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A Genetic Algorithm-Based Methodology for
Optimizing Multiservice Convergence
In a Metro WDM Network
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Abstract—We consider the multi-objective optimization of a evaluation of a particular parameter combination. Importantly,
multi-service arrayed-waveguide grating-based single-hop metro jn single-hop WDM networks, the objectives to maximize

WDM network with the two conflicting objectives of maximizing ; i ; _
throughput while minimizing delay. We develop and evaluate the throughput while minimizing the delay are typically con

a genetic algorithm based methodology for finding the optimal flicting. With _certain combinations of parameter settings, th_e
throughput-delay tradeoff curve, the so-called Pareto-optimal Networks achieve a small delay and moderate throughput, which
frontier. Our methodology provides the network architecture is perfectly suited fordelay-sensitivetraffic with moderate

(hardware) and the Medium Access Control (MAC) protocol  throughput requirements, such as voice traffic. On the other

parameters that achieve the Pareto-optima in a computation- pang -~ certain combinations of parameter settings achieve a
ally efficient manner. The numerical results obtained with our

methodology provide the Pareto-optimal network planning and large thro“ghp‘“ but introduce somg modprate delays, which is
operation solutions for a wide range of traffic scenarios. The Perfectly suited fothroughput-sensitiveraffic that can tolerate
presented methodology is applicable to other networks with a some delays, such as Internet (FTP, HTTP, e-mail) and Frame
similar throughput-delay tradeoff. Relay traffic. Typically, these different types of traffic dominate
Index Terms—Arrayed-waveguide grating, genetic algorithm, during different times of the day, as illustrated in Fig. 1(a)—(c)
medium access control protocol, metropolitan area network, [7]. During office hours, voice traffic dominates the network
mult!-objgctive optimization, Pareto-optimal, wavelength-division |o3d. \Whereas Internet and Frame Relay traffic play a major
multiplexing (WDM). role in the evening and at night, respectively. By carrying
these heterogeneous traffic types in a single converged network
|. INTRODUCTION the utilization of the network resources can be significantly
increased, as illustrated in Fig. 1(d). The resulting multi-service

PTICAL single-hop wavelength division mUItipleXingnetwork enables revenue-generating services in an efficient and
(WDM) networks have the potential to provide high 9 9

throughput and low delay connectivity in metropolitan anaost-effecﬂve way [8], [9]. This is very important especially in

local area settings, as demonstrated by recent studies [1]— st-sensitive metropolitan and local area networks.

s . i he challenge of multi-service convergence lies in i) pro-
The throu_ghpu.t delay perform:_:mce of thesg single h(_)p WD\I>/iIding the different types of small delay—moderate throughput
networks is typically very sensitive to the setting of ¢rehitec-

ture parameterge.q., degree of underlying arrayed-wave uid%nd large throughput—moderate delay service at different
P 9., deg ying array 9UCkmes of the day in a given fixed installed network, and ii) pro-
grating (AWG), degree of employed combiners and sphttersgg.

and the medium access control (MA@Jotocol parameters viding these different service types efficiently, e.g., achieving

(e.g., length of frames in timing structure, number of contré?e largest possible throughput in the small delay—mod-

slots, node back-off probability). For good network perfor(-a.ralte throughput regime. Opt|m|2|r_19 the? parameter setting in
.~ .single-hop WDM networks for multi-service convergence thus
mance, these parameters must be set properly, which is.a

challenge due to the large search space of possible pararm(Ig_ves rise to a so-called multi-objective optimization problem.

er ST A
combinations and the typically computationally demandingnIS multi-objective optimization problem does not have a

gle solution; instead, the solution is a Pareto-optimal tradeoff
curve between throughput and delay. Roughly speaking, this
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Fig. 1. Different types of traffic dominate during different times of the day.

can thus be used in a two-step optimization process as followsoughput and the mean delay of the network as input. This
First, we optimize amewnetwork by finding the optimal archi- analytic characterization may involve highly nonlinear equa-
tecture (hardware) parameter values. Second, after fixing tiens (or possibly systems of equations); we only require that
architecture, we optimize the protocol (software) parameters thie equations can be solved numerically. Our methodology may
anexistingarchitecture. Specifically, we operate the network atiso be applied to networks that are analytically intractable and
different points of its Pareto-optimal throughput-delay tradeoféquire simulations to obtain the (mean) throughput and the
curve according to the traffic type that dominates at a givdmean) delay. The computational effort required to obtain the
time of the day. The network protocol parameters are tunegdtimal throughput-delay tradeoff curve for a given traffic load
to provide varying degrees of i) small delay (and moderateith our approach depends on the effort required to evaluate
throughput) service, or ii) large throughput (and moderatbe throughput and the delay for a particular combination of
delay) service as the traffic changes with the time of the dayetwork parameters and the size of the exhaustive search space.
This tuning requires detailed knowledge of the optimal tradecfihe number of parameter combinations that our approach
curve, which can be precomputed with our methodology ameeds to evaluate to obtain the optimal tradeoff curve is usually
stored in tables for fast look-up. on the order of thousand times smaller than the exhaustive
In this paper, we develop a genetic algorithm based methaarch space. In typical scenarios, our approach requires less
ology for solving the multi-objective optimization problem ofthan one day of CPU time on a 933 MHz PC to find the optimal
maximizing throughput and minimizing delay in single-hopradeoff curve, whereas the exhaustive search would require
WDM networks. We consider the arrayed-waveguide gratirggveral years of CPU time.
(AWG)-based network [2] as an example throughout this paper.This paper is organized as follows. In the following section
Our methodology finds the optimal tradeoff curve and the pare review the related work on optimizing optical WDM net-
rameter combinations attaining the curve in a computationallyorks, including works that employ genetic algorithm based ap-
efficient manner. Our work enables network planners to selgobaches. In Section II, we formulate the multi-objective opti-
the (hardware) network architecture parameters that give timézation problem of maximizing throughput while minimizing
best performance. In addition, our methodology enables ttielay. We briefly review the AWG-based single-hop WDM net-
operators of (fixed) installed network hardware to optimallwork [2], which is used as an example throughout the paper.
tune the throughput-delay performance along the optiméle give the two objective functions (throughput and delay),
tradeoff curve by changing the (software) network MAQve identify the decision variables in the optimization and dis-
protocol parameters. cuss the constraints on the decision variables. In Section I, we
While we focus on the AWG-based network [2] in thidevelop our genetic algorithm based methodology for finding
work, our methodology applies analogously to networks witlhe Pareto-optimal throughput-delay tradeoff curve. First, we
a similar throughput-delay tradeoff. Our genetic algorithrhriefly review the notion of multi-objective optimization and
based approach takes an analytic characterization of the meaplain why we base our solution methodology on genetic al-
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gorithms. We then discuss and evaluate in detail the individualuting and thus allows for spatial wavelength reuse. This allows
components of our methodology. In Section IV we apply odor increased concurrency and as we demonstrate in this paper,
methodology to the AWG-based single-hop WDM network angiakes the AWG based network a promising candidate for effi-
study its optimal throughput-delay tradeoffs in detail. We sungiently achieving multi-service convergence in metro area net-
marize our conclusions in Section V. works. (The wavelength routing property of the AWG has re-
cently also been exploited in other networking contexts, e.g., in
A. Related Work optical packet switches [30].)

We now give a brief overview of the literature on optimiza- Another distinguishing feature of our work is that we explic-
tion in optical WDM networks, which may be broadly catejtly consider a multi-objective optimization problem, whereas
gorized into studies addressing i) wide-area wavelength-routg@st of the existing literature focuses on optimizing a single
mesh WDM networks (typically envisioned as Internet backspjective function. Optical network optimization with multiple
bone networks), i) WDM ring networks, and iii) WDM net- conflicting objectives is considered only by a few studies. In
works with a physical star topology (typically employed in th¢31] reconfiguration policies to accommodate changing traffic
metro/local area with a central passive star coupler (PSC)@buting) patterns or the failure of network components in a
AWG). The design and operation of wavelength-routed mestsC-based single-hop WDM network are studied. It is found
(wide area) WDM networks have been optimized extensiveljhat maximizing the degree of load balancing and minimizing
including aspects such as the routing and wavelength assigie number of transceiver retunings are conflicting objectives.
ment, as well as the design of optimal logical topologies, see fpke problem is formulated in a Markov decision process frame-
instance [10]-[13], and references therein. Also, optimality igvork, which is used to evaluate reconfiguration policies. The re-
sues in planning and operation of survivable wavelength-routegnfiguration policy that achieves the desired balance between
WDM networks have been thoroughly investigated, see for ithe two conflicting objectives is determined by selecting proper
stance [14], [15] and references therein. The optimal placemeakt functions and weights for the objectives. In [24] it is noted
of wavelength converters in WDM mesh networks is studied that minimizing the number of nodes (optical add—drop multi-
[16], while [17] studies the optimal amplifier placement. Thelexers) and minimizing the number of rings in a stack of WDM
optimal setting of physical parameters in optical networks, sugigs are conflicting objectives; the tradeoff is quantified and a
as the power budget and detection thresholds, have also bireuristic for finding a spectrum of designs is developed. Sim-
investigated, e.g., [18], [19]. General strategies for the optimigdrly, in [22], [23] it is observed that the objectives to mini-
planning of optical networks are explored in [20]. mize the number of optical add—drop multiplexers and to mini-

WDM ring networks (including SONET/SDH rings) have remize the number of wavelengths in a WDM ring network are
ceived a great deal of attention and a wide range of aspectsflicting and a number of designs that strike different bal-
of ring networks, including the placement of add—drop multances between the objectives are proposed. In [32] a multi-ob-
plexers, traffic grooming strategies, the provisioning of wavgective optimization problem to find the wavelength assignment
lengths and hardware components to ensure network suniiva mesh WDM network that minimizes the path lengths while
ability, as well as MAC protocols and wavelength assignmemtaximizing the fiber utilizations is formulated and solved using
have been optimized, see for instance, [21]-[24]. genetic algorithms.

