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Abstract— Software-defined networking (SDN) and network
function virtualization (NFV) processed in multi-access edge com-
puting (MEC) cloud systems have been proposed as critical par-
adigms for achieving the low latency requirements of the tactile
Internet. While virtual network functions (VNFs) allow greater
flexibility compared to hardware-based solutions, the VNF
abstraction also introduces additional packet processing delays.
In this paper, we investigate the practical feasibility of NFV with
respect to the tactile Internet latency requirements. We develop,
implement, and evaluate Chain-based Low latency VNF Imple-
meNtation (CALVIN), a low-latency management framework for
distributed Service Function Chains (SFCs). CALVIN classifies
VNFs into elementary, basic, and advanced VNFs; moreover,
CALVIN implements elementary and basic VNFs in the kernel
space, while the advanced VNFs are implemented in the user
space. Throughout, CALVIN employs a distributed mapping with
one VNF per Virtual Machine (VM) in a MEC system. Further-
more, CALVIN avoids the metadata structure processing and
batch processing of packets in the conventional Linux networking
stack so as to achieve short per-packet latencies. Our rigorous
measurements on off-the-shelf conventional networking and com-
puting hardware demonstrate that CALVIN achieves round-trip
times from a MEC ingress point via two elementary forwarding
VNFs (one in kernel space and one in user space) and a MEC
server to a MEC egress point on the order of 0.32 ms. Our mea-
surements also indicate that MEC network coding and encryption
are feasible for small 256 byte packets with an MEC latency
budget of 0.35 ms; whereas, large 1400 byte packets can complete
the network coding, but not the encryption within the 0.35 ms.

Index Terms— Low-latency network softwarization, kernel
space, service function chain (SFC), tactile Internet, user space,
virtualized network function (VNF).
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Fig. 1. Angle of an inverted pendulum trying to reach stability for different
sensor-to-actuator delays (50 ms, 40 ms, and 1 ms) for 1 ms inter-packet delay
as well as for 1 ms sensor-to-actuator delay for different inter-packet delays
(10 ms, 5 ms, and 1 ms).

LOW latency communication is the central requirement
for enabling the tactile Internet for human-machine

co-working [1]–[6]. Both, humans and machines require laten-
cies below one millisecond for a wide range of co-working
scenarios. For instance, for humans operating in a virtual
world and for interactions with robots and other machines,
the latencies for visual, audio, or tactile multi-sensoric feed-
back should be below 15 ms, 3 ms, or 1 ms, respectively [7].
Every machine based on control loops also requires low
latencies in order to work efficiently or to operate in a stable
manner [8], [9]. As a concrete example, consider a classical
inverted pendulum whose controller is placed in the cloud.
Closing the control loop through a communication network
will likely introduce some delays and packet losses. Fig. 1
shows the influence of the delay between the angle sensor and
pendulum actuator (motor) on the pendulum stability. For long
delays (50 ms in Fig. 1), the system becomes unstable, and the
pendulum will never reach stability in the inverted position.
For shorter delays (40 ms), the system takes some time to
achieve stability. This time delay could imply lack of quality
of service, and may affect other systems if the pendulum is part
of a more complex environment with interconnected systems,
or multiple pendulums coexisting in the same physical space.

The 5G communication standard for automation in vertical
domains [10] defines the allowed latency requirement of one
millisecond for an end-to-end communication. Based on this
standard, we consider a typical allocation of the individual
5G communication network delay budget components,
as illustrated in Figure 2. Figure 2 assumes that a total
of 0.4 ms is consumed in the embedded systems and the
wireless links on both ends. For instance, 0.1 ms may
be allocated for the embedded sensor computing platform
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Fig. 2. Typical latency budget for sensor-to-actuator control loop that meets one millisecond round-trip latency requirement of 5G [10]: 0.4 ms are allocated for
embedded sensor and actuator processing and wireless communication, leaving 0.6 ms for the wired link propagation as well as the virtualized communication
environment (“compute and forward”) processing in the MEC.

to evaluate the sensed information, 0.1 ms for (one-way)
communication latency in uplink and downlink, and 0.1 ms
for embedded computing at the actuator.

This leaves 0.6 ms for the wired domain. The wired domain
has two main delay components. One delay component is the
basic communication over fiber where we are bound to the
speed of light (3.34 µs per kilometer) and the physical fiber
characteristics. The second delay component is based on the
communication nodes. In conventional “store and forward”
communication networks, these communication nodes are
routers or switches. But in upcoming future communication,
there is a paradigm shift from “store and forward” to “compute
and forward”. Now the communication nodes can process
and manipulate the incoming data. The idea of “compute and
forward” is realized by new technologies, such as Software
Defined Networking (SDN) [11], Network Function Virtu-
alization (NFV) [12]–[19], and Service Function Chaining
(SFC) [20]–[34] standardized by the IETF/IRTF. These novel
technologies enable the concept of Multi-access Edge Comput-
ing (MEC) [26], [35]–[40], which allows for local processing
of data, which in turn will reduce the latencies on the pure
communication path. Assuming a maximum distance of 25 km
between the sensor/actuator and the MEC, the (round-trip)
communication will require 0.25 ms and will leave 0.35 ms
for NFV processing in the MEC system.

However, achieving low latencies is a notoriously difficult
problem in communication networks [41], [42]. While delays
that are proportional to the available transmission bitrate
and data amounts can be addressed through scaling up the
transmission capacities and compression, processing delays
with their various constant delay contributions pose signifi-
cant challenges [42]–[44]. Moreover, recent studies [45], [46]
have demonstrated that NFV, which is highly desirable for
flexibility [47], imposes heavy data transfer and computa-
tion demands, incurring relatively long latencies. Nowadays,
virtual switches are quite fast [48]–[50]; however, virtual
machines (VMs), specifically the packet IO and processing
operations inside the VM, are slow. The centralized approach
proposed in [51] gives more than 2 ms latency inside the
virtual communication environment for a single VM running
the elementary forwarding function, which is clearly above the
0.35 ms delay budget.

In this empirical measurement study, we examine
low-latency NFV in real general-purpose MEC systems built
with off-the-shelf hardware and software. We design, imple-
ment, and evaluate a low-latency service function chain (SFC)
management framework named Chain bAsed Low latency
VNF ImplemeNtation (CALVIN). CALVIN implements VNFs
either in the kernel space or in the user space and dis-
tributes each VNF to its own VM. CALVIN employs fast
packet input/output (IO) mechanisms that avoid the metadata
structures and the batch processing of data packets in the
conventional Linux networking stack. Our extensive mea-
surements demonstrate that CALVIN achieves MEC laten-
cies on the order of 0.32 ms, which allows for additional
processing of data, e.g., for network coding and encryp-
tion. The proposed CALVIN approach makes it for the
first time possible to process advanced network functions,
such as network coding and encryption, in a general-purpose
virtualized MEC setting while meeting the one millisec-
ond delay target of the tactile Internet. Our CALVIN SFC
management and VNF implementation codes for Open-
Stack, which is the defacto industry standard for general-
purpose cloud computing platforms, are openly available
at [52], [53].

II. BACKGROUND AND RELATED WORK

A. Background

The typical NFV service loop inside the MEC part of Fig. 2
is presented in Fig. 3. Each packet is received by the cloud
through the ingress point of a service proxy, processed by a
chain of virtual network functions (VNFs), i.e., by an ingress
SFC, transmitted to the requested server, processed by the
server, and leaves the cloud via the egress point of the service
proxy (after optional egress SFC processing). The ingress and
egress points are endpoints or instances that are exposed to
the external network (outside of the cloud network, which is
commonly a dedicated private network). For several reasons,
including security considerations, not all internal components
are exposed to the external network. Therefore, ingress and
egress points are required for clients in the external network
to access the cloud services. As illustrated in Fig. 3, an SFC
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Fig. 3. Illustration of service loop in a cloud (MEC/virtualization) environ-
ment: Packets traverse an ingress service function chain (SFC) consisting of
an ordered sequence of virtual network functions (VNFs) to reach the server
for cloud processing and leave the cloud via the egress point.

