
Multi-layer Decomposition of Optimal
Resource Sharing Problems

Nurullah Karakoç, Anna Scaglione and Angelia Nedić
School of Electrical, Computer and Energy Engineering, Arizona State University

nkarakoc, anna.scaglione, angelia.nedich@asu.edu

Abstract—We describe a distributed framework for resource
sharing problems that we face in communications, micro-
economics and various networking applications. In particu-
lar, we consider a hierarchical multi-layer decomposition for
network utility maximization (NUM), where functionalities
are assigned to different layers. The proposed methodology
creates solutions having central management and distributed
computations. The technique aims to respond to the dynamics
of the network by decreasing the communication cost, while
shifting more computational load to the edges of the network.
The main contribution of this work is the provision of a detailed
analysis under the assumption that the network changes are in
the same time-scale with the convergence time of the algorithms
used for local computations. For this scenario, assuming strong
concavity and smoothness of the users’ objective functions, we
present convergence rates for each layer.

I. INTRODUCTION

In this paper, we revisit the classic problem of allocating
resources in a network with many users by decomposing
it into interacting layers, with a central mechanism that
distributes resources among these different users based on
time-varying demand profiles and channel conditions. The
main example inspiring this work is the study we initiated in
[1] of a possible distributed implementation of a Software
Defined Network (SDN) controller placed at the Internet
backhaul, serving different wireless access networks (such as
eNB, Wi-Fi AP) and also serving different service providers.
Our decomposition, however, finds other applications in,
for instance, the optimal distribution of a product among
warehouses for several retailers [2], or the optimal caching
of content on Internet servers [3].

In these contexts different layers of intermediate entities
exist naturally, due to the structure of the service and of
the control framework. It is clear that delegating all the
decisions to a central controller creates a costly communica-
tion bottleneck; yet, there are potentially great benefits from
harmonizing the way all of these different operators and end-
users are served, rather than allocating resources statically.

Resource allocation problems are well-studied in the lit-
erature especially under the network utility maximization
(NUM) framework, where fair resource allocation to het-
erogeneous users is formulated as a convex problem [4],
[5]. Within the NUM literature, a variety of decentralized

The work has been partially supported by the NSF grant CCF-1717391,
the ONR grant no. N00014-12-1-0998 and the NSF grant NeTS: 1716121.

solutions (surveyed in [6]) are presented with different as-
sumptions and setups. These solutions commonly use the
method of parameter exchange between edges and the central
control to build a decentralized implementation as a result
of mathematical decomposition of the problem (see [7], [8]
for various decomposition techniques). An important issue in
these solutions is the time scales of the computations and the
demand changes and the control signalling overhead when
the network has a large footprint. The common assumption
is that the convergence time of the proposed methods is
much shorter than rate at which the demand, or the channel
conditions, change; in other words the parameters of the
problem are assumed to be static during the execution of the
methods. This assumption, referred to as time-scale separa-
tion, separates the optimization procedure from the dynamics
of the underlying system and works well in environments that
are relatively stable or that allow for fast computations and
control channels messages. In [9], the stability region of a
dual optimal flow control algorithm is studied for the case
where the time-scale separation assumption is relaxed such
that the number of users changes with arrival and service
rates of a Markovian queueing model.

To overcome the communication bottleneck, and consider
also the dynamics of the system parameters, in this paper
we propose a hierarchical decomposition approach to the
resource allocation problem clustering nodes at each layer of
the hierarchy and introducing slack variables to represent the
resource managed by nodes at a certain intermediate layer.
The idea behind the approach is very simple. With the slack
variables, we create multiple layers between the end-users
and the central controller. At the lowest layers are the users
which are clustered under higher layers nodes that act as
distributors for the lower layer elements in their cluster.

Our technical contributions are as follows: We present a
distributed algorithm based on projected gradient iterations
for multi-layer decomposition of resource allocation prob-
lems, and we show a linear convergence rate for constant step
size under some concavity and smoothness assumptions on
the utility functions. In addition, we evaluate the performance
of the proposed methods with numerical examples.