WDM networks with a physical star topology are typically A wide range of optimization methods are employed in
studied in the context of single-hop networks [25] or multi-hothe reviewed optical network optimization studies. Some use
networks [26]. For multi-hop networks, much research has gotraditional optimization methods that are guaranteed to find the
into the design of optimal virtual topologies (see for instanagdobal optimum, such as integer linear programming, employed
the survey [26]). For single-hop networks most optimization efer instance in [10], [15]. However, due to the complexity of the
forts have focused on the optimal scheduling, see for instarmm®blems and the prohibitive computational effort required for
[27] and [28]. Our optimization methodology is orthogonal tsolving them with traditional methods, novel algorithms and
these studies in that our methodology optimizes the architdeuristics are developed (e.g., [13]) and heuristic algorithms,
ture and MAC protocol parameters of the network without asuch as Tabu-search (e.g., in [11]), simulated annealing (e.g., in
suming any particular scheduling mechanism. (To fix ideas[#2]), and genetic algorithms (in [17], [32]-[36]) are applied.
simple FCFS scheduling policy is used in [29], where the me&¥e note that the use of evolutionary (genetic) algorithms in the
throughput and the mean delay of the network considereddasign of general wide area mesh network topologies that mini-
this paper are derived.) A unique aspect of our work is that vmeize the network cost is studied in [37]. Genetic algorithms are
jointly optimize the networkarchitecture (hardware) and the compared with simulated annealing for optimizing the topo-
MAC protocol parameters (software). Generally, the existinlpgical design of a network in [38] and it is found that genetic
works, in isolation optimize either hardware or software palgorithms give better performance than simulated annealing.
rameters. We also note that most of the existing literature @he existing studies employing genetic algorithms for optical
single-hop WDM networks considers networks based on a ceretwork optimization typically optimize singleobjective, e.g.,
tral PSC, which is a broadcast device and hence does not alimmimize the number of amplifiers [17], minimize the network
for spatial wavelength reuse. In contrast, we consider a nebst [35], [36], or maximize the number of connections while
work based on an AWG, which provides wavelength-sensitigatisfying power constraints [33]. In contrast, in this paper we
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Fig. 2. Architecture of AWG based WDM network.

consider amulti-objective optimization problem—minimize of a control packet. Each frame is partitioned into the fivét

delay while maximizing throughput. 1 < M < F, slots and the remaining"(— M) slots. In the
first M slots, control signals are transmitted based on a modified
Il. FORMULATING THE MULTI-OBJECTIVE slotted ALOHA protocol and all nodes must be tuned (locked)
OPTIMIZATION PROBLEM to one of the Light Emitting Diode (LED) slices carrying the

_ _ o _ .. control information. (This LED slice broadcast mechanism can
In this section we formulate the multi-objective optimizationyso be used to quickly update the protocol parameters in all net-
problem of maximizing throughput while minimizing delay inyork nodes. By looking up the appropriate parameter settings
single-hop WDM networks. We first review the AWG-basegh a table precomputed with our methodology and broadcasting
single-hop WDM network [2], which we use as an example nehem to the nodes with the LED slices in one single hop, the net-
work throughout this paper. work is able to adapt almost instantly to changing traffic condi-
tions and throughput-delay requirements.) In every frame within
A. Overview of AWG-Based Single-Hop WDM Network  the cycle, the nodes attached to a different AWG input port send

The basic architecture of the single-hop WDM network [2] itheir control packets. Specifically, all nodes attached to AWG
based on & x D AWG, as shown in Fig. 2. At each AWG inputinput porto, 1 < o < D, (via a common combiner) send their
port, a wavelength-insensitiiex 1 combiner collects data from control packets in frame of the cycle. During the firsd/ slots
S attached nodes. Similarly, at each AWG output port, Signaqgframeo, control and data packets can be transmitted simulta-
are distributed toS nodes by a wavelength-insensitivex §  neously by the nodes attached to AWG input porfransmis-
splitter. (An Erbium Doped Fiber Amplifier (EDFA) is pIacedSiO”S from the other AWG input port cannot be received during
at the output of each combiner and the input of each splitterfys time interval. In the last{ — M) slots of each frame, no
compensate for the splitting/combining and fiber losses.) Eag@ntrol packets are sent. The receivers are unlocked, allowing
node is composed of a transmitting part and a receiving péf@nsmission between any pair of nodes. This allows for spatial
The transmitting part of a node is attached to one of the comyavelength reuse. In the considered traffic scenario, a node that
biner ports. The receiving part of the same node is locatediaf0t backlogged generates a new packet with probabilay
the opposite splitter port. The network connedts= D - § the beginning of its transmission cycle. The generated packet is
nodes. At each AWG input port we explait adjacent Free l0ng (has sizé” slots) with probabilityg, and is short (has size
Spectral Ranges (FSR's) of the AWG, each FSR consists %f= £ — M slots) with probabilityl — . The parameters of
D contiguous wavelengths. The total number of wavelengtH%e considered network architecture and MAC protocol, as well
at each AWG input port i8s = D - R. The network runs an as the traffic parameters are summarized in Table I.
attempt-and-defer type of MAC protocol, i.e., a data packet is
only transmitted after the corresponding control packet has been
successfully transmitted. In the MAC protocol, time is divided The two key performance metrics of single-hop WDM net-
into cycles. Each cycle consists bf frames. Each frame con-works, such as the AWG-based network reviewed in the pre-
tains F' slots. The slot length is equal to the transmission timneeding section, are the mean throughput and the mean delay. The

Obijective Functions: Throughput and Delay
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TABLE |
PARAMETERS OFNETWORK ARCHITECTURE AND MAC PROTOCOL

Network Architecture (Hardware) Parameters

N Number of nodes in the network
A Number of usable wavelengths at each AWG port (Tuning range of transceivers)
D Degree of AWG
R Number of FSRs (R = A/D)
S Degree of combiner and splitter (S = N/D)
Protocol (Software) Parameters
F Number of slots in a frame
M Number of reservation slots in a frame
K Length of short packets in slots (K = F — M)
P Re-transmission probability of control packet in ALOHA contention

Traffic Parameters
o Packet generation probability (for idle node at beginning of cycle)

Probability that a given data packet is long (i.e., occupies F slots)

Performance Metrics (Objective Functions)
TH  Average network throughput in transmitting nodes per slot
(or equivalently in packets/frame)

Delay Average packet delay in slots

typical goal of the optimization of single-hop WDM networkswvherew is the fraction of idle (i.e., not backlogged) nodes in
is to maximize the throughput while minimizing the delay. Fosteady state. The number of successful (i.e., not collided) control
the reviewed AWG-based network, the mean throughput and tieckets destined to a given AWG output port in a given frame
mean delay have been derived in [29] as functions of the paraisexpressed as
eters summarized in Table |. (The derivation in [29] considered
the caseM < F,i.e.,, K > 0. In our optimization, we allow M BeB k Be b M~k
for M < F, i.e.,K > 0; the objective functions for the special P(Z =k) = < 1 ) ( ) ) (1 - > ,
caseM = F are derived in [39].) We briefly review here these k—0.1 M
L . o =0,1,..., M. 3

two objective functions of our optimization.

The average throughput of the network is defined as the
erage number of transmitting nodes in a slot and is given by

aP’he probability that a given control packet corresponds to a long

data packet (either newly generated by an idle node, or retrans-
mitted by a backlogged node) is denotedjbgiote that typically

(1) ¢ > gsince long data packets are more difficult to schedule and

thus typically require more retransmissions than short packets.

) The analysis of the data packet scheduling results in
where E[L] is the expected humber of successfully scheduled

long packets (of sizé” slots) from a given (fixed) AWG input

F-BlL]+ K - E[S]

TH = D?-
F-D

R . min(R,M)
portto a given (fixed) AWG output port per cycle (of lendgthD . _ . _
slots), andE[S] is the expected number of successfully sched- Elf]=qq R kz_o P(Z = k)R~ k)
uled short packets (of lengthi = F' — M slots) from a given . ; a
(fixed) AWG input port to a given (fixed) AWG output port per =q-»(f) (4)

cycle. (We note that the throughput given by (1) may also be in- and
terpreted as the average number of transmitted data packets per -
frame; for convenience we will use this packets/frame interpre- ElS]=(1-q)
tation in our numerical work in Sections Il and \NJ[£] and

E|[S] are evaluated by modeling the control packet contention n _ i (k — R>

and the data packet scheduling, and then establishing a set of - i i m

equilibrium equations for the network. In brief, the arrival rate =t :Zj{fszrR .

of control packets to a given control slot is expressed as -(1=9)™q " P(Z=k):=hg B) ()

where~y; accounts for the “packing” of the short packets into
f=qplov+p(l =) (2)  the schedule and is given by a nonlinear function of the network
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and traffic parameters and Finally, in equilibrium, the num- This arrangement minimizes the required combiner/splitter de-
bers of serviced long and short packets are equal to the numlgee S, which in turn minimizes the splitting loss in the com-
of newly generated long and short packets, which, after soibi@ers/splitters. Hence, we sgt= [N/D].

