet scheduling, and then establishing a set of
equilibrium equations for the network. In brief, the arrival rate
of control packets to a given control slot is expressed as

(2)

where is the fraction of idle (i.e., not backlogged) nodes in
steady state. The number of successful (i.e., not collided) control
packets destined to a given AWG output port in a given frame
is expressed as

(3)

The probability that a given control packet corresponds to a long
data packet (either newly generated by an idle node, or retrans-
mitted by a backlogged node) is denoted by; note that typically

since long data packets are more difficult to schedule and
thus typically require more retransmissions than short packets.
The analysis of the data packet scheduling results in

(4)

and

(5)

where accounts for the “packing” of the short packets into
the schedule and is given by a nonlinear function of the network
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and traffic parameters and. Finally, in equilibrium, the num-
bers of serviced long and short packets are equal to the numbers
of newly generated long and short packets, which, after some
algebraic manipulations, results in the equations

(6)

and

(7)

(7) is solved numerically and the obtainedis inserted in (2)
to obtain , which in turn is used in (4) to obtain . These
quantities are in turn used to obtainfrom (6), and finally
from (4) and from (5).

The mean packet delay is defined as the average time period
in slots from the generation of the control packet corresponding
to a data packet until the transmission of the data packet. The
average delay in the network in slots is

(8)

C. Decision Variables and Constraints

We now identify the decision variables in our optimization
problem and identify the constraints on the decision variables.
We select the AWG degree as the (independent) decision vari-
able for the network (hardware) architecture; we determine the
other architecture parametersand (see Table I) as functions
of (and the given and ), as discussed shortly. Generally,
the decision variable can take any integer satisfying

and (9)

where is the maximum number of wavelength channels
accommodated by the fast tunable transceivers employed in
the considered network. In other words, is the maximum
tuning range of the employed transceivers divided by the
channel spacing and is thus very technology dependent. [To
use transceivers with a negligible tuning time (and a small
tuning range) we set in our numerical investigations in
Sections III and IV.] We also note that the number of ports of
commercially available photonic devices is typically a power
of two. We can easily incorporate this constraint by restricting

to the set .
The number of used FSRs depends on the (independent)

decision variable and the given tuning range of the trans-
ceivers. Generally, must be an integer satisfying ,
i.e., . The larger , the more parallel channels are
available between each input-output port pair of the AWG, and
hence the larger the throughput. Therefore, we setto the
largest integer less than or equal to , i.e., . We
note that the tuning range and degree are typically powers
of two for commercial components. Hence, is a power of
two for practical networks, and we may write . The
combiner/splitter degree depends on the decision variable
and the given number of nodes in the network. In determining
the combiner/splitter degree, it is natural to assume that the
nodes are equally distributed among theAWG input/output
ports; i.e., each input/output port serves at least nodes.

This arrangement minimizes the required combiner/splitter de-
gree , which in turn minimizes the splitting loss in the com-
biners/splitters. Hence, we set .

We now turn to the protocol (software) parameters; see
Table I. We identify three decision variables; these are,
and . Generally, the number of slots per framecan take any
positive integer, i.e., , while the number of control slots
per frame can take any positive integer less than or equal to,
i.e., . (Note that in case , the length of
the short packets degenerates to zero. In this case only large
packets contribute to the throughput; the objective functions
for this case are given in [39].) We note that the size of the
packets to be transported may impose additional constraints
on and . With a given maximum packet size, must
be large enough to accommodate the maximum size packet
in a frame. If short packets have a specific size requirement,

should be large enough to accommodate that packet
size. For our numerical work in Sections III and IV, we do not
impose packet size requirements. Instead, we let the genetic
algorithm determine the and values that give the optimal
throughput-delay performance, subject only to and

. The packet re-transmission probabilitymay
take any real number in the interval [ ]. To reasonably limit
the search space we restrictto [0, 0.05, 0.10, 0.15,…, 1.0] in
our numerical work.

D. Network Cost Considerations

Minimizing the total network cost could be a third objective,
in addition to the maximize throughput and minimize delay ob-
jectives introduced in Section II-B. We note that the genetic al-
gorithm methodology could accommodate the third objective
in a straightforward fashion, it would make the solution space
three dimensional. Specifically, we would obtain an optimal
throughput-delay tradeoff plane for a given (acceptable) cost
level. We did not include network cost minimization in our op-
timization model because we are primarily interested in uncov-
ering the fundamental performance limitations and tradeoffs in
the metro WDM network. Network cost—while an important
consideration—is typically not considered a fundamental per-
formance metric for a network. In addition, network costs tend
to be highly variable. The costs of the hardware components in
the considered network are expected to drop significantly once
they are extensively mass produced.

Even though we did not include cost minimization in our op-
timization model, we now briefly discuss the impact that the
cost minimization objective would have on the problem and its
solution. Generally, the total network cost is the sum of capital
expenditures (cost of network hardware and installation) and op-
erational expenditures (cost of network management). With the
current component pricing structure, the hardware cost of the
network increases linearly with the AWG degree. This is be-
cause i) there is typically a per-port charge for an AWG, and ii)
the number of required EDFAs increases linearly with. (The
cost of the splitters/combiners is typically insignificant. Also,
the number of transceivers depends only on the number of net-
work nodes.) The cost of installation is roughly fixed (and in-
dependent of the decision variables), as is the network manage-
ment cost. Thus the total network cost is approximately a linear
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Fig. 3. Illustration of Pareto-optimal solutions for maximize throughput-
minimize delay problem.

function of the AWG degree . Since is typically a power
of two, the genetic algorithm methodology would give optimal
throughput-delay planes for each . This three di-
mensional solution gives the best throughput-delay tradeoff for
a given acceptable cost level.