II. PROBLEM FORMULATION

Consider a network of N users, each with objective to
maximize his/her own (scalar) utility function. However, the
users decisions are coupled through a common resource,

2018 IEEE Conference on Decision and Control (CDC)
Miami Beach, FL, USA, Dec. 17-19, 2018

978-1-5386-1395-5/18/$31.00 ©2018 IEEE 178

where the amount of total resource is limited by Rtot. We
can formulate this resource allocation problem as follows:

max
xs∈Is

N∑
s=1

Us(xs) s.t.
N∑
s=1

xs ≤ Rtot (1)

where s denotes user index, xs is the amount of resource
consumed by the sth end-user, Is = [ms,Ms] is the interval
representing the local constraints for user s, with 0 ≤ ms <
Ms, and Us(xs) is his/her utility function. We denote by x the
vector of users’ resources, i.e., x = (x1, x2, . . . , xN)> where
[·]> denotes transpose operation. There can be additional
constraints depending on the application such as the link
capacity constraints in communication networks, which can
be easily included in our framework. Replacing xs by y1s , we
define the L-layer decomposition problem as follows:

max
y

N∑
s=1

Us(y
1
s) (2)

s.t. yL1 = Rtot, ms ≤ y1s ≤Ms, s = 1, .., N,∑
s∈Sn

`

y`s ≤ y`+1
n , n = 1, .., N`+1, ` = 1, .., L− 1,

which includes L− 2 sets of slack variables. Here, the end-
users (bottom) layer is called layer-1 (corresponding to ` =
1), the central distribution layer (top) is called layer-L (with
index ` = L). The scalar y`s represents the total resource of
the sth node in layer-` for s = 1, . . . , N`, where N` denotes
the number of nodes in layer `. These nodes are partitioned
into N`+1 disjoint sets Sn` that represent all the nodes that
are connected with a node n in the layer `+1 above layer `.
Naturally, N1 = N and NL = 1. We assume each element
from layer ` is only connected to one node in layer ` + 1.
With y we denote the vector of resources for all layers. Fig. 1
illustrates an example with 3-layer architecture.

The nodes in higher layers act as distributors of resources
to the nodes in their corresponding cluster in the lower
layer. When these layers have no constraints other than
just feasibility relations as in (2), the problems (1) and
(2) are equivalent. This decomposition is useful since it
reflects naturally modules and boundaries that are present
in a communication architecture. Hence, the computational
resources that can tackle the intermediate problems are
already in place, they simply currently not co-optimize their
share of resources dynamically. Also, geographical clustering
is natural in network services as well, and in this case the
clusters represent main control points in each region.

The main benefit of creating sub-optimization procedures
is that the resulting decentralized algorithm reduces com-
munication costs, and it can react faster to the changes in
the demand profile, by reducing the delay in the parameter
exchanges1. Each layer acts as a central decision maker of the
resource allocation for the one lower layer element without
waiting for the full convergence of an optimizing method

1We note that delay refers to the first reaction time of the network here,
not the total delay between top and bottom layers.

employed in the system. In order to do that, different layers
use different time scales in their computations. Lower layers
have faster time scales than the higher layers in a solution
procedure and the decision making procedure is shifted to the
edges for faster response times. Our goal in the next section
is to analyze the convergence properties of such an algorithm.

III. DISTRIBUTED ALGORITHM AND ITS CONVERGENCE

We make the following assumptions:
a.1) Utility functions Us are increasing, strictly concave and
twice differentiable on the interval Is = [ms,Ms].
a.2) The curvatures of Us are bounded away from zero such
that −Üs(xs) ≥ 1/αs > 0 for all xs ∈ Is.
a.3) A feasible solution exists, i.e., Rtot ≥

∑N
s=1ms.

Before discussing our multi-layer decomposition algorithm
in Section III-B, we first review the conventional two layer
decomposition method (see e.g. [5]) and its performance
guarantees in the next section.

A. 2-Layer Algorithm and Convergence Results

Distributed optimization algorithms for solving problem
(1) that come from the dual decomposition are based on
writing the Lagrangian function arising from the relaxation
of the total resource constraint as a separable problem, i.e.:

L(x, λ) =

N∑
s=1

Us(xs)− λ
(N∑
s=1

xs −Rtot
)

=

N∑
s=1

(
Us(xs)− λxs

)
+ λRtot,

(3)

where λ is the Lagrange multiplier. The dual objective is:

g(λ) = max
xs∈Is,1≤s≤N

L(x, λ) =

N∑
s=1

fs(λ) + λRtot, (4)

where for each s = 1, . . . , N ,

fs(λ) = max
xs∈Is

{Us(xs)− λxs} (5)

and the dual problem is

min
λ≥0

g(λ). (6)

The decentralized implementation finds the optimal xs of
the subproblems in (5) for a given λ, while the optimum value
of λ is found via a gradient projection algorithm. Specifically,
the iterations for λ are:

λ(t+ 1) =

(
λ(t)− γ ∂g(λ(t))