algebraic manipulations, results in the equations We now turn to the protocol (software) parameters; see
i Souv Table I. We identify three decision variables; these EreM/
q=q- D'—W(ﬂ) (6) andp. Generally, the number of slots per fraiflecan take any
positive integer, i.eF’ > 1, while the number of control slots
and S per frame can take any positive integer less than or equé| to
(1-1¢q)- o v =h(q,0). (7) ie.,1 < M < F.(Note that in casd/ = F, the length of

) ] ] } ) the short packets degenerates to zero. In this case only large
(7) is solved numerically and the obtaineds inserted in (2) packets contribute to the throughput; the objective functions
to obtain/3, which in turn is used in (4) to obtaip(/3). These for this case are given in [39].) We note that the size of the
quantities are in turn used to obtajfrom (6), and finallyE[L]  packets to be transported may impose additional constraints
from (4) andE([S] from (5). . _ on F and M. With a given maximum packet sizé; must
The mean packet delay is defined as the average time perjpd large enough to accommodate the maximum size packet
in slots from the generation of the control packet correspondifg 5 frame. If short packets have a specific size requirement,
to a data packet until the transmission of the data packet. ThRe_ 5/ should be large enough to accommodate that packet
average delay in the network in slots is size. For our numerical work in Sections Ill and IV, we do not
S 1—0 impose packet size requirements. Instead, we let the genetic
Delay = {D EFLTER) o } -D-F. (8) algorithm determine th& and M values that give the optimal
throughput-delay performance, subject only#o > 1 and
1 < M < F. The packet re-transmission probabiliynay
take any real number in the interval, [L]. To reasonably limit
We now identify the decision variables in our optimizationhe search space we restricto [0, 0.05, 0.10, 0.15,..., 1.0] in
problem and identify the constraints on the decision variablesir numerical work.
We selectthe AWG degrde as the (independent) decision vari-
able for the network (hardware) architecture; we determine the Network Cost Considerations

other architecture paramete¥sands (see Table I) as functions  \inimizing the total network cost could be a third objective,
of D (and the givenV andA), as discussed shortly. Generallyjy aqdition to the maximize throughput and minimize delay ob-
the decision variabl® can take any integer satisfying jectives introduced in Section 1I-B. We note that the genetic al-
D>2 and D<A 9) gorithm .methodology co.uld gccommodate the third.objective
in a straightforward fashion, it would make the solution space
where A is the maximum number of wavelength channel$iree dimensional. Specifically, we would obtain an optimal
accommodated by the fast tunable transceivers employedthinoughput-delay tradeoff plane for a given (acceptable) cost
the considered network. In other words,is the maximum level. We did not include network cost minimization in our op-
tuning range of the employed transceivers divided by thinization model because we are primarily interested in uncov-
channel spacing and is thus very technology dependent. [@idng the fundamental performance limitations and tradeoffs in
use transceivers with a negligible tuning time (and a smahle metro WDM network. Network cost—while an important
tuning range) we set = 8 in our numerical investigations in consideration—is typically not considered a fundamental per-
Sections 1l and 1V.] We also note that the number of ports dbrmance metric for a network. In addition, network costs tend
commercially available photonic devices is typically a powen be highly variable. The costs of the hardware components in
of two. We can easily incorporate this constraint by restrictintpe considered network are expected to drop significantly once
D to the set{2,4,8,...}. they are extensively mass produced.

The number of used FSR8 depends on the (independent) Even though we did not include cost minimization in our op-
decision variableD and the given tuning range of the trans- timization model, we now briefly discuss the impact that the
ceivers. GenerallyR must be an integer satisfying- D < A, cost minimization objective would have on the problem and its
i.e., R < A/D. The largerR, the more parallel channels aresolution. Generally, the total network cost is the sum of capital
available between each input-output port pair of the AWG, amkpenditures (cost of network hardware and installation) and op-
hence the larger the throughput. Therefore, we l8eb the erational expenditures (cost of network management). With the
largest integer less than or equaltpD, i.e.,R = |A/D|.We current component pricing structure, the hardware cost of the
note that the tuning rangk and degred are typically powers network increases linearly with the AWG degiBeThis is be-
of two for commercial components. Hence/ D is a power of cause i) there is typically a per-port charge for an AWG, and ii)
two for practical networks, and we may wrife = A/D. The the number of required EDFAs increases linearly with(The
combiner/splitter degreg€ depends on the decision varialile cost of the splitters/combiners is typically insignificant. Also,
and the given number of nodes in the netwdikin determining the number of transceivers depends only on the number of net-
the combiner/splitter degre®, it is natural to assume that thework nodes.) The cost of installation is roughly fixed (and in-
nodes are equally distributed among HeAWG input/output dependent of the decision variables), as is the network manage-
ports; i.e., each input/output port serves at léa6t D | nodes. ment cost. Thus the total network cost is approximately a linear

C. Decision Variables and Constraints
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Fig. 3. lllustration of Pareto-optimal solutions for maximize throughputFig. 4. lllustration of efficient frontier for maximize throughput-minimize
minimize delay problem. delay problem.

function of the AWG degred. SinceD is typically a power réctangle are dominated by poikit All points in the dark gray
of two, the genetic algorithm methodology would give optimdectangle, e.g., the poi, are said talominatethe pointX'.
throughput-delay planes for eadh = 2,4, . . .. This three di- Since all points in the dark gray rectangle have larger throughput

mensional solution gives the best throughput-delay tradeoff fopd Smaller delay thai'. The point£ is superior to the point
a given acceptable cost level. X. Based on the concept of Pareto dominance, the optimality

criterion for multi-objective problems can be introduced. Con-
sider the points”, D, E, F andG. These points are unique
among all the points in the plot in that each of them is not domi-
In this section we discuss the difficulties in optimizing th@ated by any other point. The set of these solutions is termed as
multiple objectives of maximizing throughput while minimizingpareto-Optimalsolution set oiEfficient Frontier The efficient
delay. We point out why we base our solution methodology Gfbntier corresponding to Fig. 3 is shown in Fig. 4.
genetic algorithms. We describe our genetic algorithm solutionThe goal of multi-objective optimization is to find such a
approach to the multi-objective optimization problem formuteasible efficient frontier. Classical methods for generating
lated in the previous section and evaluate the performancetigé pareto-optimal solution set aggregate the objectives into a

I1l. GENETIC ALGORITHM BASED METHODOLOGY

our approach. single, parameterized objective function. The parameters of this
_ _ _ _ function are not set by the decision maker, but systematically
A. Why Evolutionary Algorithm (Genetic Algorithm)? varied by the optimizer [41]. In contrast to classical search

The familiar notion of an optimal solution becomes sometnd optimization algorithms, evolutionary algorithms use a
what vague when a pr0b|em has more than one objective fu[ﬁ]@pmatiOn of solutions in each iteration, instead of a Single
tion, as is the case in our metro WDM network optimizatiorgolution. Since a population of solutions is processed in each
A solution (i.e., set of decision variablés, F', M, andp) that iteration, the outcome of an evolutionary algorithm is also a
gives very large throughput may also give large delay and the@pulation of solutions for the conflicting objective functions.
rate poorly on the minimize delay objective. The best we cdhese multiple optimal solutions can be used to capture
do is to find a set of optimal tradeoff solutions, i.e., solutiondultiple efficient points of the problem [40].
that give the largest achievable throughput for a given toler-We now proceed to develop a methodology for efficiently
able delay, or equivalently the smallest achievable delay foffiading the Pareto-optimal solutions (optimal tradeoff curve) of
required throughput level. After a set of such optimal traded#ie¢ multi-objective problem of maximizing throughput while
solutions is found, a user can then use higher-level considefhimizing delay in single-hop WDM networks. Our solution
tions, such as the traffic patterns illustrated in Fig. 1, to makaethodology is based on genetic algorithms, which are mem-
a choice. A feasible solution to a multi-objective optimizatioRers of the family of evolutionary algorithms.
problem is referred to asfficient pointor Pareto-optimalsolu-
tion [40]. As illustrated in Figs. 3 and 4, we have two obje
tives—maximizing throughput, and minimizing delay. The re- The basic structure of a genetic algorithm is illustrated in
gion which is shaded in light gray is said tod@minatedy the Fig. 5. In the genetic algorithm, we consider a population of in-
point.X . All points in the region, e.g4 andB have larger delay dividuals. Each individual is represented by a string of the deci-
and smaller throughput than the paoiit Clearly, the poinfX is  sion variables, i.el), F', M, andp (as well as the corresponding
superior to the pointgl and B. Thus all points in the light gray objective function value$'H andDelay). In the terminology of

B. Basic Operation of Genetic Algorithm
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Genetic Algorithm()

{
t=0; //start with an initial generation
init_population P(t);
//initialize a usually random population of individuals
evaluate P(t);
//evaluate fitness of all individuals of initial population
wvhile not terminated do { //evolution cycle;
t+—t+1; //increase the generation counter
P'(t) = select_parents P(t); //select a mating pool for offspring production
recombine P’(t); //recombine the ‘chromosome’ of selected parents
mutate P'(t); //perturb the mated population stochastically
evaluate P'(¢); //evaluate fitness of new generation
P(t) « P'(t);
}
}

Fig. 5. Basic structure of a genetic algorithm.