Fig. 4. Illustration of typical virtual network connection between two
compute nodes in a cloud environment, whereby each compute node hosts
multiple virtual machines (VMs). Each VM connects via a virtual network
interface controller (vNIC) to the bridges and onwards via a physical NIC to
the physical network.

consists of an ordered set of VNFs that operate typically as a
pipeline.

The virtualized service loop of Fig. 3 is typically imple-
mented on a cloud computing infrastructure platform. A cloud
computing infrastructure platform provides flexible manage-
ment control over underlying physical computing resources,
such as servers, networking facilities, and storage. All compo-
nents of the virtualized service loop are implemented and run
in VMs that are orchestrated by the cloud computing platform.

Fig. 4 illustrates a typical cloud computing infrastructure
scenario where multiple VMs are connected with a virtualized
networking overlay. In order to enable multi-tenant networking
with configurable networking resources and isolation, a vir-
tualized networking overlay needs to be built on top of the
physical networking infrastructure. For example, VM1 and
VM3 can be allocated in the same broadcast domain in a
virtual network (or named tenant network) even though they
are hosted on different physical nodes that are connected by
layer three routing entities.

In order to provide a virtual overlay network on top of
the underlying heterogeneous physical network, two software
bridges (or virtual switches) are used to connect the virtual
network interfaces (vNICs) with the physical network inter-
face (pNIC). In particular, the integration bridge connects
all VMs running on the same physical node. These VMs
can belong to different virtual tenant networks even if they

are on the same physical node. The tunnel bridge is used
to encapsulate and transfer tenant network data through a
tunneling protocol, e.g., Generic Routing Encapsulation (GRE)
or Virtual extensible LAN (VXLAN).

The networking components in Fig. 4 introduce different
types of latency:

• Between VM and integration bridge (1, 2): This latency
component is the focus of this study and includes two
main parts:

◦ Transfer packets between the integration bridge and
VM through vNIC (2): This latency depends on the
vNIC technology and has two subparts:

� Data transfer between virtual bridge data buffer
and vNIC ring buffer: With the performance
improvements of virtual bridges, e.g., the DPDK
fast path in the Open vSwitch (OVS-DPDK) [54],
the latency of this subpart has been reduced to the
order of microseconds [48].

� Frame copying between the vNIC ring buffer and
the VM memory: This subpart now becomes a
bottleneck for low-latency data transfer in the
virtual network overlay.

◦ Process packets inside VM (1): This latency depends
on the implementation of the VNF processing work-
flow. Optimizations from the implementation per-
spective should process the frame as fast as possible
for the low-latency tactile Internet.

• Between integration bridge and pNIC (3, 4): This latency
component depends on the employed virtual bridges as
well as the physical resource management and orchestra-
tion (MANO) platform [55]. Cloud platforms commonly
employ OVS-DPDK and OpenStack, which we also
employ in our testbed.

• Between pNICs (5): This latency component depends on
the physical network technologies.

To the best of our knowledge, the reduction of latencies (1)
and (2) is an open research question. Our proposed CALVIN
approach significantly reduces these latencies so that the
overall end-to-end latency of the service loop is within the
5G one millisecond latency requirement.

B. Related Work

Several recent studies based on mathematical analy-
sis and simulations have considered SFC latencies, see
e.g., [56]–[68]. These studies have mainly considered moder-
ate to high workloads that result in substantial queueing delays
for VNF processing. In contrast, we conduct an experimental
study with empirical latency measurements on lightly loaded
real networking and computing systems. Our goal is to rig-
orously empirically investigate the baseline latencies of real
SFC implementations. Our measurement study complements
the existing mathematical analysis and simulation studies and
provides baseline latency values, which can serve as reference
points for future analysis and simulation studies on low-latency
VNF processing. We also develop and evaluate the CALVIN
low-latency SFC framework which achieves significant latency
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reductions compared to existing frameworks. We note that sev-
eral recent studies have examined VNF placement strategies,
e.g., [69]–[77], mainly from the perspective of mathematical
modeling and optimization of the placement. A few recent
implementation oriented studies have examined scheduling
and flexibility aspects of VNF placement [25], [78]. Com-
plementarily, our implementation oriented study examines the
low-latency aspects of VNF placement.

Some recent studies have sought to reduce communica-
tions delays and increase communications reliability through
specific communications strategies [6], such as short packet
transmissions [79], [80]. Complementarily to these commu-
nications mechanism focused studies, we address the NFV
latency in MEC systems for arbitrary packet sizes.

The remainder of this section surveys existing related SFC
frameworks both in kernel and user space and distinguishes
our approach from the existing frameworks. Our approach
is not based on full kernel-bypassing; instead, we exploit
the complementary strengths of both kernel and user space
technologies to reduce the latency (while efficiently utilizing
the CPU resources).

1) Kernel Space: Recent kernel space approaches have
typically been based on the eXpress Datapath (XDP) frame-
work (a new system in the Linux kernel) [81]–[84] which is
built using custom extended Berkeley Packet Filter (eBPF)
programs. Since the XDP framework is relative new (it became
available with the Linux kernel versions after 4.1X), few
studies have been conducted with XDP [84].

Miano et al. [85] have conducted quantitative characteriza-
tions of a range of eBPF aspects. Miano et al. documented
several limitations when building complex network services
with eBPF. Due to these limitations we do not implement
all functions in the kernel space in CALVIN. Our own pre-
liminary XDP evaluations (with Linux kernel 4.17.0-041700-
generic), which are not included here due to space constraints,
indicated that XDP achieves low latencies for elementary
packet processing. However, due to the main XDP limitations
(e.g., limited number of instructions, not Turing complete
since loops are not allowed) we do not implement advanced
packet processing in the kernel space. Nevertheless, XDP
has several benefits over kernel-bypassing technologies. XDP
does not require large pages (the smallest unit or block for
memory management in the operating system (OS)), nor ded-
icated CPUs. Also, XDP does not replace the kernel TCP/IP
stack; rather, XDP works in concert with the kernel TCP/IP
stack along with all eBPF benefits. Moreover, XDP avoids the
need to define a new security model by utilizing the Linux
kernel security model.

In-kernel processing with XDP based on the eBPF with
an NFV focus has recently been examined in the InKeV
study [86]. InKeV employs XDP based on the eBPF, which
can quickly execute simple functions; however, the imple-
mentation of advanced functions is very challenging. The
InKeV latency measurements were performed on a single
machine and thus do not capture the latencies incurred when
traversing a physical network to complete an SFC consisting
of physically distributed VMs. In contrast, we consider
physically distributed VMs in our evaluations. InKeV has

been compared with the OpenStack neutron [87] networking
infrastructure, which we also employ in our evaluations. Thus,
InKeV could be a good competitor for the underlying virtual
switches (OVSs) used by OpenStack (latency components
(3)–(5) in Fig. 4). In contrast, we focus on the latency intro-
duced by the VM, i.e., on the latency components (1) and (2)
in Fig. 4.

For completeness, we note that relatively simple networking
functions relating to security and virtual switching in the
kernel space have recently been studied in [88]–[91].

2) User Space: User space frameworks, which are also
referred to as kernel-bypassing frameworks, have been stud-
ied more frequently than kernel space frameworks [92]–[94].
However, most user space framework evaluations have
focused on throughput and did not consider latency perfor-
mance in detail. The performance of three widely known
kernel-bypassing high-speed packet IO frameworks, including
netmap, PF_RING ZC, and Intel DPDK, has been measured
in [94], revealing a general trade-off between throughput and
latency. Recent studies have examined several aspects of user
space frameworks, including CPU scheduling [95], flexible
programmability [96], [97], and resilience [98], [99]. These
recent studies are complementary to our CALVIN study and
did not specifically focus on low latency. For instance, the Net-
Star study [96] has examined flexible asynchronous network
function programming, which is mainly useful for network
management traffic, e.g., flow table updates; whereas we focus
on low-latency processing of data traffic. The HyperVDP
study [97] has developed a hypervisor that flexibly offloads
some CPU compute-intensive tasks to programmable network
interface cards to reduce the resource usage (at the expense of
slightly reduced throughput and increased latency).