∂λ

)+

=

(
λ(t) + γ

(N∑
s=1

x∗s(λ(t))−Rtot
))+

,

(7)

where γ > 0 denotes the step size, (·)+ represents the
projection onto the nonnegative orthant, while x∗s(λ) denotes
the solution to subproblem (5) for a given λ, i.e.,

x∗s(λ) = [U̇−1s (λ)]Ms
ms
, (8)

179

where U̇−1s is the inverse function of U̇s which denotes
derivative of utility function for end-user s, and [·]Ms

ms
is

the projection onto set Is, i.e., [z]ba = min(max(z, a), b).
In a nutshell, the algorithm works as follows. Each user
updates optimal resources x∗s(λ) for a given λ according to
(8) and passes this value to the central controller. Then, the
controller updates the price according to (7) and passes this
value to the users. This process continues iteratively until
some convergence criterion is satisfied. The typical analogy
is with the law of supply and demand from economics. Each
user gets resources with price λ with cost λxs. Then, each
user maximizes the utility function minus cost for a given
price λ and decides on his/hers optimal resource allocation
xs(λ). The central distributor, on the other hand, decides on
the optimal price λ by increasing or decreasing it according
to the total supply Rtot and demand

∑N
s=1 xs.

The convergence of the algorithm is reported in [5] with
a slightly different problem setup including link constraints.
Note that, by using (8), we can find second derivative:

∂2g(λ)

∂λ2
= −

N∑
s=1

∂x∗s(λ)

∂λ
, (9)

where
∂x∗s(λ)

∂λ
=

{
1

Üs(x∗
s(λ))

, for U̇s(ms) ≥ λ ≥ U̇s(Ms),

0, otherwise.
(10)

From a.2), it follows that

0 < −1/Üs(x
∗
s) ≤ αs <∞ for all s. (11)

Next, we define α = maxs(αs). With minor changes in
the proof in [5], under assumptions a.1 and a.2, it can be
shown that g(λ) has Lipschitz gradients with a constant Nα
[5]. Under assumptions a.1–a.2, the dual problem (6) has a
nonempty solution set Λ∗, and we have:

Theorem 1: The method (7) with a constant step size 0 <
γ ≤ 1/(Nα) produces iterates such that limt→∞ g(λ(t)) =
g∗, and its convergence rate is sub-linear

g(λ(t))− g∗ ≤ 1

2γt
‖λ(0)− λ∗‖2 , ∀λ∗ ∈ Λ∗, t ≥ 0,

where g∗ denotes the dual optimal value and λ(0) ≥ 0 is the
initial iterate value2.

Since a larger step size makes the bound smaller, given the
condition 0 < γ ≤ 1/(Nα), the best choice is γ = 1/(Nα).
With this selection, we obtain

g(λ(t))− g∗ ≤ Nα

2t
‖λ(0)− λ∗‖2 . (12)

Thus, if we are interested in an ε = g(λ(t))−g∗ approximate
solution, then we need a number t of iterations to satisfy
t ≥ Nαd2(0)

2ε where d(0) = ‖λ(0)− λ∗‖ for some λ∗ ∈ Λ∗.

B. A 3-Layer Distributed Algorithm and Convergence Rates

Assume we have the 3-layer decomposition structure for a
resource sharing problem as in Fig. 1. In the architecture,
we have one controller on the top layer which has fixed
total resource Rtot = Z to share. In the middle layer, we

2Here, we slightly modify the convergence theorem in [5] to get a
converge rate by using [10, Thm.3.1].

. . .

. . .

. . .

Z

y1 y2 yO

x1 x2 x|S1|

µ1

λ

Fig. 1. 3-Layer Decomposition Structure

have O nodes, which we will refer to as the operators. The
resource allocated to the operator with index o is denoted
by yo. In the bottom layer, we have end-users connected to
operators where So represents the set of end-users connected
to operator o. To highlight the difference among the interme-
diate layer and the top and bottom layers, we will refer to
yL1 = Rtot = Z and use directly xs rather than y1s , while for
the 2nd layer we will omit the layer superscript ` = 2 and
simply refer to the variables as yo, while we will name µo
the dual variables of the constraints between second and first
layer and name λ the dual variable between layer 2 and 3.
More specifically, the optimization problem becomes:

max
x∈I,y≥0

O∑
o=1

∑
s∈So

Us(xs) (13)

s.t.
O∑
o=1

yo ≤ Z,
∑
s∈So

xs ≤ yo, o = 1, . . . , O,

where x,y denote the resources of all nodes in the bottom
layer and middle layer, respectively. Here, I is the Cartesian
product of the feasibility intervals Is = [ms,Ms]. Relaxing
the constraints we can write the Lagrangian as:

L(x,y,µ, λ) =

O∑
o=1

∑
s∈So

Us(xs)−
O∑
o=1

µo

(∑
s∈So

xs − yo
)

− λ
(O∑
o=1

yo − Z
)
, (14)

where µ is the column vector with entries µo. Moreover,
µo, as mentioned before, is the Lagrange multiplier asso-
ciated with the feasibility constraint

∑
s∈So xs ≤ yo for

all o = 1, . . . , O which couple layers 1 and 2, while
the Lagrange multiplier λ is associated with the feasibility
constraint

∑O
o=1 yo ≤ Z coupling layers 2 and 3.

We can write the objective of the dual problem as:
g(λ,µ) = max

x∈I,y≥0
L(x,y,µ, λ)

=

O∑
o=1

∑
s∈So

fs(µo) +

O∑
o=1

ho(µo, λ) + λZ,
(15)

where
fs(µo) = max

xs∈Is
{Us(xs)− µoxs}, (16)

ho(µo, λ) = max
yo≥0

yo(µo − λ), (17)

180

and the dual problem is
min

λ≥0,µ≥0
g(λ,µ). (18)

Let θ = (x>,y>,µ>, λ)>. For the dual problem, due to
the minimax properties:

min
λ≥0

min
µ≥0

max
y≥0

max
x∈I

L(θ) = min
λ≥0

max
y≥0

min
µ≥0

max
x∈I

L(θ), (19)

where we use separability over variables of the both primal
and dual problems in the first step and minimax theorem to
substitute the order of the middle two optimizations in the
second step. With this substitution, we obtain an optimization
order from the bottom layer to the top layer as shown in Fig. 1
which leads to local resource allocation subproblems for the
operators that can be also solved distributedly.

Unlike the two layer case, in the case of three or more
layers to establish our results regarding the convergence of
the algorithm we need to focus on the cases where the opti-
mal allocations are interior points of the feasible region, i.e.,
we assume that there exist ms < x∗s(µo, yo, λ) < Ms,∀s, o,
which by (8) imply that U̇s(ms) > µo > U̇s(Ms),∀s, o. For
this assumption to be true, the following should hold:

O∑
o=1

∑
s∈So

ms <Z <

O∑
o=1

∑
s∈So

Ms, (20a)

y
o

=
∑
s∈So

ms <y
∗
o <

∑
s∈So

Ms = yo, (20b)

µ
o

= max
s∈So

U̇s(Ms) <µ
∗
o < min

s∈So
U̇s(ms) = µo, (20c)

λ = max
s
U̇s(Ms) <λ

∗ < min
s
U̇s(ms) = λ, (20d)

where the bounds (20a), (20b) are necessary for feasibility,
and the dual variable bounds (20c), (20d) should hold as a
result of (8) for the interior point solutions x∗s . The benefit
of having this assumption is basically escaping from having
zero terms in (10). This assumption is relaxed in the follow-
up work [11].

In order to describe the algorithm updates, it is important
to notice that multiple iterations are necessary in general to
solve for the optimum resource allocation for any given value
of the dual variables that is associated with the constraint. Let
us assume that there are k updates of the dual variables µo
before a new update of the resource variable yo and that the
latter is updated k′ times before the global price λ is updated.
We can define the state of the optimization θ(t) as follows:
θ(t) =

(
x>(t),y>(bt/kc),µ>(t), λ(bt/kk′c)

)>
. (21)

With this in mind, we can write:
xs(t) = U̇−1s (µo(t)), (22)

µo(t+ 1) =

[
µo(t)− γ′′o

∂L(θ(t))

∂µo

]µo

µ
o

(23)

=

[
µo(t) + γ′′o

(∑
s∈So

xs(t)− yo
(
bt/kc

))]µo

µ
o

,

and for the intermediate layer we can write:

yo(i+ 1) =

[
yo(i) + γ′o

∂L(θ(ik))

∂µo

]yo
y
o

(24)

=
[
yo(i) + γ′o

(
µo(ik)− λ(bi/k′c)

)]yo
y
o

,

λ(j + 1) =

[
λ(j)− γ ∂L(θ(jkk′))

∂λ

]λ
λ

(25)

=
[
λ(j)− γ

(
yo(jk

′)− Z
)]λ
λ
,

where γ, γ′o, γ
′′
o represent different constant step sizes.