genetic algorithms the string of decision variables is referreditgput port with fast tunable transceivers with a tuning range of
aschromosomewhile each individual decision variable is re-10-15 nm [29]. For all subsequent results, the number of wave-
ferred to agiene The quality of an individual in the populationlengths is fixed at eight, i.eA = 8. D can take the values 2,
with respect to the two objective functions is represented bydaand 8. Thus, the correspondifgvalues are 4, 2, and 1. We
scalar value, callefitness After generating the initial popula- fix the number of nodes in the network At = 200. To rea-
tion (by randomly drawing the decision variables for each irsonably limit the search space of the genetic algorithm, we re-
dividual from uniform distributions over the respective rangestrict F' to be smaller than 400 slots in this paper. We note that
of the decision variables), each individual is assigned a fithnesgh a largeF’, the considered network generally achieves larger
value. The population is evolved repeatedly, generation by gehroughput values (at large delays), however, the computational
eration, using the crossover operation and the mutation opegéfort for evaluating a given parameter combination increases as
tion. The crossover and mutation operations produce offsprihgincreases. For the exhaustive search, we therefore finhit
by manipulating the individuals in the current population thatalues less than or equal to 200 slots.
have good fitness values. The crossover operation swaps pot~irst, we evaluate the Vector Evaluated Genetic Algorithm
tions of the chromosomes. The mutation operation changes (REGA), which is easy to implement. The VEGA algorithm di-
value of a gene. Individuals with a better fitness value are mor&les the population into two subpopulations according to our
likely to survive and to participate in the crossover (mating) opwo objective functions. The individuals in each subpopulation
eration. After a number of generations, the population contaiase assigned a fitness value based on the corresponding objec-
members with better fithess values. The Pareto-optimal indivitive function. When using only one objective function to deter-
uals in the final population are the outcome of the genetic attine the fitness values of the individuals in a subpopulation, it
gorithm. Each operation is discussed in detail in the followinig likely that solutions near the optimum of an individual ob-
subsections. jective function are preferred by the selection operator. Such
preferences take place in parallel with other objective functions
in different subpopulations. The main disadvantage of VEGA
is that typically after several generations, the algorithm fails to
The fitness function is typically a combination of objectivesustain diversity among the Pareto-optimal solutions and con-
functions. We evaluate three commonly used types of fithegsrges near one of the individual solutions. Indeed, as reported
function. We generaté = 20 generations, each with a populain Table 1l, the VEGA finds only 15 Pareto-optimal solutions;
tion size of P = 200 to compare the quality of the fitness functhe efficient frontier spanned by these solutions is plotted in
tions. We set the probability of crossover to 0.9 and the probig. 6. We observe, however, that the VEGA efficient frontier
ability of mutation to 0.05, which are typical values. We comis overall quite close to the true efficient frontier (found by ex-
pare the genetic algorithm outputs with the true Pareto-optinfa@ustive search).
solutions which were found by conducting an exhaustive searchNext, we evaluate the Weight Based Genetic Algorithm
over all possible combinations of the decision variables. We fi{¥BGA) which uses the weighted sum of the objective func-
o = 0.6 andq = 0.1 for this evaluation. All results presentedtions as fitness function. The main difficulty in WBGA is that
in this paper assume a channel spacing of 200 GHz, i.e., 1.6 itiis hard to choose the weight factors. We use the same weight
at 1.55um. Thus, we can use 7-10 wavelengths at each AWf&ctor of 1/2 for each objective function. Since the mean delay

C. Fitness Function
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TABLE 1l

NUMBER OF PARETO-OPTIMAL SOLUTIONS IN FINAL POPULATION FOR

3000
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True Pareto-Optimal

GENETIC ALGORITHM BASED SEARCHWITH F' < 400; EXHAUSTIVE SEARCH 2500 | VEGA v |
FOR F' < 200 GIVES 580 FARETO-OPTIMAL SOLUTIONS WBGA o
RWGA ------
=01 7=03 | =06 =08 g 2000 - i
¢ Jo1fos]o9fo1]os 09 o1]o5][0901]05]09 2
D=2{148 | 132 | 133 | 108 | 84 | 158 | 31 | 102 | 121 | 23 | 105 | 135 %’ 1500 + _
D=4| 0 | 1|8 | 2 |65| 4 |8 |4 | 5 [102| 46 | 3 a
D=8 0|0 |o0o|]o|2]|2|1]|4a]1|o0]|4]|1 g
- s < 1000 | .
Total | 148 | 133 | 141 | 110 | 151 | 164 | 118 | 152 | 127 | 125 | 155 | 139
3000 . : : : . . — 500 1
T
True Pareto-Optimal jx x
2500 R VEGA I 7’ 5 | O 1 1 L L 1 1 1
WBGA - 7 0o 2 4 6 8§ 10 12 14 16
— RWGA ---a-- ;X Average Throughput (Packets/Frame)
£ 2000 7 1
2 ' Fig. 7. Efficient frontiers obtained with different fitness functions without
-y | elitism for F < 400 and with exhaustive search fét < 200.
g 500 r —
g
é’ 1000 1
far from the true efficient frontier in the throughput range from
500 L 1 8-10 packets/frame. Also, the RWGA finds only a relatively
small number of Pareto-optimal solutions.
0 . . . . . . . We now study the concept @fitism Elitism is one of the

0 2 4 6 8 10 12 14 16
Average Throughput (Packets/Frame)

schemes used to improve the search; with elitism the good so-
lutions in a given generation are kept for the next generation.
This prevents losing the already found good solutions in the
tsubsequent crossover operation(s), which may turn good so-
lutions into bad solutions. For each generation we determine

should be minimized in our problem, we use the negative del he Paretq optimal SOM'O.n.S by companng the throughput and
L : ) . . delay achieved by the individuals in that generation. (Note that

as the second objective function. The fitness function used i . . h .

he thus determined Pareto-optimal solutions are not necessarily

the true Pareto-optimal solutions to the optimization problem,
rather they are Pareto-optimal with respect to the other individ-
Our goal is to maximize the average throughput while minisals in the considered generation.) The determined Pareto-op-
mizing the mean delay. Thus, with the WBGA approach, tHiémal solutions are kept for the next generation; they are not sub-
larger the fitness value, the better. We observe from the resijésted to the crossover operation, they are, however, subjected
given in Fig. 6 and Table Il that the WBGA finds more Paretdo the mutation operation (as explained in Sections IlI-E and
optimal solutions than VEGA. However, the WBGA efficientll-F ). If we find that a Pareto-optimal solution from a previous
frontier has parts (particularly in the throughput range frogeneration is no longer Pareto-optimal solution in a new gener-
7-13 packets/frame) that are distant from the true efficient froation, i.e., it is dominated by some other individual in the new
tier. We note that the average network delay given in (8) in unigeneration, then this old Pareto-optimal solution is discarded.
of slots is on the order of thousands of slots in typical scenarios,The results obtained with elitism are given in Fig. 7 and
whereas the average throughput is typically on the order of of@ble 1l. We observe that the number of Pareto-optimal so-
to 16 packets per frame. To achieve a fair weighing of bothtions in the final population is dramatically larger and the
throughput and delay in the fitness function, we use the delefficient frontiers are closer to the true efficient frontier of the
in unit of cycles (where one cycle corresponddio F slots) problem. From Fig. 7, it appears that all schemes with elitism
in the evaluation of the fitness in (10) (and the following fitnesgerform quite well, with RWGA hugging the true efficient
definition in (11)); with this scaling, the delay is on the order ofrontier most closely. This observation is corroborated by
1 to 20 cycles in typical scenarios. comparing the number of Pareto-optimal solutions in the final

Finally, we evaluate the Random Weight Genetic Algorithrpopulation in Table 1, which indicates that RWGA gives the
(RWGA) which weighs the objective functions randomly. Abest performance. According to the observations made in this
new independent random set of weights is drawn each timesgttion, we use RWGA with elitism throughout the remainder
individual’s fitness is calculated. We use the fitness function of this paper.

(11)

Fig. 6. Efficient frontiers obtained with different fitness functions withou
elitism for F < 400 and with exhaustive search fér < 200.

1 1
Fitness = 3 -TH — 3 - Delay. (20)

Fitness =¢-TH — (1 — ) - Delay D. Population Size and Number of Generations

wheree is uniformly distributed in the interval (0, 1). We ob- The population size trades off the time complexity (computa-
serve from Fig. 6 that the RWGA efficient frontier is relativelytional effort) and the number of optimal solutions. In order to ac-
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commodate all Pareto-optimal solutions, the population shot
be large enough. However, as the population size grows, the ti
complexity for processing a generation increases (whereby
most computational effort is typically expended on evaluatir _
the throughput and delay achieved by an individual to determi
its fitness value). On the other hand, for a smaller populaticZ
the time complexity for the population decreases while the pos
ulation may lose some Pareto-optimal solutions. As a result,
smallest population size which can accommodate all Pareto-
timal solutions is preferable.

For schemes that employ elitism, we categorize the pog
lation in generatiort into three groups: i) Thelite groupof
size P.(t) which contains the Pareto-optimal solutions from th
preceding generation— 1, ii) the reproduction groupof size
P,(t) which is reproduced from the individuals with good fit-
ness values in the preceding generatienl through crossover
(see Section lII-E), and iii) theandom groupof size P,.(t)
which is generated randomly (by drawing the decision vari-
ables from uniform distributions over their respective ranges).
The random group is required to prevent the algorithm from

Mean Delay

getting stuck in local optima. The population size should a 3000 ' ' ' ' ' '
commodate these three groups appropriately. Furthermore, True Pareto-Optimal

size of the reproduction group and the random group need 2% | pi;%ﬁﬁgg ””””” I
be carefully considered. If the reproduction group is too larg_

the solution may get stuck in a local optimum. If the size ¢ 2000 | 1
the random group is too large, we may spend most of the tir"v;

calculating the fithess values of solutions that are very disteS 1500 | .
from the efficient frontier. However, the population size shoul2

at least be larger than the elite group. To find the proper p()érg 1000 f —
ulation size, we evaluate the adopted RWGA with elitism fc

the population size® = 150, 200, and 300. We initially set 500 L _
the size of the reproduction group to one half of the populatic

size, i.e.,P;™* = P/2. Once the number of Pareto-optimal so

lutions in a generation— 1 exceeds,™", i.e., P.(t) > Pi"",
we set the size of the reproduction groupig(t) = P — P.(t)
in the next generation. Thug,(t) = min(P"*, P — P.(t)).
If the number of Pareto-optimal solutions in a generatienl
is less thanP — Pinit we set the size of the random group to
P,(t) = P — Pi™* — P.(t) in the next generation, otherwise

3000
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1000

500 r

1123

T

True Pareto-Optimal
P=150,G=20
P=200,G =15
P=300,G=10
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Fig. 8. Efficient frontiers for different population sizéswith P - G = 3000,
fixed.