3) Combined Kernel and User Space: Closer related to our
approach are recent frameworks that combine kernel and user
space techniques. General architectural principles for building
hybrid kernel-user space VNFs have been explored in [100].
With the combined kernel and user space approaches, the VNF
applications can be programmed with the common socket
interfaces; thus, some legacy applications can be deployed
without modification. The combined approaches can utilize
the scheduler provided by the guest OS and can simultane-
ously utilize kernel and user space tools. Thus, the combined
kernel and user space approaches allow for low complexity
implementations.

Zhang et al. [51] have recently implemented network coding
on typical VMs by employing DPDK [101] with the kernel
network interface (KNI) [102]. We refer to this approach as
the “centralized approach” as it strives to pack all VNFs into a
single VM so as to avoid the latency introduced by transmis-
sions between VMs, see Fig 5. In order to make multiple VNFs
cooperate properly, the centralized approach employs both ker-
nel and user space tools. As illustrated in Fig. 5, a packet needs
to be transmitted between the kernel space and user space at
least four times (red lines in Fig. 5 indicate slow path or bottle-
neck). Additional copies of packets between the kernel space
and user space introduce non-negligible latencies, especially in
a virtual guest OS. Moreover, the resources, especially virtual
CPU (vCPU) resources, need to be shared between multiple
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Fig. 5. Graphical illustration of operational principles of centralized
combined kernel and user space approach described in [51]. The combined
approach requires four or more packet transmissions between kernel space
and user space, illustrated by the vertical red arrows crossing over between
kernel space and user space.

processes both in kernel and user space; these context switches
also incur latencies. Furthermore, the cache behavior of the
CPU cannot be optimized because of this context switching;
specifically, some processing related instructions cannot be
pre-fetched and consistently stored in the CPU cache. The
resulting relatively high latency is one main drawback of the
centralized approach. The latency cannot be readily scaled
down; for instance, utilizing two vCPU cores (one core to
handle packet receptions and another core to handle packet
transmissions) does not reduce the latency (as we have verified
with our own measurements of the centralized approach).
To overcome the drawbacks of the centralized approach, our
main CALVIN strategy is to distribute VNFs over a chain of
VMs that run the network functions either completely in the
kernel space or completely in the user space.

We also note for completeness that a specific combined
kernel and user space approach, referred to as “Tuna”, for
a 5G wireless access point has been developed in [103]. The
Tuna approach places management frames in the user space
for virtualization, while placing control and data frames in the
kernel space to reduce packet processing delays. In contrast,
our approach is suitable for general VM processing and not
tied to a particular application.

III. PROPOSED APPROACH: CHAIN BASED LOW LATENCY

VNF IMPLEMENTATION (CALVIN)

The proposed CALVIN approach aims to take advantage
of both the high-performance in-kernel network data path
and user space (kernel bypass) techniques. At the same time,
CALVIN avoids the overhead of context switching of the
centralized approach [51]. This section presents the overview,
architectural design, and workflow of CALVIN.

A. Overview

The underlying idea of CALVIN is to assess the nature of
a VNF in terms of its complexity when processing packets.
Accordingly, CALVIN decides to implement each VNF in
either the kernel space or the user space. Each implemented

VNF is then encapsulated inside a separate VM. These two
CALVIN design choices completely eliminate the context
switching overhead of the vCPU of each VM to process
packets in different spaces and to schedule different VNF
programs, thus reducing the overall end-to-end service latency.

The main advantages of this CALVIN strategy are:

• Reduce cost of context switching inside VM: As quanti-
fied in [104], context switching can produce direct and
indirect costs. Direct costs are incurred mainly for storing
the state of a process. The cache sharing between multiple
processes creates an indirect cost that can exceed one
millisecond for high system workloads. Running a VNF
in a single space mitigates the negative effects of both
costs on latency.

• Avoid copying packet data structures between spaces:
For ultra-low-latency VNF implementation, the cost
of data copying and format conversion at any location
of the data path should be considered. As illustrated
in Fig. 5, data exchanges between spaces are critical bot-
tlenecks for the VNF processing. Conducting all packet
operations in a single space reduces data copying.

• Increase scalability and flexibility: In a centralized
approach, such as [51], multiple VNFs run on the same
VM, sharing the same resources and configurations.
Because of the virtual resource contention, the latency
performance is not scalable without resizing resources
when new VNFs are added into the processing pipeline.
In contrast, the CALVIN performance can be scaled
due to the flexible structure of the dynamic SFC; each
new VNF can be assigned a specific VM with appro-
priately allocated resources for the current functional
requirements.

B. VNF Classification

Based on these design imperatives, we take a first step
towards the development of the CALVIN SFC management
framework by classifying VNFs. According to the introduced
VNF classification, a given VNF is either implemented in the
kernel space or in the user space. The network functions are
divided into three main categories in CALVIN:

1) Elementary (Skeleton) Functions: This type covers the
fundamental functionalities for all VNFs: i) Retrieve packets
from the ingress virtual interface. ii) Create data structures to
store packets for operations. iii) Transmit processed packets
through virtual egress interfaces. These functions can be
implemented in both kernel and user spaces.

2) Basic Functions: The main characteristics of basic
functions are: i) Operations are mainly performed on the
header (or metadata); not on the packet payload. Head-
ers have typically small sizes; thus, header operations
can be performed without iterative execution, which is
not fully supported in the current eBPF and XDP ver-
sions. ii) The computational intensity and complexity are
low so that the processing delay is limited to an accept-
able range, even without acceleration mechanisms, such
as Single Instruction, Multiple Data (SIMD), hugepages,
or CPU cache prefetching, which are not fully available
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in most in-kernel frameworks. iii) The implementation has
no strict dependencies on specific running environments
or frameworks.Basic functions with these characteristics,
such as router, load balancer, network address translation
(NAT), and packet filter, are suitable for kernel space
implementation.

3) Advanced Functions: Compared to basic functions,
advanced functions involve complex and compute-intensive
operations with the following main characteristics: i) Both
packet header and payload need to be processed. ii) Accel-
eration mechanisms in the user space are required to keep
processing delays within reasonable ranges. iii) The imple-
mentation of advanced functions typically requires specific
runtime or execution environments. For example, the widely
used open source network coding library Kodo [105] requires
the C++ runtime environment, which is not available in
the kernel space. According to these characteristics it is
beneficial to implement advanced functions, such as data
encryption, compression, and network coding, in the user
space.

C. Selecting VNF Implementations for VNF Classes

Compared to the numerous kernel-bypassing approaches
[94], [106], [107], such as Netmap, PF_RING, DPDK, relative
few in-kernel fast packet IO approaches have been developed.
To the best of our knowledge, XDP is currently the fastest in-
kernel programmable network data path which provides bare
metal packet processing at the lowest point in the software
stack [84], [108]. Therefore, we select XDP for the in-kernel
VNF implementation in CALVIN.

Based on a thorough literature review that covered [94],
[106], [107] and related studies, we selected DPDK for the
user space VNF implementation, mainly for the following
reasons: i) High performance: According to the evaluation
in [94], DPDK has demonstrated favorable bandwidth and
latency performance. ii) Open source, low level with high
configurability and very good documentation: This allows our
VNF implementation to have full control of all processing
functions invoked in the packet IO and to adopt design
optimizations to reduce latency. For example, we have inte-
grated the network coding library Kodo [105] with the native
DPDK data structure to avoid data transfer overheads, thus
achieving short latencies for advanced network coding VNFs.
iii) Wide support: DPDK supports a wide range of physical,
paravirtualized, and software NICs. The Open vSwitch also
implements the DPDK fast path [54], simplifying the deploy-
ment of CALVIN on the OpenStack cloud platform, which
uses Open vSwitch as default software bridge.