III. GENETIC ALGORITHM BASED METHODOLOGY

In this section we discuss the difficulties in optimizing the
multiple objectives of maximizing throughput while minimizing
delay. We point out why we base our solution methodology on
genetic algorithms. We describe our genetic algorithm solution
approach to the multi-objective optimization problem formu-
lated in the previous section and evaluate the performance of
our approach.

A. Why Evolutionary Algorithm (Genetic Algorithm)?

The familiar notion of an optimal solution becomes some-
what vague when a problem has more than one objective func-
tion, as is the case in our metro WDM network optimization.
A solution (i.e., set of decision variables, , , and ) that
gives very large throughput may also give large delay and thus
rate poorly on the minimize delay objective. The best we can
do is to find a set of optimal tradeoff solutions, i.e., solutions
that give the largest achievable throughput for a given toler-
able delay, or equivalently the smallest achievable delay for a
required throughput level. After a set of such optimal tradeoff
solutions is found, a user can then use higher-level considera-
tions, such as the traffic patterns illustrated in Fig. 1, to make
a choice. A feasible solution to a multi-objective optimization
problem is referred to asefficient pointor Pareto-optimalsolu-
tion [40]. As illustrated in Figs. 3 and 4, we have two objec-
tives—maximizing throughput, and minimizing delay. The re-
gion which is shaded in light gray is said to bedominatedby the
point . All points in the region, e.g., and have larger delay
and smaller throughput than the point. Clearly, the point is
superior to the points and . Thus all points in the light gray

Fig. 4. Illustration of efficient frontier for maximize throughput-minimize
delay problem.

rectangle are dominated by point. All points in the dark gray
rectangle, e.g., the point , are said todominatethe point .
Since all points in the dark gray rectangle have larger throughput
and smaller delay than . The point is superior to the point

. Based on the concept of Pareto dominance, the optimality
criterion for multi-objective problems can be introduced. Con-
sider the points , , , and . These points are unique
among all the points in the plot in that each of them is not domi-
nated by any other point. The set of these solutions is termed as
Pareto-Optimalsolution set orEfficient Frontier. The efficient
frontier corresponding to Fig. 3 is shown in Fig. 4.

The goal of multi-objective optimization is to find such a
feasible efficient frontier. Classical methods for generating
the Pareto-optimal solution set aggregate the objectives into a
single, parameterized objective function. The parameters of this
function are not set by the decision maker, but systematically
varied by the optimizer [41]. In contrast to classical search
and optimization algorithms, evolutionary algorithms use a
populationof solutions in each iteration, instead of a single
solution. Since a population of solutions is processed in each
iteration, the outcome of an evolutionary algorithm is also a
population of solutions for the conflicting objective functions.
These multiple optimal solutions can be used to capture
multiple efficient points of the problem [40].

We now proceed to develop a methodology for efficiently
finding the Pareto-optimal solutions (optimal tradeoff curve) of
the multi-objective problem of maximizing throughput while
minimizing delay in single-hop WDM networks. Our solution
methodology is based on genetic algorithms, which are mem-
bers of the family of evolutionary algorithms.

B. Basic Operation of Genetic Algorithm

The basic structure of a genetic algorithm is illustrated in
Fig. 5. In the genetic algorithm, we consider a population of in-
dividuals. Each individual is represented by a string of the deci-
sion variables, i.e., , , , and (as well as the corresponding
objective function values andDelay). In the terminology of
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Fig. 5. Basic structure of a genetic algorithm.

genetic algorithms the string of decision variables is referred to
aschromosome, while each individual decision variable is re-
ferred to asgene. The quality of an individual in the population
with respect to the two objective functions is represented by a
scalar value, calledfitness. After generating the initial popula-
tion (by randomly drawing the decision variables for each in-
dividual from uniform distributions over the respective ranges
of the decision variables), each individual is assigned a fitness
value. The population is evolved repeatedly, generation by gen-
eration, using the crossover operation and the mutation opera-
tion. The crossover and mutation operations produce offspring
by manipulating the individuals in the current population that
have good fitness values. The crossover operation swaps por-
tions of the chromosomes. The mutation operation changes the
value of a gene. Individuals with a better fitness value are more
likely to survive and to participate in the crossover (mating) op-
eration. After a number of generations, the population contains
members with better fitness values. The Pareto-optimal individ-
uals in the final population are the outcome of the genetic al-
gorithm. Each operation is discussed in detail in the following
subsections.

C. Fitness Function

The fitness function is typically a combination of objective
functions. We evaluate three commonly used types of fitness
function. We generate generations, each with a popula-
tion size of to compare the quality of the fitness func-
tions. We set the probability of crossover to 0.9 and the prob-
ability of mutation to 0.05, which are typical values. We com-
pare the genetic algorithm outputs with the true Pareto-optimal
solutions which were found by conducting an exhaustive search
over all possible combinations of the decision variables. We fix

and for this evaluation. All results presented
in this paper assume a channel spacing of 200 GHz, i.e., 1.6 nm
at 1.55 m. Thus, we can use 7–10 wavelengths at each AWG

input port with fast tunable transceivers with a tuning range of
10–15 nm [29]. For all subsequent results, the number of wave-
lengths is fixed at eight, i.e., . can take the values 2,
4, and 8. Thus, the correspondingvalues are 4, 2, and 1. We
fix the number of nodes in the network at . To rea-
sonably limit the search space of the genetic algorithm, we re-
strict to be smaller than 400 slots in this paper. We note that
with a large , the considered network generally achieves larger
throughput values (at large delays), however, the computational
effort for evaluating a given parameter combination increases as

increases. For the exhaustive search, we therefore limitto
values less than or equal to 200 slots.