Average Throughput (Packets/Frame)
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Fig. 9. Efficient frontiers for different initial size®:"* of the reproduction
group (Population siz& = 200, fixed).

we setP,.(t) = 0;i.e., P,(t) = max(0, P — Pi"* — P.(t)).

Thus, the more Pareto-optimal solutions there are in the pgroup takes up almost two thirds of the population. With a popu-
ceding generation, the fewer randomly generated individuals da&on size ofP? = 300 (and onlyG = 10 generations to ensure a

in the next generation. (If the number of Pareto-optimal soltair comparison) the evolution of the generations does not settle
tions in a generation exceed’;,““, the succeeding generationdown as much as for 20 and 15 generations and therefore gives
does not contain randomly generated individuals.) For the falnly 70 Pareto-optimal solutions (although the efficient frontier
lowing evaluation, the parameteks o, ¢, and the ranges dP, has a relatively small “hump”). Overall, we conclude that all
F, M, andp are set as given in Section II-C. For comparisorithree considered population sizes give fairly good results. We
we set the number of generationsGo= 20, 15, and 10, re- chooseP = 200 for the following experiments in this paper as it
spectively. Thus, the total number of considered individuals &ppears to accommodate all three population groups in a proper
P - G = 3000 in all cases. The results are shown in Fig. &ashion. In Fig. 9 we plot the efficient frontiers obtained with
We observe from Fig. 8 that all three efficient frontiers hug thdifferent initial sizesP;,“it = 50 and 100 of the reproduction
true Pareto-optimal frontier quite closely, with all three curvegroup (withP = 200, fixed). The number of Pareto-optimal so-
having “humps” around a throughput of 14 packets/frame. Theations forP]';“i" = 50and 100, are 85 and 115, respectively. We
number of Pareto-optimal solutions obtained for the populatiaserve from Fig. 9 that both efficient frontiers are quite close
sizesP = 150, 200, and 300 are 87, 104 and 70, respectivelio the true Pareto-optimal frontier. We sI%i“it = 100 for all

The population size o = 150 does not perform very well the following experiments in this paper.

in our network optimization because it typically cannot accom- We now investigate the impact of the number of generations
modate all the Pareto-optimal solutions. This is because the eliteIn Fig. 10, we plot the size of the elite group.(¢) as a
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140 E. Crossover Operation
120 + . The crossover operation swaps parts of the chromosomes of
» the fittest individuals in the current generation to produce off-
% 100 | 1 spring with large fitness values for the reproduction group in
E the next generation. In our crossover operation the individuals
§ 80 1 in the generatiort — 1 are sorted in decreasing order of their
% o | fithess values (whereby the individuals from all three groups,
8 i.e., elite group, reproduction group, and random group, are con-
5 40l | sidered). A mating pool is formed from the fitB},(¢) individ-
* uals in the ordering. Parts of the chromosomes of the individuals
20 b { in the mating pool are then exchanged (swapped) with a fixed
crossover probability. We chose to swap thdlivalues because
0 : : : ; ; : : ; we have observed that (with D, F', andp fixed) tends to ex-

plore potential solutions in the vicinity of the parents (as is also
evidenced by the tables in the Appendix, which are discussed
Fig. 10. Size of elite grou. (¢) as a function of generation counter in detail in Section 1V). More specifically, the firgt, () indi-
viduals in the ordering, i.e., the mating pool, are processed as
follows. We take the first two individuals in the ordering. With
the crossover probability (which we fix at the typical value 0.9),
we swap theif\/ values, i.e., we put th&/ value of the first in-
dividual (in the ordering) in place of th&f value of the second
individual, and vice versa. The other three decision vallks,
F, andp, in the individuals’ chromosomes remain unchanged.
(Note that in our problem the swapping&f while keepingD,
300 r 1 F, andp in place may result in a chromosome that violates the
constraintdM < F. If this situation arises, we discard the vio-
200 1 lating M value and randomly draw a neld from a uniform
distribution over [1,F].) With the complementary crossover
100 + {  probability (0.1), the chromosomes of the two individuals re-
main unchanged. The two individuals (irrespective of whether
0 s s s s s s . . their chromosomes were swapped or not) then become mem-
0 5 10 15 20 25 30 35 40 45 pers of the reproduction group in the next generation. We then
Generation Counter t move on to the third and fourth individuals in the ordering, and
Fig. 11. Sum of fitness values of individuals in elite group as a function of thsewap th.eIrM value.s with probability O'.9’ move them to the re-
generation counter. production group in the next generation, and so on. We note
that the elite group of the next generation is formed from the
. ) ) Pareto-optimal individuals in the current generation, irrespec-
function of the generation counter Recall thatP(t) is de- e of whether these individuals are in the mating pool of the
fined as the number of Pareto-optimal solutions in generatig(jirent generation. (An individual may appear twice in the next
t —1; thus (1) is the number of Pareto-optimal solutions inyeneration if it is Pareto-optimal in the current generation and
the initial generation = 0. In Fig. 11, we plot the sum of the fit- 4 icipates in the crossover operation without having Mie
ness values of the individuals in the elite gragt) as a func- \5jue changed. Only one copy of such a “duplicate” individual

tion of the generation counter. We observe from Fig. 10 that theyocessed in the next generation, the other copy is discarded.)
number of Pareto-optimal solutions in a generation first steadily

increases and then settles on a fixed value as the generat
evolve. (The slight drop around the fifteenth generation is b
cause we found a Pareto-optimal solution which dominates sevThe mutation operation keeps diversity in the population by
eral earlier Pareto-optimal solutions.) We observe from Fig. Thanging small parts in the individuals’ chromosomes with a
that the sum of the fithess values of the Pareto-optimal solgiven (typically small) mutation probability. We mutate each
tions in a generation first increases quickly, then fluctuates, aimdlividual in the elite group, the reproduction group and the
finally settles down as the generations evolve. This behaviorrandom group with a mutation probability of 0.05 (a typical
typical for genetic algorithm based optimization and is due t@lue). The mutation is typically performed by flipping a bit in
the random nature of the evolution of the population. To allothe binary representation of the individual’'s chromosome. The
for the evolution to settle down sufficiently, we set the totdbcation of the bit is typically drawn from a uniform distribution
number of generations @ = 40. According to the decisions over the length of the chromosome. We chose not to use bitwise
made in this section, we set the population sizé’te= 200, mutation because bitwise mutation would frequently produce
the number of generations € = 40, and the initial size of the offspring that are distant from the parents. Instead, we imple-
reproduction group taP;)“it = 100. ment the mutation operation by randomly drawingldrvalue

Generation Counter t

600 T T T T T T T T

500

Sum of Fitness Values

ion . .
'lé)._ Mutation Operation



YANG et al. A GENETIC ALGORITHM-BASED METHODOLOGY FOR OPTIMIZING MULTISERVICE CONVERGENCE IN A METRO WDM NETWORK 1125

TABLE Il
NUMBER OF PARETO-OPTIMAL SOLUTIONSWITH D = 2, 4,AND 8

VEGA | WBGA | RWGA | VEGA with Elitism | WBGA with Elitism | RWGA with Elitism
15 | 23 | 13 | 55 [ 82 | 115

from a uniform distribution over [1£']. This operation does not 3500

result in constraint violations, yet tends to keep the populatic | Network Frontier
sufficiently diverse. )
After the mutation operation, we evaluate the avera(  ,5g |
throughput and mean delay achieved by the individuals (in &
three groups, i.e., elite group, reproduction group, and randff: 2000
group) in the new generation and start the next evolution cycZ
as illustrated in Fig. 5. In this new evolution cycle, we sele@ 1500 -
again the individuals with the largest fitness values for trg
crossover operation, which gives the reproduction group of t~ 1000 |
next generation. We also determine again the Pareto-optir
individuals to form the elite group in the next generation.

s)

500

0 2 4 6 8 10 12 14 16 18
IV. NUMERICAL RESULTS Average Throughput (Packets/Frame)

In this section, we employ the genetic algorithm basegly 12, Efficient frontiers for light traffic load = 0.1 for different fractions
methodology developed in the preceding section to optimizef long packet traffic and network frontier (with andq as free decision

the AWG-based single-hop WDM network. We determin¥iables).

the settings of the network architecture paramédeand the

protocol parameterd”’, M, and p that give Pareto-optimal Due to space constraints, we present throughout only a few
throughput-delay performance. We use the random weiggpresentative individual solution in this paper. We refer the
genetic algorithm (RWGA) with elitism with the parameteinterested reader to [39] for the full table listings which have as
settings found in the preceding Section, ie., a population sizefBgny rows as there are Pareto-optimal solutions.