However, we acknowledge that bypassing the kernel with
DPDK (Version 18.02) has several disadvantages [108]: i) The
driver can only run in the polling mode. ii) Network and upper
layer protocols require third-party implementations (whereas
these protocols are already implemented in the mainline Linux
kernel). iii) The Linux kernel has its own security model
for managing the networking hardware. Bypassing the kernel
requires a new security model in the user space, which is an
important direction for future research.

D. Architecture Design

The architectural design of CALVIN is illustrated in Fig. 6.
CALVIN is built on top of the research-oriented SFC frame-
work SFC-Ostack [46], [52]. We extend the SFC-Ostack con-
trol and data plane components to enable latency optimization
strategies:

• Control plane: We add the VNF classifier module which
translates between the VNF description and the SFC
description, including the VNF classification into basic
and advanced functions. The processing pipeline of these
VNFs is then converted into a function chain of VMs with
their networking configurations. The life-cycle manage-
ment of all instances in the SFC description is handled
by the SFC manager that communicates with OpenStack
services.

• Data plane: In the data plane, multiple VMs are launched
to run service functions over several physical compute
nodes. In each VM, the service function is positioned
either in the kernel space or in the user space. Packets
are received from the ingress interface (vNIC), processed
by the function program, and sent out through the egress
interface (vNIC). VMs in the service chain are connected
in a prescribed order by Open vSwitch with DPDK
(OVS-DPDK).

Notice in Fig. 6 that CALVIN uses the distributed mapping
with one VM for one VNF (and not the compact mapping
of multiple VNFs in the same VM). This CALVIN design
choice is mainly based on the reasoning in Section II-B.3 about
the flexibility of VNF resource allocation and on the results
in [25], which indicate that for non-trivial computational VNF
tasks, i.e., in particular for our advanced functions, the distrib-
uted mapping achieves lower latencies.

E. Setup and Workflow

The CALVIN operation with the distinct processing of
basic and advanced functions requires various settings for both
hardware and software used by the OpenStack cloud platform.

1) Configurations for Accelerating Virtual Networking
Infrastructure:

• The physical NIC of each node must support
DPDK [101], [109] to deploy the official OVS-DPDK
plugin of OpenStack.

• Each compute node should have dedicated CPUs assigned
only for OVS-DPDK: The current version of OVS-DPDK
works in polling mode and any interruptions from other
processes can cause performance degradations and even
lead to packet losses. Consequently, dedicated CPU cores
must be configured for OVS-DPDK by using the Linux
CPU isolation tool.

• The Input/Output Memory Management Unit (IOMMU)
should be enabled to allow guest VMs to directly use
physical NICs through Direct Memory Access (DMA).

• Sufficient memory should be reserved to allocate
hugepages for OVS-DPDK on all nodes. For compute
nodes, additional memory needs to allocate hugepages
for the guest OS of each VM instance.
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Fig. 6. Illustration of CALVIN architectural design, including fundamental components in control and data plane: The SFC manager utilizes OpenStack
services to deploy VNFs (which are classified into basic and advanced functions) into a chain of VMs. The functions are implemented either in the kernel or
user space. VMs in the SFC are connected by Open vSwitch with DPDK datapath (OVS-DPDK).

Fig. 7. CALVIN workflow for basic functions running in the kernel space.

2) VNF Processing Configurations: Figs. 7 and 8 present
the workflow of running basic functions in the kernel space and
running advanced functions in the user space; the full source
code is available from [53]. Since the Kernel-based Virtual
Machine (KVM) is the default hypervisor of the OpenStack
computing service (until latest version: rocky) [110], the fol-
lowing configurations are deployed for VMs launched by the
KVM hypervisor:

a) Kernel space:

• Due to the XDP requirements [111], the virtual interface
of each VM should support the allocation of a dedicated
transmit queue (TX queue), e.g., through the virtio_net

patch [111] to OpenStack or through extending the Open-
Stack Nova project.

• The Linux kernel of the guest OS running inside the
VM should be updated to at least version 4.8 to run the
XDP program [112].

• The eBPF compiler framework BCC [112] should be
installed to compile the XDP program and to attach the
compiled program to the virtual interfaces.

b) User space:

• Virtual interfaces should be assigned with IOMMU for
minimal latency overhead.

• Sufficient memory should be allocated for hugepages.
These memories are used not only to initialize the running
environment of each DPDK application, but also to store
packets that must be queued before transmission.

• The DPDK kernel module igb_uio needs to be loaded to
enable the kernel Poll Mode Drivers (PMD) driver. This
driver should be bound to the VM ingress and egress
interfaces.

We note that exchanging data between VNFs purely in the
user space in a given VM is not straightforward. Normally,
Inter Process Communication (IPC) mechanisms e.g., the Unix
Domain Socket, are used to exchange data between processes
running on the same VM. However, the IPC mechanisms are
provided by the OS, which inject packets back into the kernel
space. In order to avoid being forced back into the kernel
space for inter-VNF data exchanges, we adopt the distrib-
uted mapping of one VNF per VM for CALVIN. Both the
centralized approach and CALVIN use fast DPDK frame IO
(which is substantially faster than the conventional raw socket
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Fig. 8. CALVIN workflow for advanced functions running in the user space.

frame handling by the OS) for the ingress and egress vNICs.
The critical difference between CALVIN and the centralized
approach is that CALVIN avoids injecting packets back into
the kernel space of a given VM.

We also note that legacy advanced VNF, such as network
coding function programs, have been written for normal
layer 3 or raw sockets, which are typically not directly compat-
ible with DPDK. For CALVIN, we implemented the examined
advanced VNFs that run in user space based on the DPDK
architecture and data structures. Building advanced VNFs on
the native DPDK data structures avoids data transfers, aiding
in achieving short latencies.

3) Future Research Directions for CALVIN Workflow: The
current CALVIN version developed and evaluated in this study
employs the distributed mapping of one VM per one VNF.
The data is exchanged between VMs with low-latency OVS-
DPDK software bridging, see Fig. 6, and is processed with
the respective workflows illustrated in Figs. 7 and 8. The
software bridging avoids the latencies due to the conventional
IPC mechanisms provided by the OS. Ongoing research and
development of kernel space and user space processing may
enable low-latency data exchanges between distinct VNFs
purely in the kernel space or purely in the user space. For
instance, eBPF supports tail calls and maps to chain and to
exchange data between multiple eBPF programs purely in
the kernel space. Future research could design and evaluate
low-latency XDP-based in-kernel SFC mechanisms that could
process the elementary and basic VNFs. In the user space,
the principle of shared memory regions [113], [114] could
enable low-latency data exchanges between VNFs and form
the foundation for low-latency DPDK-based user space SFC
mechanisms for processing advanced VNFs.

Another (albeit less important) motivation for the distributed
mapping in the current CALVIN version is the flexibility
of dynamic resource scaling of distributed VMs. Dynamic
VM resource scaling without service downtime can be
achieved through live resizing, which has recently become fea-
sible in the commercial VMware integrated OpenStack [115],
but is not yet fully supported in OpenStack [116]. Alter-
natively, a new VM with more vCPUs can be provisioned
when VNFs become bottlenecks. The compact mapping with
all VNFs operating on a single VM requires that the old

VM and the new VM operate simultaneously during the
transition phase, which can be demanding for the typically
limited memory resources of cloud compute systems. The
distributed mapping allows the transition to be performed
sequentially, with only the old VM and new VM supporting
one VNF operating simultaneously. Nevertheless, the ongoing
advances may make dynamic resource scaling (live resizing)
of VM instances common in the future. It would then be
interesting to examine live resizing in the context of low-
latency VNF processing.

As low-latency inter-VNF data exchanges purely in the
kernel or user space in a given VM and live resizing of VMs
mature, it would be interesting to develop a compact mapping
version of CALVIN that processes all basic VNFs in a single
kernel-space-focused VM and all advanced VNFs in a single
user-space-focused VM. It would then be insightful to compare
this compact mapping CALVIN version with the distributed
mapping CALVIN that is examined in this paper.