First, we evaluate the Vector Evaluated Genetic Algorithm
(VEGA), which is easy to implement. The VEGA algorithm di-
vides the population into two subpopulations according to our
two objective functions. The individuals in each subpopulation
are assigned a fitness value based on the corresponding objec-
tive function. When using only one objective function to deter-
mine the fitness values of the individuals in a subpopulation, it
is likely that solutions near the optimum of an individual ob-
jective function are preferred by the selection operator. Such
preferences take place in parallel with other objective functions
in different subpopulations. The main disadvantage of VEGA
is that typically after several generations, the algorithm fails to
sustain diversity among the Pareto-optimal solutions and con-
verges near one of the individual solutions. Indeed, as reported
in Table II, the VEGA finds only 15 Pareto-optimal solutions;
the efficient frontier spanned by these solutions is plotted in
Fig. 6. We observe, however, that the VEGA efficient frontier
is overall quite close to the true efficient frontier (found by ex-
haustive search).

Next, we evaluate the Weight Based Genetic Algorithm
(WBGA) which uses the weighted sum of the objective func-
tions as fitness function. The main difficulty in WBGA is that
it is hard to choose the weight factors. We use the same weight
factor of 1/2 for each objective function. Since the mean delay
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TABLE II
NUMBER OF PARETO-OPTIMAL SOLUTIONS IN FINAL POPULATION FOR

GENETIC ALGORITHM BASED SEARCH WITH F � 400; EXHAUSTIVE SEARCH

FORF � 200 GIVES 580 PARETO-OPTIMAL SOLUTIONS

Fig. 6. Efficient frontiers obtained with different fitness functions without
elitism forF � 400 and with exhaustive search forF � 200.

should be minimized in our problem, we use the negative delay
as the second objective function. The fitness function used is

(10)

Our goal is to maximize the average throughput while mini-
mizing the mean delay. Thus, with the WBGA approach, the
larger the fitness value, the better. We observe from the results
given in Fig. 6 and Table II that the WBGA finds more Pareto-
optimal solutions than VEGA. However, the WBGA efficient
frontier has parts (particularly in the throughput range from
7–13 packets/frame) that are distant from the true efficient fron-
tier. We note that the average network delay given in (8) in units
of slots is on the order of thousands of slots in typical scenarios,
whereas the average throughput is typically on the order of one
to 16 packets per frame. To achieve a fair weighing of both
throughput and delay in the fitness function, we use the delay
in unit of cycles (where one cycle corresponds to slots)
in the evaluation of the fitness in (10) (and the following fitness
definition in (11)); with this scaling, the delay is on the order of
1 to 20 cycles in typical scenarios.

Finally, we evaluate the Random Weight Genetic Algorithm
(RWGA) which weighs the objective functions randomly. A
new independent random set of weights is drawn each time an
individual’s fitness is calculated. We use the fitness function

(11)

where is uniformly distributed in the interval (0, 1). We ob-
serve from Fig. 6 that the RWGA efficient frontier is relatively

Fig. 7. Efficient frontiers obtained with different fitness functions without
elitism forF � 400 and with exhaustive search forF � 200.

far from the true efficient frontier in the throughput range from
8–10 packets/frame. Also, the RWGA finds only a relatively
small number of Pareto-optimal solutions.

We now study the concept ofelitism. Elitism is one of the
schemes used to improve the search; with elitism the good so-
lutions in a given generation are kept for the next generation.
This prevents losing the already found good solutions in the
subsequent crossover operation(s), which may turn good so-
lutions into bad solutions. For each generation we determine
the Pareto-optimal solutions by comparing the throughput and
delay achieved by the individuals in that generation. (Note that
the thus determined Pareto-optimal solutions are not necessarily
the true Pareto-optimal solutions to the optimization problem,
rather they are Pareto-optimal with respect to the other individ-
uals in the considered generation.) The determined Pareto-op-
timal solutions are kept for the next generation; they are not sub-
jected to the crossover operation, they are, however, subjected
to the mutation operation (as explained in Sections III-E and
III-F ). If we find that a Pareto-optimal solution from a previous
generation is no longer Pareto-optimal solution in a new gener-
ation, i.e., it is dominated by some other individual in the new
generation, then this old Pareto-optimal solution is discarded.

The results obtained with elitism are given in Fig. 7 and
Table II. We observe that the number of Pareto-optimal so-
lutions in the final population is dramatically larger and the
efficient frontiers are closer to the true efficient frontier of the
problem. From Fig. 7, it appears that all schemes with elitism
perform quite well, with RWGA hugging the true efficient
frontier most closely. This observation is corroborated by
comparing the number of Pareto-optimal solutions in the final
population in Table II, which indicates that RWGA gives the
best performance. According to the observations made in this
section, we use RWGA with elitism throughout the remainder
of this paper.

D. Population Size and Number of Generations

The population size trades off the time complexity (computa-
tional effort) and the number of optimal solutions. In order to ac-
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commodate all Pareto-optimal solutions, the population should
be large enough. However, as the population size grows, the time
complexity for processing a generation increases (whereby the
most computational effort is typically expended on evaluating
the throughput and delay achieved by an individual to determine
its fitness value). On the other hand, for a smaller population,
the time complexity for the population decreases while the pop-
ulation may lose some Pareto-optimal solutions. As a result, the
smallest population size which can accommodate all Pareto-op-
timal solutions is preferable.