P = 200, G = 40 generations, crossover probability 0.9, and _ ) )

mutation probability 0.05. Data packets can have one of tfb Pareto-Optimal Performance for Light Traffic Load

lengths. A data packet i8' slots long with probability;, and Fig. 12 shows the Pareto-optimal throughput-delay frontier
K = F — M slots long with probability { — ¢). To reasonably for a light traffic load ofc = 0.1 for ¢ = 0.1, 0.5, and 0.9
limit the search space we restrietto be no larger than 400 (along with the network frontier). Table V and Table VI in the
slots. The number of nodes in the network is seio= 200 Appendix give some representative individual Pareto-optimal
and the transceiver tuning range is fixed\a&= 8 wavelengths. solutions. The numbers of Pareto-optimal solutions with each

In the first set of optimizations, we determine the Paretd) = 2, 4, and 8 are shown in Table Ill. We observe from Fig. 12
optimal performance for different (but fixed) combinations othat for a small fractiory of long packets the network is able to
traffic load o and fraction of long packet traffig. Specifically, achieve relatively small delays (of less than 1500 slots) even
we optimize the network for a light traffic scenario with=  for large throughputs (of 8 packets/frame and more). When the
0.1, a medium traffic scenario withk = 0.3, and heavy load fraction ¢ of long packet traffic is large, however, the smallest
scenarios witlr = 0.6 ando = 0.8. For each traffic load level, achievable delays become very large (up to 2250 slots) for large
we consider the fractiong = 0.1, 0.5, and 0.9 of long packet throughputs. This is because the considered network allows for
traffic. In these optimizations we determine the free decisidhe scheduling of at mogt (= A/D) long packets in a cycle
variablesD, F', M, andp that give the Pareto-optimal solutions(consisting ofD frames) at each of th® AWG input ports.

To put the optimizations for fixed and ¢ in perspective, (There are als§D — 1) - R transmission slots exclusively for
we also conduct an optimization where the traffic laa@énd short packetsin acycle at each AWG input port; in addition short
the fractiong of long packet traffic are free decision variablepackets can fill up thé? long packet transmission slots.) With
(in addition to D, F, M, and p). This optimization gives a larger fraction of long packets, the probability increases that a
the best achievable network performance, which we refer data packet fails in the scheduling and requires re-transmission
as network frontier Loosely speaking, the network frontierof the corresponding control packet, resulting in larger delays.
gives the Pareto-optimal performance when the network isWe also observe that the light traffic scenario is able to
“fed optimally” with traffic. (To find the network frontier, we achieve the small delay (and small throughput) part of the
exchange (swapy as well asM in the crossover operation network frontier. This is because a small numbérof control
and use a population size &f = 400 rather thanP = 200 to slots is sufficient to ensure reasonably large success probabili-
accommodate the larger chromosome.) Some detailed solutitias in the control packets contention when the probabilitf
for the network frontier are given in Table IV in the Appendixan idle node generating a new packet at the beginning of a cycle
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8000 T T T T T T

is small. The small\/ in turn allows for small frame length',
and thus short cycle lengih - F', which results in small delays. 7o | Network Frontier | 1
We observe that there are some instances where the Par gig:g """""""""

optimal frontier forg = 0.9 dominates the network frontier, e.g., 6000 q=09 - | 1
around a throughput of 7.7 packets/frame. This is due to the s&
chastic nature of the genetic algorithm, which finds a very clor‘i !
approximation of the true optimal frontier in a computationall$ 4000 | ;' / 1
efficient manner. By definition, the true network frontier canncz ;
be dominated by the true frontier for a fixedr ¢; finding these
true frontiers, however, is computationally prohibitive. 2000 t

We observe from Tables Ill, V, and VI that for the considere

5000 | | ]

n

3000

Mea

light traffic loado = 0.1, most of the Pareto-optimal solutions 1000

have D = 2. However, for a larger fraction of long packet 0

traffic the number of Pareto-optimal solutions with = 4 0 2 4 6 8 10 12 14 16 18
increases. We observe from the Table VI tiiat= 4 is the Average Throughput (Packets/Frame)

best choice to achieve lOW delay service. This is because tf?e 13. Efficient frontiers for medium traffic load = 0.3 for different
long pa_CketS are more dlff_lcu_lt to schedule and therefore teE .tion.Sq of long packet traffic and network frontier_(with andq as free
to require more re-transmissions of control packets, resultiBgcision variables).
in increased mean delay. Recall that a control packet is dis-
carded if the corresponding data packet cannot be scheduled.
This makes the control packet contention a bottleneck when the ) ) )
packet scheduling becomes difficult. With largesfewer nodes B Pareto-Optimal Performance for Medium Traffic Load
S = N/D contend for theM control slots available to them Fig. 13 shows the Pareto-optimal solutions for a medium
every Dth frame. This increases the probability of successftriaffic load of ¢ = 0.3. The numbers of Pareto-optimal
control slot contention, thus relieving the control packet cosolutions withD = 2, 4, and 8 are shown in Table Il and
tention bottleneck. Note that the control packet contention ba&amples of the individual Pareto-optimal solutions are given
tleneck could also be relieved by reducing the re-transmissionTables VII-IX in the Appendix. We observe from Fig. 13
probabilityp. However, we see from the results in Table VI thathat the differences in performance for the different fractions
this strategy is not selected (except in the 9th row of Table Vl of long packet traffic are more pronounced for the larger
when the transition fronD = 4 to D = 2 occurs). The reason traffic loado = 0.3, compared to the light traffic load = 0.1
for this is that the smalles would result in a relative large in- shown in Fig. 12. Forr = 0.1, the efficient frontiers for
crease in the mean delay, making it preferable to incréaaed ¢ = 0.1 andq = 0.5 roughly overlap and give both a smallest
keepp large (the first eight rows of Table VI). achievable delay of roughly 715 slots for a throughput of 8
Generally, we observe from Table V and Table VI that thpackets/frame. Fo = 0.3, on the other hand, the efficient
Pareto-optimal solutions with larger throughput are achieved fivontier for ¢ = 0.1 clearly dominates, giving a smallest
larger F'. The Pareto-optimal/ values, on the other hand, re-achievable delay of roughly 555 slots for a throughput of 8
main in the range 30-60 fgr = 0.1 andg = 0.5 and are typ- packets/frame, whereas the corresponding smallest achievable
ically 30-80 forq = 0.9, even for very larget’. Upon close delay forq = 0.5 is more than twice as large. This increasing
inspection we discover an interesting underlying trend infhe gap in performance is again due to the fact that long packets
and M solutions as we move along the efficient frontier fronare more difficult to schedule and thus tend to cause larger
small to large throughput values. The frame lengtkypically delays. The smaller delay of 555 slots tor= 0.3, compared
makes a jump to a new value (e.g., fram= 44 to 59 in the to 715 slots foro = 0.1 is achievable because with the larger
fourth row of Table V) and stays around the new value for a few, the throughput level of eight transmitting nodes per slot is
solutions. ForF' (almost) fixed, several distinct Pareto-optimateached with smaller sized packets (i.e., smdileand smaller
solutions are obtained for decreasihfjvalues (fromM =49 K = F — M), thus reducing the cycle length and in turn the
to 30 for F' around 59 in Table V). Oncé makes a jump (to delay. We observe from Tables VII-IX that small delays are
values around 100 in line 2Q)/ is reset to a larger value (of 50again achieved for larg® values. Fory = 0.5 andg = 0.9,
in line 20). The explanation of this behavior is as follows. Fahe first few Pareto-optimal solutions at the top of the tables
large M, the probability of successful control packet contentiohave D = 8, thenD = 4 is optimal as we go down the tables
is large, and the probability of control packet re-transmissida larger delays. As in the case ®f= 0.1, this behavior is due
is small, giving small delays. However, for largé, the length to the control packet contention and data packet scheduling
K = F — M of a short packet is small, resulting in a smalbottlenecks. From Table Il we observe that there is no clear
contribution of a short packet to the throughput (1). Nowlas trend in the number of solutions with = 2 and D = 4. This
decreases (faf’ fixed), control packet re-transmission becomeappears to be due to the stochastic nature of the genetic algo-
more likely, increasing the mean delay, while the contribution eithm approach, which finds a large total number of solutions
a short packet to the throughput increases. We also observe ffomg = 0.5, with many solutions being tightly spaced in the
the tables that for optimal network operation the re-transmissicggion whereD = 4 is optimal. As before, larger throughput
probabilityp should be in the range from 0.75 to 1.0. is optimally achieved for largé’. The optimal settings o/
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fractionsq of long packet traffic and network frontier (with andg as free
decision variables).