IV. PERFORMANCE EVALUATION OF ELEMENTARY

AND BASIC FUNCTIONS

In order to evaluate the feasibility of CALVIN for the
1 ms control loop of the tactile Internet, we first conduct
measurements for elementary and basic functions with a
minuscule computational workload in this section. The mea-
surement results for elementary and basic functions indicate
the baseline latencies. The evaluation methodology and testbed
are extended from the testbed introduced in our conference
paper [46].

A. Measurement Set-Up

Fig. 9 illustrates the measurement set-up. VMs are launched
on two compute nodes to measure the latency of the elemen-
tary service loop introduced in Section II-A. We use an active
measurement strategy to measure the latency for UDP traffic.
We consider the UDP protocol for the probing traffic since
UDP is typically used for low-latency applications. Latency
measurements for TCP are difficult due to the complex TCP
flow control and congestion control. UDP traffic provides us
with full control of both the sending and receiving processes.
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Fig. 9. Illustration of RTT measurement set-up: The service proxy and the server are allocated on compute node 1. Multiple VNFs are launched on compute
node 2 to implement the SFC for the probing UDP traffic generated by the service proxy. The RTT is measured at the UDP client.

1) Architecture: The measurement setup is based on the
service loop in Fig. 3. The service proxy runs the UDP client,
which sends probing packets to the server located on the
same compute node 1. The server simply bounces all received
packets back to the client as fast as possible. Alternatively,
probing packets can be forwarded directly to the server to
measure the direct forwarding latency (without any VNFs) of
the underlying network infrastructure.

In order to reflect authentic practical networking scenarios,
the service proxy VM and the server VM do not use fast IO
technologies, such as DPDK or XDP. In particular, the service
proxy and the server are normally working in the network
layer (in contrast to VNFs running in the data link layer).
Therefore, we employ the conventional Linux networking
stack in the service proxy VM and server VM, so as to capture
the latencies introduced by the networking layer.

Compared to the centralized measurement setup in [86], the
components of our measurement architecture are distributed
over two different physical nodes, which mimics practical
cloud environments.

A time stamp (ts) and an identification number (ID) are
added before the payload part of each probing packet. The
time stamps are used for the latency calculation. The IDs are
used to identify out-of-order packets which would indicate the
accumulation of packets in queues [117]. We set the packet
traffic rates sufficiently low, see Section IV-A.5 to avoid out-
of-order packets.

2) Testbed: All measurements were performed on our
NFV testbed consisting of off-the-shelf computers that are
connected by two separate Gigabit Ethernet networks. Each
computer had 4 CPU cores (Intel 4th Generation Core i5),
16 GB RAM, 128GB SSD, and two Gigabit NICs (Intel
9301CT Gigabit CT). OpenStack (Pike version) [118] was
deployed on these computers, installed with the Ubuntu Server
16.04 TLS operation system. For each node, one NIC is
used for management and public traffic, and the other NIC
is used to build a separate internal data network for the
virtual instance. The purpose of using a separate network

is to reduce the impact of management and public traffic
on latency measurements. Besides the compute, networking,
identification, and storage services of OpenStack, the official
SFC and OVS-DPDK plugins were installed. In particular,
we used Virtio [119] for the vNIC and OVS-DPDK as the
virtual bridge. For the management of the virtual instances,
KVM was used as the hypervisor and the customized Ubuntu
cloud image was used to implement different VNFs.

3) Elementary and Basic VNFs: We implemented and mea-
sured elementary forwarding and two basic VNFs.

FWD Elementary Forwarding (FWD): Packets are retrieved
from the VNF ingress interface and directly forwarded
to the egress interface without any operations. FWD is
an elementary function of each VNF and other VNF
functions are built on top of the FWD function.

ATS Appending Time Stamps (ATS): The timestamps of
the reception and transmission of a given packet by
the current VNF are appended to the end of the UDP
payload of the packet just before the packet is sent out.
The ATS function modifies the payload size; therefore,
the layer 3 and layer 4 header checksums must be recal-
culated. In order to ensure fair latency comparisons,
we recalculate the checksum with standard methods
in software (and do not employ checksum offloading).
Thus, the ATS function can be used to estimate the
latency introduced by a trivial operation on the packet
payload.

XOR XORing UDP payload (XOR): This function performs
an XOR operation with the same static key on all
bytes of the UDP payload. Compared to ATS, the XOR
function can be used to estimate the additional latency
introduced by a non-trivial computational operation on
the packet payload.

We make the source code of all VNF implementations openly
available at [53].

4) Metrics:
a) Latency: We adopt the Round-Trip-Time (RTT)

(i.e., the per-packet delay) of each UDP packet sent by the



XIANG et al.: REDUCING LATENCY IN VMs: ENABLING TACTILE INTERNET FOR HUMAN-MACHINE CO-WORKING 1107

UDP client program running on the service proxy VM as
the latency metric for the following reasons: i) The RTT
includes the delay introduced by the forward and backward
paths. ii) The RTT measurement does not require time syn-
chronization between the VMs. (According to the experiments
in [120], VM-level time synchronization is error prone due to
the interference between the VMs.) Note that the measured
RTT includes all latency components (1)–(5) illustrated in
Fig. 4 across the entire SFC.

b) Bandwidth: We measure the maximum achieved band-
width (packet throughput in bit/second) with iPerf (version
2) in the UDP mode [121] (We did not use iPerf for the
RTT measurements because iPerf currently does not support
per-packet delay measurements; we wrote our own Python
tools [53] for the per-packet RTT measurements.) We run an
iPerf UDP bounce server on the server VM and an iPerf UDP
client on the service proxy VM (all on compute node 1 in
Fig. 9). Through trials that manually adjusted the iPerf client
target bandwidth in steps of 10 kbit/s, each lasting for five
minutes (with ten independent repetitions), we determined the
maximum bandwidth such that there are no lost or out-of-order
packets detected at the iPerf client side.

5) Active Measurement Parameters: Active measurements
require the setting of two UDP traffic parameters, namely
the Inter-Packet-Delay (IPD) and the payload size. Based
on our preliminary measurements (which are not included
in detail due to space constraints), relative small IPDs on
the order of a few milliseconds give consistent RTT values.
Much shorter IPDs and correspondingly high traffic rates
would lead to queueing for the VNF processing, as analyzed
in [57], [58], [61], [63], [64], [66]–[68]; in contrast, our mea-
surements focus on the latencies of lightly loaded systems
without significant queueing. The RTT values slightly increase
with increasing IPD, which is mainly due to OS batching
mechanisms and the queuing mechanisms of the underlying
virtual bridges that are activated for low network traffic loads.
To avoid the additional latency introduced by batching (queu-
ing) and to ensure consistent measurements, we set the IPD
to 5 ms in all measurements.

We select 256 and 1400 bytes as the lower and upper
limits of the payload size. According to our preliminary
evaluations, UDP segments with less than 256 bytes of payload
cannot be properly processed by XDP. At the same time,
the official SFC plugin of OpenStack [122] currently does
not support jumbo frames. The maximum UDP payload size
depends on the Maximum Transmission Unit (MTU) of the
underlying physical network. For the default MTU of Ethernet
of 1500 bytes, the maximum UDP payload size is limited
to 1472 bytes (1500 − 20 (minimum IPv4 header) −8 (UDP
header)). A payload size of 1400 bytes is chosen to provide
enough free spaces reserved for IP header options or additional
service function related headers.

For each scenario, the measurements were repeated
50 times; for each measurement, 500 UDP segments were sent
by the probing client.

6) Measurement Scenarios:
a) Comparison of different VNF technologies: We

selected XDP [84] to implement VNFs in kernel space and

DPDK [101] to implement VNF in user space for CALVIN
(see Section III-C). To benchmark the latencies of these two
selected technologies, we also consider two other frequently
considered VNF technologies, namely Linux Kernel Forward-
ing (LKF) as a kernel space technology and the Click modular
router [123] as a user space technology.

XDP: The XDP workflow flow is outlined in Section III-E.
Due to following XDP restrictions, only the FWD
and XOR functions with the 256 bytes UDP payload
size are implemented: i) The maximum number of
instructions per XDP program is currently 4096 BPF
instructions [124], limiting the complexity of the
computational operations as well as the data amounts
that can be manipulated. ii) The range of the XDP
operational memory for each packet is limited by
the size of the original received packet. Operations
outside this range are prohibited. Thus, the ATS
function cannot be implemented with XDP.