For schemes that employ elitism, we categorize the popu-
lation in generation into three groups: i) Theelite groupof
size which contains the Pareto-optimal solutions from the
preceding generation , ii) the reproduction groupof size

which is reproduced from the individuals with good fit-
ness values in the preceding generation through crossover
(see Section III-E), and iii) therandom groupof size
which is generated randomly (by drawing the decision vari-
ables from uniform distributions over their respective ranges).
The random group is required to prevent the algorithm from
getting stuck in local optima. The population size should ac-
commodate these three groups appropriately. Furthermore, the
size of the reproduction group and the random group need to
be carefully considered. If the reproduction group is too large,
the solution may get stuck in a local optimum. If the size of
the random group is too large, we may spend most of the time
calculating the fitness values of solutions that are very distant
from the efficient frontier. However, the population size should
at least be larger than the elite group. To find the proper pop-
ulation size, we evaluate the adopted RWGA with elitism for
the population sizes , 200, and 300. We initially set
the size of the reproduction group to one half of the population
size, i.e., . Once the number of Pareto-optimal so-
lutions in a generation exceeds , i.e., ,
we set the size of the reproduction group to
in the next generation. Thus .
If the number of Pareto-optimal solutions in a generation
is less than , we set the size of the random group to

in the next generation, otherwise
we set ; i.e., .
Thus, the more Pareto-optimal solutions there are in the pre-
ceding generation, the fewer randomly generated individuals are
in the next generation. (If the number of Pareto-optimal solu-
tions in a generation exceeds , the succeeding generation
does not contain randomly generated individuals.) For the fol-
lowing evaluation, the parameters, , , and the ranges of ,

, , and are set as given in Section II-C. For comparison,
we set the number of generations to , 15, and 10, re-
spectively. Thus, the total number of considered individuals is

in all cases. The results are shown in Fig. 8.
We observe from Fig. 8 that all three efficient frontiers hug the
true Pareto-optimal frontier quite closely, with all three curves
having “humps” around a throughput of 14 packets/frame. The
number of Pareto-optimal solutions obtained for the population
sizes , 200, and 300 are 87, 104 and 70, respectively.
The population size of does not perform very well
in our network optimization because it typically cannot accom-
modate all the Pareto-optimal solutions. This is because the elite

Fig. 8. Efficient frontiers for different population sizesP with P �G = 3000,
fixed.

Fig. 9. Efficient frontiers for different initial sizesP of the reproduction
group (Population sizeP = 200, fixed).

group takes up almost two thirds of the population. With a popu-
lation size of (and only generations to ensure a
fair comparison) the evolution of the generations does not settle
down as much as for 20 and 15 generations and therefore gives
only 70 Pareto-optimal solutions (although the efficient frontier
has a relatively small “hump”). Overall, we conclude that all
three considered population sizes give fairly good results. We
choose for the following experiments in this paper as it
appears to accommodate all three population groups in a proper
fashion. In Fig. 9 we plot the efficient frontiers obtained with
different initial sizes and 100 of the reproduction
group (with , fixed). The number of Pareto-optimal so-
lutions for and 100, are 85 and 115, respectively. We
observe from Fig. 9 that both efficient frontiers are quite close
to the true Pareto-optimal frontier. We set for all
the following experiments in this paper.

We now investigate the impact of the number of generations
. In Fig. 10, we plot the size of the elite group as a
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Fig. 10. Size of elite groupP (t) as a function of generation countert.

Fig. 11. Sum of fitness values of individuals in elite group as a function of the
generation countert.

function of the generation counter. Recall that is de-
fined as the number of Pareto-optimal solutions in generation

; thus is the number of Pareto-optimal solutions in
the initial generation . In Fig. 11, we plot the sum of the fit-
ness values of the individuals in the elite group as a func-
tion of the generation counter. We observe from Fig. 10 that the
number of Pareto-optimal solutions in a generation first steadily
increases and then settles on a fixed value as the generations
evolve. (The slight drop around the fifteenth generation is be-
cause we found a Pareto-optimal solution which dominates sev-
eral earlier Pareto-optimal solutions.) We observe from Fig. 11
that the sum of the fitness values of the Pareto-optimal solu-
tions in a generation first increases quickly, then fluctuates, and
finally settles down as the generations evolve. This behavior is
typical for genetic algorithm based optimization and is due to
the random nature of the evolution of the population. To allow
for the evolution to settle down sufficiently, we set the total
number of generations to . According to the decisions
made in this section, we set the population size to ,
the number of generations to , and the initial size of the
reproduction group to .

E. Crossover Operation

The crossover operation swaps parts of the chromosomes of
the fittest individuals in the current generation to produce off-
spring with large fitness values for the reproduction group in
the next generation. In our crossover operation the individuals
in the generation are sorted in decreasing order of their
fitness values (whereby the individuals from all three groups,
i.e., elite group, reproduction group, and random group, are con-
sidered). A mating pool is formed from the first individ-
uals in the ordering. Parts of the chromosomes of the individuals
in the mating pool are then exchanged (swapped) with a fixed
crossover probability. We chose to swap theirvalues because
we have observed that (with , , and fixed) tends to ex-
plore potential solutions in the vicinity of the parents (as is also
evidenced by the tables in the Appendix, which are discussed
in detail in Section IV). More specifically, the first indi-
viduals in the ordering, i.e., the mating pool, are processed as
follows. We take the first two individuals in the ordering. With
the crossover probability (which we fix at the typical value 0.9),
we swap their values, i.e., we put the value of the first in-
dividual (in the ordering) in place of the value of the second
individual, and vice versa. The other three decision values,,

, and , in the individuals’ chromosomes remain unchanged.
(Note that in our problem the swapping of while keeping ,

, and in place may result in a chromosome that violates the
constraint . If this situation arises, we discard the vio-
lating value and randomly draw a new from a uniform
distribution over [1, ].) With the complementary crossover
probability (0.1), the chromosomes of the two individuals re-
main unchanged. The two individuals (irrespective of whether
their chromosomes were swapped or not) then become mem-
bers of the reproduction group in the next generation. We then
move on to the third and fourth individuals in the ordering, and
swap their values with probability 0.9, move them to the re-
production group in the next generation, and so on. We note
that the elite group of the next generation is formed from the
Pareto-optimal individuals in the current generation, irrespec-
tive of whether these individuals are in the mating pool of the
current generation. (An individual may appear twice in the next
generation if it is Pareto-optimal in the current generation and
participates in the crossover operation without having the
value changed. Only one copy of such a “duplicate” individual
is processed in the next generation, the other copy is discarded.)