traffic, the number of Pareto-optimal solutions with= 2 in-
creases, while the number of solutions with= 4 decreases.
are typically in the range from 60-80. The optimal settings dfhere are two primary effects at work here. On the one hand, a
p are mostly 0.95 foy = 0.1 andg = 0.5. Forqg = 0.9, the |arger D allows for a larger throughput. To see this, note that
optimalp settings are typically 0.7. This smallessetting for a the considered network allows for the scheduling of at most
medium load of predominantly long packet traffic is better ag (= A/D) long packets at each of the AWG input ports
it somewhat abates the control packet contention bottleneckathin one cycle (consisting ab frames); for a total of at most
the expenses of slightly larger delays, as discussed above. D . R = A scheduled long packets per cycle in the entire net-
) ) work. The network also allows for the scheduling of at most
C. Pareto-Optimal Performance for Heavy Traffic Load (D—1)-R short packets at each of tBBAWG input ports within
Figs. 14 and 15 show the Pareto-optimal solutions for a heavye cycle; for a total of at mo®-(D—1)-R = A-(D—1) sched-
traffic load ofoc = 0.6 ando = 0.8, respectively. The number uled short packets per cycle in the network (in addition short
of Pareto-optimal solutions withh = 2, 4, and 8 are given in packets may take up long packet transmission slots). Thus, for
Table Ill. The complete parameter vectors corresponding to thdargerD the network allows for the scheduling of more short
Pareto-optimal solutions are given in Tables X—XII. We obsengackets and thus for an overall larger throughput; this is a result
from the figures and the tables that both considered heavy laafdhe spatial reuse of al wavelengths at alD AWG ports.
scenarios give similar results with the= 0.8, ¢ = 0.1 sce- On the other hand, a largér increases the delay in the net-
nario attaining the larger throughput region of the network fromvork (provided the frame length is constant). This is because
tier. We notice that with an increasing fractigrof long packet a larger cycle lengtlD - F increases the delay incurred by the
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Fig. 18. Optimal frontier (withD a free decision variable), 2 2 network frontier (withD = 2, fixed), and 4x 4 network frontier (withD = 4, fixed) for
different (fixed) traffic loadsr and fractions; of long packet traffic. (ay = 0.1,¢q = 0.1.(b)oc = 0.1,¢ = 0.9. ()0 = 0.3,¢ =0.1.(d)e = 0.3,¢ = 0.9.

control packet pre-transmission coordination and re-transmigtht/medium load scenario. As before fgr= 0.1 the optimal
sions, which operate on a cycle basis. These throughput ansetting is typically in the range of 0.9-1.0. Fpr= 0.5 and
delay effects combine to make = 2 the better choice when ¢ = 0.9, however, the optimab is now typically in the range
long packets dominate (i.e., wheis large), since short packetsfrom 0.6 to 0.95.

make only a small contribution to the throughput. We also ob-

serve frgm Table X af‘d Table XI that even wh@_ms small, D. Pareto-Optimal Planning of the Network Architecture

D = 2is a good choice for delay sensitive traffic. Although

we see that some Pareto-optimal solutions in the small delaywe now study the proper setting of the AWG degieen
range haveD = 4. This indicates that both ax22 AWG and a detail. The setting of this network architecture (hardware) pa-
4 x 4 AWG based network can achieve small delays for trafflmameter has a profound impact on the network performance, as
consisting mostly of short packets, provided the protocol ptie results discussed so far illustrate. Importantly, once the net-
rameters!’, M, andp are set properly. On the other hand, onlyvork hardware for a particulab value has been installed, it is

a 4x 4 AWG based network achieves the large throughputs eary difficult and costly to chang®; whereas the protocol pa-
the efficient frontier for smal (i.e., predominantly short packetrametersF’, M, andp can easily be changed by modifying the
traffic). As before, we observe that the Pareto-optimal solutiongtwork protocol (software). For this reason, the proper setting
with larger throughput values have larger frame lengthalso, of D warrants special attention. We have observed so far that
as before, the Pareto-optimal solutions have typically betwefam predominantly long packet traffic (i.e., larg¢, D = 2is

M = 60 and 110 control slots per frame. We note, howevethe best choice for all levels of traffic load For predominantly
some differences in the optimal setting of the re-transmissishort packet traffic (i.e., smal), on the other hand, the choice
probabilityp in this heavy traffic load scenario compared to thes not so clear. For light traffic load€) = 2 is the best choice,
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Fig. 18. Continued) Optimal frontier (withD a free decision variable), 2 2 network frontier (withD = 2, fixed), and 4x 4 network frontier (withD = 4,
fixed) for different (fixed) traffic loadsr and fractions; of long packet traffic. (ey = 0.6,¢q = 0.1. (e = 0.6,¢ = 0.9.(g)o = 0.8, = 0.1. (h)o = 0.8,
qg = 0.9.

whereas for heavy traffic load$) = 4 turns out to be the best E. Pareto-Optimal MAC Protocol Tuning (Network Operation)
choice. for Fixed Network Architecture

To explore the optimal setting ab as a function of the
traffic load o, we plot in Figs. 16 and 17 the percentage of Next, we fix the AWG degredD atD = 2 andD = 4,
Pareto-optimal solutions witlh = 2, 4, and 8 forg = 0.1 and allow only the protocol parameteks M, andp to vary
andg = 0.9, respectively. We observe from Fig. 16 that fo(i.e., only ', M, andp are decision variabled) is fixed). We
o less than 0.4, most Pareto-optimal solutions h&ve= 2, employ our genetic algorithm based methodology to obtain the
whereas foro larger than 0.4, most Pareto-optimal solutionPareto-optimal throughput-delay frontiers in these settings; we
have D = 4. The explanation of this behavior is as followsrefer to these efficient frontiers as the2 network frontierand
For light traffic loads,D = 2 is preferred as it achieves smalletthe 4x 4 network frontier respectively. We compare the thus
delays while at the same time providing sufficient resources fobtained efficient frontiers with the efficient frontier obtained
control packet contention and data packet scheduling. (Reaghlen both the hardware parameferand the software param-
that S = N/D nodes at an AWG input port content for theetersF', M, andp are decision variables, which we refer to as
M control slots available to them in one frame (out of e optimal frontier We compare the 2 2 frontier and the 4« 4
frames in a cycle), and that spatial wavelength reuse providesntier with the optimal frontier in Fig. 18(a)—(h). Samples of
for A - (D — 1) transmission slots for short packets.) As théhe corresponding Pareto-optimal solutions for the combination
traffic load increases, however, the control packets contentian= 0.6, ¢ = 0.1 are tabulated in Table XlIl and Table XIV.
and data packet scheduling become increasingly bottlenet¥s refer the interested reader to [39] for the other tables, which
which are relieved for largeb. we cannot include here because of space constraints. A number
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of observations are in order. First, as expected the2Xron- throughput) or large throughput (and moderate delay) packet
tier approximately coincides with the optimal frontier for lightransport services. Our methodology thus facilitates efficient
to medium loads of predominantly short packet traffic, and athulti-service convergence for increased cost-effectiveness in
load levels of predominantly long packet traffic. For heavy loadsetropolitan and local area networks.

of predominantly short packet traffic, on the other hand, the Specifically, for the AWG based network considered as an
4 x 4 network frontier achieves the optimal frontier, as we exxample throughout this paper, we find that a network based
pect from our earlier results. We also observe that there @ji¢ a 2x 2 AWG is most flexible in efficiently providing dif-
some instances where the optimal frontier is dominated by thgent transport services under a wide range of traffic loads and
2x 2 network frontier or the 4 4 network frontier, e.g., in packet size distributions. In addition, using an AWG with the
Fig. 18(c) around a throughput of 11.5 packets/frame. These ifiinimum degree ofD = 2 minimizes the network cost (see

stances are again due to the stochastic nature of the emplogegtion I1-D) which is an important consideration in cost-sensi-
genetic algorithms. By definition, the 22 network frontier tive metro WDM networks.

and the 4< 4 network frontier cannot dominate the true op- por a fixed network hardware the different transport services
timal frontier, which however could only be found by a compugre achieved by optimally tuning the MAC protocol parameters
tationally pI’OhI.bItlve exhaustive search..The. genetic a|9°”th(§oftware) according to the found Pareto-optimal solutions.
r_nethodolo_gy_ﬂnds avery ‘}'039 approximation of the true opy particular, small frame lengths in the timing structure of
tlma_1l frontier in agomputatlonally efficient manner. _the AWG network’s MAC protocol give Pareto-optimal per-
Fig. 18(a)~(h) give also a number of surprising results, whigBrmance with small delay (and moderate throughput), while
we would note_xpect, based on ourearllerobser_vatlons. F_lrst,;gpge frame lengths achieve optimal performance with large
4 x 4 network is able to come close _to the optimal frontier f%roughput (and moderate delays). The optimal number of con-
medium and heavy loads of predominantly long packet traffigo| packet contention slots per frame is typically in the range
which is asurprise given the resultsin Tablg III_and Fig. 17. Theom 30 to 80, the specific optimal values for a given traffic
4 x 4 network achieves this by properly tuning its three protoc@la g and required throughput-delay performance are available
parametersf’, M, andp, as detailed in the corresponding taj, taples in [39]. The optimal control packet re-transmission
bles in [39]. Overall, the 4 4 network shows some flexibility proapilities are close to one for light traffic loads and in the
in achieving good performance close to the optimal frontier f‘?énge from 0.6-0.75 for heavy loads.
medium to heavy loads of both short andilong packet traffig bY The developed genetic algorithm methodology can be
properly tuning the protocol parameters _(m software). For “g%plied in analogous fashion to networks with a similar
traffic loads, hoyvever, tht_a A 4 network is not able to COMe throughput-delay tradeoff. The methodology is especially
close to the optimal frontier. The22 network, on the other ,sefy| for the multi-objective optimization of networks with

hand, appears to be more flexible than the 4 network. By - complex, highly nonlinear characterizations of the network
properly tuning its protocol parameters, thex 2 network is throughput and delay.

able to come fairly close to the optimal frontier even for heavy
loads of short packet traffic [see Fig. 18(e) and (g)]. Overall,
our results indicate that thex22 network is the best choice for
achieving efficient multi-service convergence in a metro WDM
network. The 2« 2 network frontier approximately coincides APPENDIX

with the optimal frontier for all load levels of long packet traffic TABLES FORPARETO-OPTIMAL SOLUTIONS
and for light to medium loads of short packet traffic. For heavy
loads of short packet traffic, the>44 network attains the op-