DPDK: The high flexibility and programmability of DPDK
allow all three functions to be implemented as DPDK
applications. By default, DPDK applications run in
polled mode and can consume 100% of the CPU
resources. The CPU and corresponding power con-
sumption could be reduced with a sleeping mecha-
nism. To minimize the processing delay, we set the
number of packets in a processed batch (burst) to one.

LKF: Linux Kernel Forwarding (LKF) is a built-in
Linux kernel feature for network-layer packet
forwarding [125]. Due to its trivial operations, LKF
is one of the fastest functions running in the kernel
space. Since LKF does not provide any programma-
bility, LKF cannot be used to implement different
VNFs in the kernel space.

Click: The Click modular switch is a software framework
for building flexible and configurable routers [123].
Compared to the low-level IO operations offered by
DPDK, Click provides multiple encapsulated packet
processing modules called elements to build process-
ing pipelines. Elements can be connected with a
directed graph described in a router configuration file.
The evaluated VNFs are implemented by combining
built-in and customized elements.

For the VNF technologies comparison, we launch a single
VM on compute node 2 in Fig. 9 to run the network function.

b) Comparison of centralized approach [51] vs.
CALVIN: We benchmark the proposed CALVIN approach
against the state-of-the-art centralized approach [51], which
was one of the first well-studied approaches for implementing
advanced functions, such as network coding, as VNFs.
(We re-implemented the centralized approach as its source
code was not publicly available.) In order to examine the
distributed VNF aspect of CALVIN, we consider two FWD
VNFs on two separate VMs for CALVIN, while for clarity
of comparison we implement only one FWD VNF in the
centralized approach. We give the centralized approach a
VM with twice the computational resources (vCPU and
memory) compared to each individual VM used by CALVIN.
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Fig. 10. Detailed illustration of measurement set-up for the RTT comparison between centralized approach and CALVIN on compute node 2 of Fig. 9.

Fig. 11. Means and 95% confidence intervals for round-trip time (RTT) of different VNF technologies in kernel space (XDP and LKF) and user space (Click
and DPDK). The 95% confidence intervals for the 256 byte payload size are very tight and barely visible in the plot.

Thus, the comparison is effectively between two FWD VNFs
in CALVIN and one FWD VNF in the centralized approach,
whereby both approaches have the same computational
resources. More specifically, for the centralized approach,
which is illustrated in the left part of Fig. 10, packets enter
the VM through the left vNIC, traverse the FWD VNF and
exit through right vNIC. For CALVIN, which is illustrated in
the right part of Fig. 10, packets enter the left vNIC of VM1,
traverse the XDP FWD, exit through the right vNIC of VM1,
enter the left vNIC of VM2, traverse the DPDK FWD, and
exit through the right vNIC of VM2.

B. Results

1) RTT Measurements of Elementary and Basic VNFs for
Different VNF Technologies: The average values and 95%
confidence intervals of the measured RTTs of the elementary
and basic VNFs (one FWD VNF, one ATS VNF, or one
XOR VNF) implemented with different VNF technologies
on compute node 2 are plotted in Fig. 11. We observe from
Fig. 11 that the RTTs for the two basic VNFs, namely ATS and
XOR, are equivalent to the respective RTTs for the elementary
FWD VNF for all VNF technologies. This result implies
that the additional latencies for the payload processing in the
basic ATS and XOR VNFs are negligible compared to the
elementary FWD latencies.

Examining closely the in-kernel VNF technologies,
we observe from Fig. 11 that although XDP and LKF have the

same FWD RTTs for small packets, XDP FWD is around 10%
faster than LKF FWD for large packets. Moreover, we observe
from Fig. 11 that the RTTs for in-kernel processing (XDP and
LKF)) and user space processing (Click and DPDK) are very
similar for the small 256 bytes packet size. On the other hand,
for the large 1400 bytes packet size, user space processing
incurs substantially longer (about 50% longer) RTTs than in-
kernel processing.

These observed latency differences appear to be primar-
ily due to the two main types of overhead introduced by
basic functions: (i) The overhead of copying frames [126]
from the virtual NIC ring buffer to the VM memory,
and (ii) the overhead of additional metadata pre-processing
of the frames. In the Linux networking stack (LKF), a
data structure sk_buff containing some metadata is allo-
cated for each received frame. The latency overheads for
extracting the metadata and allocating sk_buff are non-
trivial [24], [84], [127]. In contrast, XDP operates at the low-
est point in the Linux software networking stack, without
allocating a metadata data structure, nor any parsing and
pre-processing of packets. XDP supports the packet forward-
ing to another interface (XDP_REDIRECT Action) without
the metadata processing and without checking the routing
table of the kernel (MAC addresses are provided and written
by the eBPF program). For the conventional Linux kernel
forwarding (LKF), the metadata structures must be created
and the kernel requires checking the routing table to write
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the proper MAC addresses. Thus, LKF is slightly slower than
XDP for large packets (which require more time to extract the
metadata). In summary, both XDP and LKF copy the frames
into kernel space memory; XDP does not allocate metadata
structures, whereas LKF does allocate metadata structures.

Turning to the user space technologies, Click and DPDK
copy the frame data into user space memory and allocate
different metadata structures. In particular, in DPDK (kernel
bypassing), the Poll Mode Driver (PMD) [128] copies frames
from the NIC ring buffer to the DPDK user space memory
pool (a pre-allocated fixed-length memory using hugepages
which is resident in the physical memory [101], [129]). Dur-
ing this copying, an additional mbuf data structure [130]
containing metadata is created for each frame. These metadata
are required by DPDK for further processing and many
advanced features. For large packets, this copying into the
user space memory pool and metadata structure creation can
incur significantly longer latencies compared to the in-kernel
approaches. Click involves similar latency-increasing copy and
metadata operations.

2) Comparison Between Centralized Approach and
CALVIN:

a) RTT: Fig. 12(a) presents the RTT measurement results
for the elementary FWD VNF. As presented in Fig. 9,
the direct forwarding is the baseline of the transmission delay
introduced by the underlying virtual networking infrastructure.
We observe from Fig. 12(a) that the centralized approach
exceeds the 0.35 ms delay threshold in the best case, while
the CALVIN RTT is below the 0.35 ms threshold with about
70% probability for 1400 bytes packets, and with nearly 100%
for 256 bytes packets. The measured average (mean) RTTs
(accounting for all latency components (1)–(5) in Fig. 4) for
the 256 bytes and 1400 bytes packets are as follows: CALVIN:
0.19 ms and 0.32 ms, respectively; centralized approach:
2.30 ms and 2.39 ms, respectively. Thus, we conclude that
CALVIN can meet the low latency requirement introduced
in Section I and allow additional data processing inside the
virtualized environment.