F. Mutation Operation

The mutation operation keeps diversity in the population by
changing small parts in the individuals’ chromosomes with a
given (typically small) mutation probability. We mutate each
individual in the elite group, the reproduction group and the
random group with a mutation probability of 0.05 (a typical
value). The mutation is typically performed by flipping a bit in
the binary representation of the individual’s chromosome. The
location of the bit is typically drawn from a uniform distribution
over the length of the chromosome. We chose not to use bitwise
mutation because bitwise mutation would frequently produce
offspring that are distant from the parents. Instead, we imple-
ment the mutation operation by randomly drawing anvalue
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TABLE III
NUMBER OF PARETO-OPTIMAL SOLUTIONS WITH D = 2, 4, AND 8

from a uniform distribution over [1, ]. This operation does not
result in constraint violations, yet tends to keep the population
sufficiently diverse.

After the mutation operation, we evaluate the average
throughput and mean delay achieved by the individuals (in all
three groups, i.e., elite group, reproduction group, and random
group) in the new generation and start the next evolution cycle;
as illustrated in Fig. 5. In this new evolution cycle, we select
again the individuals with the largest fitness values for the
crossover operation, which gives the reproduction group of the
next generation. We also determine again the Pareto-optimal
individuals to form the elite group in the next generation.

IV. NUMERICAL RESULTS

In this section, we employ the genetic algorithm based
methodology developed in the preceding section to optimize
the AWG-based single-hop WDM network. We determine
the settings of the network architecture parameterand the
protocol parameters , , and that give Pareto-optimal
throughput-delay performance. We use the random weight
genetic algorithm (RWGA) with elitism with the parameter
settings found in the preceding Section, ie., a population size of

, generations, crossover probability 0.9, and
mutation probability 0.05. Data packets can have one of two
lengths. A data packet is slots long with probability , and

slots long with probability ( ). To reasonably
limit the search space we restrict to be no larger than 400
slots. The number of nodes in the network is set to
and the transceiver tuning range is fixed at wavelengths.

In the first set of optimizations, we determine the Pareto-
optimal performance for different (but fixed) combinations of
traffic load and fraction of long packet traffic. Specifically,
we optimize the network for a light traffic scenario with

, a medium traffic scenario with , and heavy load
scenarios with and . For each traffic load level,
we consider the fractions , 0.5, and 0.9 of long packet
traffic. In these optimizations we determine the free decision
variables , , , and that give the Pareto-optimal solutions.

To put the optimizations for fixed and in perspective,
we also conduct an optimization where the traffic loadand
the fraction of long packet traffic are free decision variables
(in addition to , , , and ). This optimization gives
the best achievable network performance, which we refer to
as network frontier. Loosely speaking, the network frontier
gives the Pareto-optimal performance when the network is
“fed optimally” with traffic. (To find the network frontier, we
exchange (swap) as well as in the crossover operation
and use a population size of rather than to
accommodate the larger chromosome.) Some detailed solutions
for the network frontier are given in Table IV in the Appendix.

Fig. 12. Efficient frontiers for light traffic load� = 0:1 for different fractions
q of long packet traffic and network frontier (with� and q as free decision
variables).

Due to space constraints, we present throughout only a few
representative individual solution in this paper. We refer the
interested reader to [39] for the full table listings which have as
many rows as there are Pareto-optimal solutions.

A. Pareto-Optimal Performance for Light Traffic Load

Fig. 12 shows the Pareto-optimal throughput-delay frontier
for a light traffic load of for , 0.5, and 0.9
(along with the network frontier). Table V and Table VI in the
Appendix give some representative individual Pareto-optimal
solutions. The numbers of Pareto-optimal solutions with each

, 4, and 8 are shown in Table III. We observe from Fig. 12
that for a small fraction of long packets the network is able to
achieve relatively small delays (of less than 1500 slots) even
for large throughputs (of 8 packets/frame and more). When the
fraction of long packet traffic is large, however, the smallest
achievable delays become very large (up to 2250 slots) for large
throughputs. This is because the considered network allows for
the scheduling of at most long packets in a cycle
(consisting of frames) at each of the AWG input ports.
(There are also transmission slots exclusively for
short packets in a cycle at each AWG input port; in addition short
packets can fill up the long packet transmission slots.) With
a larger fraction of long packets, the probability increases that a
data packet fails in the scheduling and requires re-transmission
of the corresponding control packet, resulting in larger delays.

We also observe that the light traffic scenario is able to
achieve the small delay (and small throughput) part of the
network frontier. This is because a small numberof control
slots is sufficient to ensure reasonably large success probabili-
ties in the control packets contention when the probabilityof
an idle node generating a new packet at the beginning of a cycle



1126 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 5, MAY 2003

is small. The small in turn allows for small frame length ,
and thus short cycle length , which results in small delays.

We observe that there are some instances where the Pareto-
optimal frontier for dominates the network frontier, e.g.,
around a throughput of 7.7 packets/frame. This is due to the sto-
chastic nature of the genetic algorithm, which finds a very close
approximation of the true optimal frontier in a computationally
efficient manner. By definition, the true network frontier cannot
be dominated by the true frontier for a fixedor ; finding these
true frontiers, however, is computationally prohibitive.