TABLE IV
timal frontier. But the 2x 2 network is able to come fairly close NETWORK FRONTIER PARETO-OPTIMAL SOLUTIONS
to the optimal frontier, simply by adjusting its protocol param- WITH o AND ¢ AS FREE DECISION VARIABLES
eters in software. DT F 1 p . 7 T TH | Delay
4|17 |16 [ 0.90 [ 0.10 [ 0.10 | 0.71 | 115.8
2 | 32 | 30 | 0.90 | 0.10 [ 0.10 | 1.44 | 120.1
2 | 38 | 37 | 0.80 | 0.10 | 0.15 | 1.61 | 130.0
2 | 41 | 36 | 0.90 | 0.10 | 0.10 | 1.98 | 1328
V. CONCLUSION 2 | 37 | 31 [0.90 | 0.10 [ 0.10 | 2.27 | 1345
We have developed a genetic algorithm based methodology 2 |171] 54 1 1.00)0.15)0.20 | 9.63 | 716.7
A S o 2 | 173 55 [ 1.00 [ 0.15 [ 0.20 | 9.63 | 717.9
for the multi-objective optimization problem of maximizing —— - - - : : :
throughput while minimizing delay in an AWG-based metro N : : : : : :
WDM network. Our methodology finds the Pareto-optimal 4 1400 | 106 10.70 | 0.95 | 0.05 | 17.72 | 32943
: 9y _ pur 4 [400 | 105 | 0.70 | 0.95 | 0.05 | 17.73 | 3303.3
throughput-delay tradeoff curve in a computationally efficient 41400 | 104 | 0.70 | 0.95 | 0.05 | 17.74 | 33125
manner. The optimal tradeoff curve can be used to opti- 4 400 | 102 | 0.70 | 0.95 | 0.05 | 17.75 | 3331.5
mally provide varying degrees of small delay (and moderate 4 [ 400 ] 101 0.70 ] 0.95 ] 0.05 | 17.75 | 3341.4
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TABLE V
PARETO-OPTIMAL SOLUTIONS FORe = 0.1 AND ¢ = 0.1
D| F M| p TH Del
2|40 |39 (090 | 1.16 | 123.5
2|37 |34(07 | 1.60 | 133.1
2 | 44 | 381075 | 2.09 | 146.7
2|59 | 49075 | 241 | 173.2
2| 59 | 48 (075 | 2.56 | 174.7
2| 59 |47 1075 | 2.70 | 176.2
2| 60 | 46 | 0.75 | 2.95 | 181.0
2|59 | 441075 | 3.12 | 181.6
2| 59 | 42 (075 | 3.40 | 1859
215689 |39(07 | 3.81 | 193.7
2|59 | 371075 | 4.07 | 200.1
2|59 | 34075 | 446 | 2124
269 | 39090 | 466 | 213.2
2|69 | 38090 | 477 | 216.3
2159 | 311075 | 481 | 229.8
2| 65 |34 (075 | 490 | 234.0
2159|3007 | 493 | 2374
2 (99 | 52090 | 5.09 | 270.8
2| 68 |28 1090 5.69 | 280.1
2 111150 {090 | 5.71 | 313.3
2 |111| 49 | 090 | 5.78 | 315.5
21111 | 48 [ 090 | 5.86 | 3179
2| 111 | 47 | 090 | 593 | 3204
2 1218|40 (090 | 791 | 676.0
2 1220| 40 [ 090 | 7.93 | 682.2
2 (38039090 | 859 | 1194.2
2 1379| 38090 | 859 | 1208.2
2 1380 | 38 |0.90 | 8598 | 1211.4
2 | 380|36|090 | 859 | 1251.4
TABLE VI
PARETO-OPTIMAL SOLUTIONS FORo = 0.1 AND ¢ = 0.9
D| F | M D TH Del
4] 24 |21 )1.00|4.27 | 162.3.
4 | 49 | 48 | 0.80 | 4.32 | 282.3
4 | 49 | 46 | 0.80 | 4.34 | 284.1
4149 | 44| 0.80 | 4.35 | 2864
4| 40 | 22| 0.80 | 4.38 | 286.8
4149 | 40| 0.80 | 4.38 | 291.5
4 1 51 | 35| 1.00 | 446 | 292.5
4 | 55 | 35 | 1.00 | 4.49 | 3154
2| 46 | 40 | 0.75 | 7.35 | 315.5"
2 | 50 | 43| 1.00 | 7.50 | 318.8
21171 | 64 | 1.00 | 8.06 | 1006.0
2 | 171 | 58 | 1.00 | 8.06 | 1020.1
2 | 361 |82 | 1.00 | 8.23 | 2070.3
2 390 | 78 | 1.00 | 8.25 | 2246.3

TABLE ViII
PARETO-OPTIMAL SOLUTIONS FORe = 0.3 AND ¢ = 0.1
D| F |M| p TH Del
4| 45 | 40 | 1.00 | 2.37 | 338.8
2179 | 78 {1.00| 2.38 | 3694
4 | 49 | 43065 | 2.40 | 399.2
2| 92 | 87 | 095 | 3.28 | 405.2
2| 64 | 57 | 090 | 3.57 | 412.0
2 | 261 |63 | 1.00 | 12.06 | 2168.7
2 | 400 | 64 | 1.00 | 13.24 | 3307.2
TABLE VI
PARETO-OPTIMAL SOLUTIONS FORo = 0.3 AND ¢ = 0.5
D|F |M p TH Del
8 | 17 | 16 | 0.95 | 2.57 | 382.7
81 23 |21|095]| 2.98 | 409.9
4136 |29]095| 496 | 531.2
4 | 49 | 431 0.65 | 5.24 | 5924
4 [ 59 | 55095 | 549 | 596.1
2 1123 |70 | 0.95 | 8.70 | 14494
2 | 397 | 89 | 0.95 | 11.21 | 44336
TABLE IX
PARETO-OPTIMAL SOLUTIONS FORo = 0.3 AND ¢ = 0.9
D| F |M| p TH Del
8 | 15 | 14 | 0.65 | 3.55 | 486.2
8 | 21-|120|0.70 | 4.18 | 517.2
4 | 27 | 25 | 0.70 | 5.96 | 569.5
4| 36 | 34 | 0.70 | 6.69 | 638.5
4 | 43 | 40 | 0.65]6.90 | 729.3
4] 45 | 39]0.70 | 6.96 | 761.5
2| 40 | 39 | 0.65 | 7.32 | 799.2
2 | 46 | 40 | 0.75 | 7.37 | 925.1
2 | 176 | 63 | 0.65 | 8.25 | 3293.9
2 1397 | 75 | 0.65 | 8.44 | 73814
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TABLE X TABLE XIlI
PARETO-OPTIMAL SOLUTIONS FORe = 0.6 AND ¢ = 0.1 PARETO-OPTIMAL SOLUTIONSWITH D = 2 FORo = 0.6 AND ¢ = 0.1
D| F |M| p TH . | Del F |M| »p TH Del
8| 24 | 231095 1.08 | 482.2 43 | 42 1 0.30 | 1.69 | 556.4
4| 45 | 44 | 080 | 1.71 | 510.5 44 | 42 1 0.40 | 1.98 | 566.4
4| 50 | 49 | 0.80 | 1.80 | 522.3 46 | 44 | 0.30 | 2.02 | 573.2
4 | 44 | 41 | 0.80 | 2.19 | 530.2 48 | 46 | 0.30 | 2.05 | 577.7
4 | 51 | 46 | 0.80 | 2.76 | 558.5 45 | 42 1 0.30 | 2.24 | 582.3
4 | 49 | 43 | 0.65 | 2.89 | 582.7 54 | 51 | 0.55 | 2.47 | 5844
4 | 84 | 771095 | 3.34 | 655.7 68 | 66 | 0.90 | 2.51 | 594.2
2 1106 | 99 | 0.80 | 4.14 | 676.1 44 | 39 | 0.30 | 2.68 | 606.6
4| 8 |70 1095| 4.62 | 685.2 71 | 66 | 0.80 | 3.28 | 612.8
2194 |8 |080| 539 | 6914 85 | 78 [ 0.90 | 3.96 | 633.6
2 | 8 | 66 | 0.55 | 5.50 | 712.5 96 | 88 [ 0.95 | 4.31 | 649.8
2194 |7 | 080 6.05 | 720.7 . . . . .
2 | 106 | 86 | 0.80 6'%5 74_5'4 267 | 61 | 0.70 | 12.14 | 3137.5
412341781095 13:30 18?f9'6 392 | 65 | 0.55 | 13.17 | 4542.7
4 {394 | 87 | 0.95 | 15.69 | 2972.7
TABLE XIV
PARETO-OPTIMAL SOLUTIONSWITH D = 4 FORo = 0.6 AND ¢ = 0.1
F |{M| p TH Del
TABLE XI 34 | 331085 | 142 | 514.3
PARETO-OPTIMAL SOLUTIONS FORo = 0.8 AND ¢ = 0.1 36 | 341060 | 1.74 | 5265
46 | 44 | 0.60 | 1.92 | 545.3
D| F | M P TH Del 48 | 46 | 0.60 | 1.94 | 551.6
440 [ 39090 1.60 | 572.4 45 |42 1 0.60 | 2.14 | 551.8
4 | 49 | 431 0.65 | 2.95 | 648.8 37 |33 0.60 | 2.23 | 556.5
4166 | 610.95][ 3.07 | 656.9 54 | 51 | 0.60 | 2.23 | 580.5
4 | 67 | 61 [0.90 [ 3.27 | 672.0 38 [32]0.60| 267 | 583.9
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