We remark that the measurements without fast packet IO
in [25] indicated that for VNFs with very low computation
demands, the compact mapping gave lower latencies than
the distributed mapping, while for computationally intensive
VNFs, the distributed mapping gave lower latencies. Our
latency measurements with our fast packet IO based CALVIN
demonstrate that the distributed mapping achieves low laten-
cies within the latency constraints of the tactile Internet for
elementary and basic VNFs with low computational demands.
Intuitively, with the accelerated packet IO and the correspond-
ingly high supported packet rates and high CPU resource
consumption for fast packet IO (compared to the conventional
slow networking stack), even VNFs with low computational
processing demands do no longer present a trivially low com-
putation load on the CPU. Thus, we believe that the distributed
mapping is a good design choice for implementing all classes
of low-latency VNFs in CALVIN. The distributed mapping
allows each VNF to focus on conducting its processing tasks
quickly in its own space and leaves the communication to
the underlying software integration bridge, which has mature

low-latency performance. The allocation of one VM per VNF
with the distributed mapping may be considered wasteful;
however, each VM could be optimized for its usage and the
distributed mapping is consistent with the emerging unikernel
concept [131], [132]. For example, if the packet processing
occurs mainly in the userspace, then the kernel components
could be slimmed down to make the kernel space as small as
possible.

b) Bandwidth: Fig. 12(b) presents the bandwidth mea-
surement results for payload sizes ranging from 256 to
1400 bytes. We observe from Fig. 12(b) that the bandwidth
supported by the centralized approach is substantially higher
than the CALVIN bandwidth, especially for large packets.
For a payload size of 1400 bytes, the centralized approach
bandwidth is over 15 times higher than the CALVIN band-
width. Compared to the centralized approach with a minimal
supported bandwidth around 6 Mbits/s, the maximal CALVIN
bandwidth is in the range from 1.4–1.7 Mbits/s.

c) Latency-bandwidth trade-off: Taken together, the RTT
results in Fig. 12(a) and the bandwidth results in Fig. 12(b)
demonstrate the tradeoff between per-packet latency and
throughput in real system implementations. The centralized
approach uses the standard Linux socket implementation
which was designed primarily for high-throughput best-effort
service applications, e.g., file transfers, which have typi-
cally bursty traffic. Accordingly, the kernel networking stack
includes a range of throughput enhancing mechanisms, such as
batch processing. Batch processing collects multiple packets
and then processes the batch of packets with acceleration
methods, e.g., with single instruction multiple data (SIMD)
instructions and enhanced CPU caching. Batch processing
increases the per-packet delay as the first packet in a batch
must wait for subsequent packets to fill up a batch before
processing commences.

The batch processing in the Linux networking stack slows
down the centralized approach, even if no batch processing is
employed in the DPDK user space application. This is because
the KNI injects packets back into the normal Linux kernel
networking stack, where batching is employed. The batching
in the kernel stack cannot be avoided without modifying the
kernel source code.

CALVIN avoids this batch processing in the kernel space by
employing fast path technologies, e.g., XDP, for in-kernel VNF
implementation. Since our goal is to reduce the per-packet
delay, CALVIN avoids batch processing in all VNF imple-
mentations. The VNF implementations in CALVIN operate
in a run-to-completion mode, i.e., they retrieve one packet,
process it (batch size of one packet), and send it out as quickly
as possible. CALVIN thus reduces the per-packet latency, as
observed from Fig. 12(a), at the expense of supporting a lower
packet throughput, as observed in Fig. 12(b).

For the tactile Internet for human-machine co-working,
low per-packet delay is typically much more important than
support for high bandwidth. The human-machine co-working
packet traffic, e.g., the control messages of a robot arm
are typically small so that support for low bandwidths is
sufficient. Also, the 5 ms IPD is sufficient as a sample
period of an angle sensor for a typical pendulum application,
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Fig. 12. FWD VNF performance comparison: Proposed CALVIN (two FWD VNFs, namely XDP FWD and DPDK FWD, see right side of Fig. 10) vs. the
state-of-the-art centralized approach [51] (one FWD VNF, see left side of Fig. 10), whereby both CALVIN and centralized approach utilize same computational
resources (two equivalent vCPUs).

TABLE I

CPU USAGE OF THE PHYSICAL COMPUTE NODE

as illustrated by the right side of Fig. 1. On the other hand,
control messages that are delayed by batch processing can
profoundly disrupt human-machine co-working. Therefore,
CALVIN trades support for only low bandwidth for reduced
per-packet latency. The bandwidth supported by CALVIN can
be improved in future work with bandwidth management
mechanisms, e.g., a load balancer that distributes a packet flow
over a set of duplicated VNFs to enable parallel processing.
Parallel processing requires a fast per-flow load balancer and a
traffic merger to handle out-of-order packets arising from the
parallelism.

d) CPU resource usage: We measured the usage of the
four cores of the physical CPU on compute node 2 in Fig. 9
with mpstat [133]. Since the scheduling of CPU resources
for all running VMs is managed by the OpenStack compute
service (Nova), the global average usage of all cores has been
measured. We measured with a sample period of 1 second
for a duration of 10 minutes. Table I shows the CPU usage
levels of the centralized approach and CALVIN at the user
level (User), kernel level (Sys), and for a niced guest (Guest).

We observe from Table I that compared to CALVIN, the
centralized approach doubles the CPU resources consumed
at the kernel (Sys) level. KVM uses the Linux kernel of
the host OS as the hypervisor and uses POSIX threads to
implement vCPUs of the guest OS [134]; thus, the Sys CPU
usage reflects the usage of the vCPU of the VM running
the VNF. By avoiding the overhead of context switching and
metadata processing of each vCPU, CALVIN significantly
reduces the kernel (Sys) CPU usage of the host OS. Thus,
CALVIN leaves a significantly higher proportion of time of
the physical CPU idle. This higher CPU idle time achieved by

CALVIN can be utilized to run cloud management services,
software bridges, and other essential background processes to
stabilize the latency performance.

V. EVALUATION OF COMPUTATION-
INTENSIVE ADVANCED VNFS

The evaluations in Section IV-B.2 indicated that CALVIN
can complete elementary VNFs with an RTT (within the MEC)
on the order of 0.32 ms. Thus, considering the 0.35 ms
MEC latency budget from Fig. 2 there is still a remaining
latency budget of about 0.02 ms for some advanced VNFs.
This section evaluates network coding and encryption as two
examples of advanced VNFs that have relatively high compu-
tational demands. We first describe the practical applications
and relevance of these two VNFs. Then, we use the test
setup from Section IV-A to evaluate the processing delay
incurred by these advanced VNFs. The purpose of this eval-
uation is to assess whether the RTT reduction for elementary
VNFs achieved by CALVIN is sufficient to permit practical
advanced VNFs within the latency requirements of the tactile
Internet.

A. Network Coding

Network coding linearly combines several original packets
with coding coefficients to form encoded packets that are
transferred through the network [135]. In Random Linear Net-
work Coding (RLNC), the coding coefficients are randomly
generated. The key benefits of RLNC include: i.) the ability
to recode with partially received data at all nodes in the
network without requiring coordination, thus being suitable
for distributed environments [136], ii.) versatile coding matrix,
permitting sparsity (judiciously added zeros) to reduce com-
putation complexity [137], [138], iii.) low latency support due
to on-the-fly coding capabilities [139], [140], iv.) support of
heterogeneous field sizes for communication entities, increas-
ing flexibility in heterogeneous contexts [141], and v.) reduced
overhead between the storage and transmission layers, as the
same code can also be used for distributed storage [142].



XIANG et al.: REDUCING LATENCY IN VMs: ENABLING TACTILE INTERNET FOR HUMAN-MACHINE CO-WORKING 1111

Network coding research has proposed many different
RLNC variants. We focus on the two main RLNC types,
namely systematic block codes and convolutional sliding win-
dow codes. Block-based RLNC was introduced to reduce
the computational requirements and control for network
coding [143]. To further improve the performance, a sys-
tematic code does not code every packet, but sends original
packets as “coded” packets [144]. The packets built from
linear combinations are then sent in between original packets
or at the end of the block [145].

Sliding window network coding has been introduced to
reduce the in-order delay of coded transmissions [146]. In the
form of a systematic code with a limited coding window,
sliding window network coding has shorter in-order delay
compared to block codes, while generally requiring compa-
rable computational resources [140].

Although network coding has been extensively studied in
recent years, the deployment of RLNC in real-world networks
is still rare. The main obstacle for the deployment of network
coding is the limited availability of programmable computing
resources at network nodes, which are currently only used
for switching and routing decisions. However, NFV and SDN
provide new flexibilities for deploying innovative functions
within a network [16]. With NFV, network coding can be
implemented for abstract VMs or containers, which can be
instantiated at arbitrary NFV-capable network nodes. In addi-
tion, SDN can direct the data flows towards the network coding
VNFs and orchestrate them in an SFC [147], [148]. However,
the latency of network coding as a VNF in a general-purpose
MEC system has to the best of our knowledge not been
previously examined in detail.