We observe from Tables III, V, and VI that for the considered
light traffic load , most of the Pareto-optimal solutions
have . However, for a larger fraction of long packet
traffic the number of Pareto-optimal solutions with
increases. We observe from the Table VI that is the
best choice to achieve low delay service. This is because the
long packets are more difficult to schedule and therefore tend
to require more re-transmissions of control packets, resulting
in increased mean delay. Recall that a control packet is dis-
carded if the corresponding data packet cannot be scheduled.
This makes the control packet contention a bottleneck when the
packet scheduling becomes difficult. With larger, fewer nodes

contend for the control slots available to them
every th frame. This increases the probability of successful
control slot contention, thus relieving the control packet con-
tention bottleneck. Note that the control packet contention bot-
tleneck could also be relieved by reducing the re-transmission
probability . However, we see from the results in Table VI that
this strategy is not selected (except in the 9th row of Table VI
when the transition from to occurs). The reason
for this is that the smaller would result in a relative large in-
crease in the mean delay, making it preferable to increaseand
keep large (the first eight rows of Table VI).

Generally, we observe from Table V and Table VI that the
Pareto-optimal solutions with larger throughput are achieved for
larger . The Pareto-optimal values, on the other hand, re-
main in the range 30–60 for and and are typ-
ically 30–80 for , even for very large . Upon close
inspection we discover an interesting underlying trend in the
and solutions as we move along the efficient frontier from
small to large throughput values. The frame lengthtypically
makes a jump to a new value (e.g., from to 59 in the
fourth row of Table V) and stays around the new value for a few
solutions. For (almost) fixed, several distinct Pareto-optimal
solutions are obtained for decreasingvalues (from
to 30 for around 59 in Table V). Once makes a jump (to
values around 100 in line 20), is reset to a larger value (of 50
in line 20). The explanation of this behavior is as follows. For
large , the probability of successful control packet contention
is large, and the probability of control packet re-transmission
is small, giving small delays. However, for large, the length

of a short packet is small, resulting in a small
contribution of a short packet to the throughput (1). Now as
decreases (for fixed), control packet re-transmission becomes
more likely, increasing the mean delay, while the contribution of
a short packet to the throughput increases. We also observe from
the tables that for optimal network operation the re-transmission
probability should be in the range from 0.75 to 1.0.

Fig. 13. Efficient frontiers for medium traffic load� = 0:3 for different
fractionsq of long packet traffic and network frontier (with� andq as free
decision variables).

B. Pareto-Optimal Performance for Medium Traffic Load

Fig. 13 shows the Pareto-optimal solutions for a medium
traffic load of . The numbers of Pareto-optimal
solutions with , 4, and 8 are shown in Table III and
samples of the individual Pareto-optimal solutions are given
in Tables VII–IX in the Appendix. We observe from Fig. 13
that the differences in performance for the different fractions

of long packet traffic are more pronounced for the larger
traffic load , compared to the light traffic load
shown in Fig. 12. For , the efficient frontiers for

and roughly overlap and give both a smallest
achievable delay of roughly 715 slots for a throughput of 8
packets/frame. For , on the other hand, the efficient
frontier for clearly dominates, giving a smallest
achievable delay of roughly 555 slots for a throughput of 8
packets/frame, whereas the corresponding smallest achievable
delay for is more than twice as large. This increasing
gap in performance is again due to the fact that long packets
are more difficult to schedule and thus tend to cause larger
delays. The smaller delay of 555 slots for , compared
to 715 slots for is achievable because with the larger

, the throughput level of eight transmitting nodes per slot is
reached with smaller sized packets (i.e., smallerand smaller

), thus reducing the cycle length and in turn the
delay. We observe from Tables VII–IX that small delays are
again achieved for large values. For and ,
the first few Pareto-optimal solutions at the top of the tables
have , then is optimal as we go down the tables
to larger delays. As in the case of , this behavior is due
to the control packet contention and data packet scheduling
bottlenecks. From Table III we observe that there is no clear
trend in the number of solutions with and . This
appears to be due to the stochastic nature of the genetic algo-
rithm approach, which finds a large total number of solutions
for , with many solutions being tightly spaced in the
region where is optimal. As before, larger throughput
is optimally achieved for large . The optimal settings of
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Fig. 14. Efficient frontiers for heavy traffic load� = 0:6 for different
fractionsq of long packet traffic and network frontier (with� andq as free
decision variables).

Fig. 15. Efficient frontiers for heavy traffic load� = 0:8 for different
fractionsq of long packet traffic and network frontier (with� andq as free
decision variables).

are typically in the range from 60–80. The optimal settings of
are mostly 0.95 for and . For , the

optimal settings are typically 0.7. This smallersetting for a
medium load of predominantly long packet traffic is better as
it somewhat abates the control packet contention bottleneck at
the expenses of slightly larger delays, as discussed above.

C. Pareto-Optimal Performance for Heavy Traffic Load

Figs. 14 and 15 show the Pareto-optimal solutions for a heavy
traffic load of and , respectively. The number
of Pareto-optimal solutions with and 8 are given in
Table III. The complete parameter vectors corresponding to the
Pareto-optimal solutions are given in Tables X–XII. We observe
from the figures and the tables that both considered heavy load
scenarios give similar results with the , sce-
nario attaining the larger throughput region of the network fron-
tier. We notice that with an increasing fractionof long packet

Fig. 16. Percentage of Pareto-optimal solutions withD = 2, 4, and 8 as a
function of the traffic load� (fraction of long packet trafficq = 0:1).

Fig. 17. Percentage of Pareto-optimal solutions withD = 2, 4, and 8 as a
function of the traffic load� (fraction of long packet trafficq = 0:9).

traffic, the number of Pareto-optimal solutions with in-
creases, while the number of solutions with decreases.
There are two primary effects at work here. On the one hand, a
larger allows for a larger throughput. To see this, note that
the considered network allows for the scheduling of at most

long packets at each of the AWG input ports
within one cycle (consisting of frames); for a total of at most

scheduled long packets per cycle in the entire net-
work. The network also allows for the scheduling of at most

short packets at each of theAWG input ports within
one cycle; for a total of at most sched-
uled short packets per cycle in the network (in addition short
packets may take up long packet transmission slots). Thus, for
a larger the network allows for the scheduling of more short
packets and thus for an overall larger throughput; this is a result
of the spatial reuse of all wavelengths at all AWG ports.

On the other hand, a larger increases the delay in the net-
work (provided the frame length is constant). This is because
a larger cycle length increases the delay incurred by the
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(a) (b)

(c) (d)

Fig. 18. Optimal frontier (withD a free decision variable), 2� 2 network frontier (withD = 2, fixed), and 4� 4 network frontier (withD = 4, fixed) for
different (fixed) traffic loads� and fractionsq of long packet traffic. (a)� = 0:1, q = 0:1. (b)� = 0:1, q = 0:9. (c)� = 0:3, q = 0:1. (d)� = 0:3, q = 0:9.

control packet pre-transmission coordination and re-transmis-
sions, which operate on a cycle basis. These throughput and
delay effects combine to make the better choice when
long packets dominate (i.e., whenis large), since short packets
make only a small contribution to the throughput. We also ob-
serve from Table X and Table XI that even whenis small,

is a good choice for delay sensitive traffic. Although
we see that some Pareto-optimal solutions in the small delay
range have . This indicates that both a 22 AWG and a
4 4 AWG based network can achieve small delays for traffic
consisting mostly of short packets, provided the protocol pa-
rameters , , and are set properly. On the other hand, only
a 4 4 AWG based network achieves the large throughputs on
the efficient frontier for small (i.e., predominantly short packet
traffic). As before, we observe that the Pareto-optimal solutions
with larger throughput values have larger frame lengths. Also,
as before, the Pareto-optimal solutions have typically between

and 110 control slots per frame. We note, however,
some differences in the optimal setting of the re-transmission
probability in this heavy traffic load scenario compared to the

light/medium load scenario. As before for the optimal
setting is typically in the range of 0.9–1.0. For and

, however, the optimal is now typically in the range
from 0.6 to 0.95.

D. Pareto-Optimal Planning of the Network Architecture

We now study the proper setting of the AWG degreein
detail. The setting of this network architecture (hardware) pa-
rameter has a profound impact on the network performance, as
the results discussed so far illustrate. Importantly, once the net-
work hardware for a particular value has been installed, it is
very difficult and costly to change ; whereas the protocol pa-
rameters , , and can easily be changed by modifying the
network protocol (software). For this reason, the proper setting
of warrants special attention. We have observed so far that
for predominantly long packet traffic (i.e., large), is
the best choice for all levels of traffic load. For predominantly
short packet traffic (i.e., small), on the other hand, the choice
is not so clear. For light traffic loads, is the best choice,
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(e) (f)

(g) (h)

Fig. 18. (Continued.) Optimal frontier (withD a free decision variable), 2� 2 network frontier (withD = 2, fixed), and 4� 4 network frontier (withD = 4,
fixed) for different (fixed) traffic loads� and fractionsq of long packet traffic. (e)� = 0:6, q = 0:1. (f) � = 0:6, q = 0:9. (g)� = 0:8, q = 0:1. (h)� = 0:8,
q = 0:9.

whereas for heavy traffic loads, turns out to be the best
choice.

To explore the optimal setting of as a function of the
traffic load , we plot in Figs. 16 and 17 the percentage of
Pareto-optimal solutions with , 4, and 8 for
and , respectively. We observe from Fig. 16 that for

less than 0.4, most Pareto-optimal solutions have ,
whereas for larger than 0.4, most Pareto-optimal solutions
have . The explanation of this behavior is as follows.
For light traffic loads, is preferred as it achieves smaller
delays while at the same time providing sufficient resources for
control packet contention and data packet scheduling. (Recall
that nodes at an AWG input port content for the

control slots available to them in one frame (out of the
frames in a cycle), and that spatial wavelength reuse provides
for transmission slots for short packets.) As the
traffic load increases, however, the control packets contention
and data packet scheduling become increasingly bottlenecks
which are relieved for larger .

E. Pareto-Optimal MAC Protocol Tuning (Network Operation)
for Fixed Network Architecture

Next, we fix the AWG degree at and ,
and allow only the protocol parameters, , and to vary
(i.e., only , , and are decision variables, is fixed). We
employ our genetic algorithm based methodology to obtain the
Pareto-optimal throughput-delay frontiers in these settings; we
refer to these efficient frontiers as the22 network frontierand
the 4 4 network frontier, respectively. We compare the thus
obtained efficient frontiers with the efficient frontier obtained
when both the hardware parameterand the software param-
eters , , and are decision variables, which we refer to as
optimal frontier. We compare the 2 2 frontier and the 4 4
frontier with the optimal frontier in Fig. 18(a)–(h). Samples of
the corresponding Pareto-optimal solutions for the combination

, are tabulated in Table XIII and Table XIV.
We refer the interested reader to [39] for the other tables, which
we cannot include here because of space constraints. A number
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of observations are in order. First, as expected the 22 fron-
tier approximately coincides with the optimal frontier for light
to medium loads of predominantly short packet traffic, and all
load levels of predominantly long packet traffic. For heavy loads
of predominantly short packet traffic, on the other hand, the
4 4 network frontier achieves the optimal frontier, as we ex-
pect from our earlier results. We also observe that there are
some instances where the optimal frontier is dominated by the
2 2 network frontier or the 4 4 network frontier, e.g., in
Fig. 18(c) around a throughput of 11.5 packets/frame. These in-
stances are again due to the stochastic nature of the employed
genetic algorithms. By definition, the 22 network frontier
and the 4 4 network frontier cannot dominate the true op-
timal frontier, which however could only be found by a compu-
tationally prohibitive exhaustive search. The genetic algorithm
methodology finds a very close approximation of the true op-
timal frontier in a computationally efficient manner.