Our per-packet processing delay measurements consider the
encoding (which is computationally equivalent to recoding
in a network node) with a Galois field size of GF (28) and
25% redundancy. We consider block coding with a block size
of 32 packets and sliding window coding with a window size
of 8 packets.

B. Encryption

Encryption and decryption are critical security components
in communication, ensuring the confidentiality and integrity
of the transferred data. More than 40% of the web traffic is
transported in encrypted form over HTTPS, with an increasing
trend [149]. As a result, decryption is required for a multitude
of network functions, e.g., caching and deep packet inspection.
As with network coding, encryption requires the entire payload
to be processed which is a considerable computational effort.
We focus on the Advanced Encryption Standard (AES), which
is a commonly used encryption standard for data transfers and
storage.

A previous study showed a prohibitive end-to-end latency
of at least 30 ms for encryption as a VNF [150]. However, this
previous study did not take advantage of fast packet processing
mechanisms, such as DPDK. Other VNF implementations of
AES encryption have used Graphics Processing Units (GPUs)
to increase the throughput and scalability [151], [152], while
incurring latencies of over 150 µs [151]. In contrast, our

CALVIN approach enables encryption of small packets within
a 20 µs delay budget on a general-purpose MEC system.

C. Measurement Set-Up

Compared to the measurement set-up for elementary and
basic functions described in Section IV-A, the following
additional considerations are required for evaluating advanced
functions:

1) VNF Implementation: Due to the limitations of in-kernel
technologies, CALVIN uses DPDK to implement all advanced
VNFs. Both network coding and AES encryption functions
are implemented on top of the elementary DPDK FWD appli-
cation. We implemented network coding with the Network
Coding Kernel Library (NCKernel), which is built on top of
the Kodo library [105], to support the different variants of
network coded communications. We used the portable AES
Implementation Tiny-AES-C [153] to build the encryption
application.

We implement multiple VNFs in parallel (each VNF on its
own VM according to the CALVIN architecture principles,
see Section III-D) so as to evaluate the scalability of our VNF
implementation. Scalability is a key performance indicator for
virtualization systems since a key aspect of virtualization is to
run multiple virtual instances on limited hardware resources.

2) Metric: Since the RTT of elementary forwarding has
been evaluated in Section IV, the measurements for the
advanced VNFs focus on the packet processing delay.
We define processing delay as the time duration required
for the complete processing of a packet by a VNF, i.e., as
the latency component (1) in Fig. 4. For VNFs that can
generate redundant packets, such as network coding, this
processing delay also includes the time duration required to
create redundant packets.

3) Methodology: In order to evaluate the impact of VNF
processing demands on the processing delay, the computa-
tional operations should be performed in parallel. This require-
ment is very challenging if the probing traffic is generated by
a remote VM. Accurate synchronization mechanisms would
need to be deployed on the virtualized networking infrastruc-
ture to ensure that probing packets arrive at each VNF at the
same time. Therefore, instead of using an additional client
to generate probing UDP traffic, for the evaluation of the
advanced VNFs, the UDP segments are generated locally by
each allocated VM. The locally generated traffic ensures that
the VMs are continuously backlogged so that we obtain the
worst-case processing delay: Every VM is always busy work-
ing and the OpenStack scheduler needs to handle the resource
allocation among them. The delay values of warm-up and tail
probing packets are not included in the measurement results.
For each number of VNFs, 50000 valid probing packets are
generated for processing.

D. Evaluation

The evaluation of elementary functions in Section IV-B.2,
indicated a mean delay of 0.32 ms for the elementary FWD
VNF of 1400 bytes packets in CALVIN. Considering the MEC
latency budget of 0.35 ms from Fig. 2 and a safety margin
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Fig. 13. Means and 95% confidence intervals for processing times in microseconds for computationally intensive advanced VNFs: Per-packet processing
latency in given VNF (latency component (1) in Fig. 4) on a given VM as a function of the number of VNFs running in parallel (with one VNF per VM)
on one compute node with four CPU cores.

around 0.01 ms, we consider a latency budget of 20 µs for the
advanced function processing (for smaller packets this latency
budget could be larger as 256 bytes packets had only 0.19 ms
mean RTT and 0.25 ms 90%ile RTT in Section IV-B.2).

Figure 13 shows the measured processing times for small
256 bytes packets and large 1400 bytes packets. For small
packets, the processing time is within the 20 µs requirement
for all evaluated functions. With increasing number of VNFs,
the load on the CPU increases and the processing time
increases linearly as soon as the number of VNFs exceeds
the number of CPU cores that are available exclusively for
VM processing (one of the available four CPU cores is heavily
utilized by the OVS-DPDK software bridge, which runs in
polling mode with default DPDK functionalities). The latency
increase is due to the contention for CPU resources. For a
prescribed maximum latency requirement, e.g., 5 µs, we can
read off the number of permitted parallel running VNFs,
e.g., three VNFs. With a load balancer redirecting a given flow
to multiple VNFs (and VMs), the larger numbers of supported
VNFs would correspond to increased supported throughput.

For the large 1400 byte packets, we observe from Figure 13
increased processing times compared to the small 256 bytes
packets. While the processing time for network coding remains
relatively low and well within the 20 µs budget, encryption is
not feasible even when the VNFs have exclusive access to a
CPU core, i.e., for three or less VNFs. For network coding,
the sliding window code has substantially shorter processing
times than the block code. Even for large packets and high
contention for the CPU resources, e.g., for nine parallel VNFs,
the sliding window network coding delays remain below 7 µs.

VI. CONCLUSION

We have designed, implemented, and evaluated Chain
bAsed Low latency VNF ImplemeNtation (CALVIN),
an approach for managing distributed service function
chains (SFCs) for low-latency tactile Internet applications.
CALVIN implements virtual network functions (VNFs) either
in the kernel space (if VNFs require only simple processing) or
in the user space (if VNFs require advanced processing) so as

to avoid transmissions between kernel space and user space for
processing a given VNF. CALVIN further implements VNFs
in a distributed manner with one VNF per VM and employs
fast packet input/output (IO) to avoid the metadata and batch
processing of the conventional Linux network stack.

We initially measured the elementary forwarding latencies
of various current VNF implementations. We found that the
eXpress Data Path (XDP) achieved latencies of 120 µs for
small payloads and 180 µs for large payloads, while the
native Linux kernel incurred about 10% higher forwarding
latencies. The Data Plane Development Kit (DPDK) approach
and the Click router approach have up to 50% higher latencies
than XDP. Based on these measurements, we adopted XDP for
implementing computationally simple VNF in CALVIN, while
we adopted DPDK for implementing computationally complex
VNFs in CALVIN.

We extensively benchmarked CALVIN against the state-
of-the-art centralized SFC management approach [51], which
processes a given VNF with both the kernel space and the
user space. Our measurements demonstrated that CALVIN
achieves significantly shorter latencies (0.32 ms mean latency
for 1400 byte packets) for an SFC consisting of two distributed
elementary forwarding VNFs (XDP forwarding and DPDK
forwarding) compared to a single elementary forwarding VNF
in the centralized approach (2.39 ms for 1400 byte packets).
On the downside, CALVIN supports only a lower packet
throughput (bandwidth) of around 1.5 Mbit/s than the central-
ized approach (between 6 and close to 30 Mbit/s depending
on the packet size). CALVIN thus trades in reduced packet
throughput in order to achieve shorter per-packet latency,
which is required for typical tactile Internet applications with
a 1 ms round-trip delay budget.

There are many important future research directions for SFC
management in the tactile Internet. The implementation and
measurements reported in this article have focused on the
network function virtualization (NFV) in the MEC, i.e., the
rightmost dashed box (the MEC cloud) in Fig. 2. Future
research could integrate the MEC into a holistic 5G testbed
that encompasses the entire end-to-end sensor-to-actuator loop
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in Fig. 2. Another direction is to examine novel “compute
and forward” functions, such as video frame preprocessing for
object detection [154] or transcoding [155], that bring more
intelligence to the network edge [156]. The video preprocess-
ing with limited edge cloud computing could extract key
information to reduce the amount of data that needs to be
transmitted through the network to the remote computationally
powerful cloud.
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