Fig. 18(a)–(h) give also a number of surprising results, which
we would not expect, based on our earlier observations. First, the
4 4 network is able to come close to the optimal frontier for
medium and heavy loads of predominantly long packet traffic,
which is a surprise given the results in Table III and Fig. 17. The
4 4 network achieves this by properly tuning its three protocol
parameters, and , as detailed in the corresponding ta-
bles in [39]. Overall, the 4 4 network shows some flexibility
in achieving good performance close to the optimal frontier for
medium to heavy loads of both short and long packet traffic by
properly tuning the protocol parameters (in software). For light
traffic loads, however, the 4 4 network is not able to come
close to the optimal frontier. The 22 network, on the other
hand, appears to be more flexible than the 44 network. By
properly tuning its protocol parameters, the 22 network is
able to come fairly close to the optimal frontier even for heavy
loads of short packet traffic [see Fig. 18(e) and (g)]. Overall,
our results indicate that the 22 network is the best choice for
achieving efficient multi-service convergence in a metro WDM
network. The 2 2 network frontier approximately coincides
with the optimal frontier for all load levels of long packet traffic
and for light to medium loads of short packet traffic. For heavy
loads of short packet traffic, the 44 network attains the op-
timal frontier. But the 2 2 network is able to come fairly close
to the optimal frontier, simply by adjusting its protocol param-
eters in software.

V. CONCLUSION

We have developed a genetic algorithm based methodology
for the multi-objective optimization problem of maximizing
throughput while minimizing delay in an AWG-based metro
WDM network. Our methodology finds the Pareto-optimal
throughput-delay tradeoff curve in a computationally efficient
manner. The optimal tradeoff curve can be used to opti-
mally provide varying degrees of small delay (and moderate

throughput) or large throughput (and moderate delay) packet
transport services. Our methodology thus facilitates efficient
multi-service convergence for increased cost-effectiveness in
metropolitan and local area networks.

Specifically, for the AWG based network considered as an
example throughout this paper, we find that a network based
on a 2 2 AWG is most flexible in efficiently providing dif-
ferent transport services under a wide range of traffic loads and
packet size distributions. In addition, using an AWG with the
minimum degree of minimizes the network cost (see
Section II-D) which is an important consideration in cost-sensi-
tive metro WDM networks.

For a fixed network hardware the different transport services
are achieved by optimally tuning the MAC protocol parameters
(software) according to the found Pareto-optimal solutions.
In particular, small frame lengths in the timing structure of
the AWG network’s MAC protocol give Pareto-optimal per-
formance with small delay (and moderate throughput), while
large frame lengths achieve optimal performance with large
throughput (and moderate delays). The optimal number of con-
trol packet contention slots per frame is typically in the range
from 30 to 80, the specific optimal values for a given traffic
load and required throughput-delay performance are available
in tables in [39]. The optimal control packet re-transmission
probabilities are close to one for light traffic loads and in the
range from 0.6–0.75 for heavy loads.

The developed genetic algorithm methodology can be
applied in analogous fashion to networks with a similar
throughput-delay tradeoff. The methodology is especially
useful for the multi-objective optimization of networks with
complex, highly nonlinear characterizations of the network
throughput and delay.

APPENDIX

TABLES FORPARETO-OPTIMAL SOLUTIONS

TABLE IV
NETWORK FRONTIER: PARETO-OPTIMAL SOLUTIONS

WITH � AND q AS FREE DECISION VARIABLES



YANG et al.: A GENETIC ALGORITHM-BASED METHODOLOGY FOR OPTIMIZING MULTISERVICE CONVERGENCE IN A METRO WDM NETWORK 1131

TABLE V
PARETO-OPTIMAL SOLUTIONS FOR� = 0:1 AND q = 0:1

TABLE VI
PARETO-OPTIMAL SOLUTIONS FOR� = 0:1 AND q = 0:9

TABLE VII
PARETO-OPTIMAL SOLUTIONS FOR� = 0:3 AND q = 0:1

TABLE VIII
PARETO-OPTIMAL SOLUTIONS FOR� = 0:3 AND q = 0:5

TABLE IX
PARETO-OPTIMAL SOLUTIONS FOR� = 0:3 AND q = 0:9



1132 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 5, MAY 2003

TABLE X
PARETO-OPTIMAL SOLUTIONS FOR� = 0:6 AND q = 0:1

TABLE XI
PARETO-OPTIMAL SOLUTIONS FOR� = 0:8 AND q = 0:1

TABLE XII
PARETO-OPTIMAL SOLUTIONS FOR� = 0:8 AND q = 0:9

TABLE XIII
PARETO-OPTIMAL SOLUTIONS WITH D = 2 FOR� = 0:6 AND q = 0:1

TABLE XIV
PARETO-OPTIMAL SOLUTIONS WITH D = 4 FOR� = 0:6 AND q = 0:1
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