Therefore, the algorithm works as follows. In the bottom
layer, the end-users find the optimal amount of resources for
a fixed local price µo, a fixed operator resource supply yo and
a fixed global price λ, by using (22). The value calculated
is then passed to the operators they connect to. Then, the
operator o sets a new local prices based on its total supply
yo and the optimal resource requested by the nodes in the
lower layer, according to (23). These exchanges continue
until the operator comes sufficiently close to the optimum
local price µ∗o for the fixed values of yo and λ. Then, by
using the optimum local prices and general market price λ,
the operator iterates the calculation of its supply amount yo
according to (24) and uses the iteration outcome to calculate
a new optimum local price. This continues until convergence
to a value close to the optimum y∗o for the given λ. Then,
similarly, by using these y∗o values and the total resource
Z, the top layer updates the global price λ, at which point
all the iterations by the lower layers are repeated with this
new λ. The parameters exchanges and iterations continue
until some convergence criterion is satisfied. Extending the
analogy with the law of supply and demand from economics,
each distribution network connected to an operator with total
resource yo represents a local market establishing a local
price µo, and these operators that are connected to the main
distributor which represents the global market. The multiplier
λ represents the global market price and, at convergence, the
local prices coincide with the global price, unless there are
specific constraints for the middle layer other than those that
come from the decomposition.

For the convergence analysis, in addition to assumptions
a1–a3, we also assume that the curvatures of Us are bounded
above:

a.4) − Üs(xs) ≤ 1/βs <∞ for all xs ∈ Is. (26)

Let:

α(1)
o = max

s∈So
(αs), β(1)

o = min
s∈So

(βs), (27)

α(2) = max
o

(|So|α(1)
o), β(2) = min

o
(|So|β(1)

o). (28)

Assuming the problem has a nonempty solution set under
conditions (20), we obtain:

Theorem 2: Let a.1–a.4 hold. For fixed λ(j) and yo(i),
the method (23) with constant step size γ′′o = 2

|So|(α(1)
o +β

(1)
o)

produces iterates µo(t) that converge to the optimum solution
µ∗o := µ∗o(λ, yo) with a linear rate, i.e., for each o = 1, . . . , O:

‖µo(t)− µ∗o‖ ≤
(
α
(1)
o − β(1)

o

α
(1)
o + β

(1)
o

)t
‖µo(0)− µ∗o‖ . (29)

181

Assuming that µo(t) is converging to µ∗o in bottom layer
iterations, for a fixed λ(j), the method (24) with constant step
size γ′o =

2|So|α(1)
o β(1)

o

α
(1)
o +β

(1)
o

produces iterates yo(i) converging to
the optimum solution y∗o := y∗o(λ) with a linear rate, i.e., for
each o = 1, . . . , O:

‖yo(i)− y∗o‖ ≤
(
α
(1)
o − β(1)

o

α
(1)
o + β

(1)
o

)i
‖yo(0)− y∗o‖ . (30)

Assuming that yo(i) is converging to y∗o in middle layer
iterations, the method (25) with constant step size γ =

2
O(α(2)+β(2))

produces iterates λ(j) that converge to the
optimum solution λ∗ with a linear rate, i.e.,

‖λ(j)− λ∗‖ ≤
(
α(2) − β(2)

α(2) + β(2)

)j
‖λ(0)− λ∗‖ . (31)

Proof Omitted for brevity3.

It can be seen that 3-layer algorithm convergence rate is the
same as that of the 2-layer algorithm convergence rate when
lower layer delays are negligible compared to the delays of
the communication links with the main controller, (i.e., when
middle layer is close to the end-users).

C. Extensions to L-layer Decomposition

Let y` = (y`1, . . . , y
`
N`

)>, ` = 1, . . . , L, U(y1) =∑N
s=1 Us(y

1
s) and the N`+1×N` matrices A` be the selection

matrices whose element (n, s) is 1 for a node s in layer
` if s ∈ Sn` , and 0 otherwise. Introducing the vectors of
dual variables for each of the nodes in each of the layers
λ` = (λ`1, . . . , λ

`
N`+1

)>, and:

θ =

(
y
λ

)
(32)

the Lagrangian of the problem (2) can be written as:

L(θ) = U(y1)−
L−1∑
`=1

(A`y` − y`+1)>λ`

= U(y1)− y>1 A>1 λ1 (33)

+

L−1∑
`=2

y>` (λ`−1 −A>` λ`) + λL−1y
L
1 ,

where λL−1 and yL1 are scalars since there is only one
element in the top layer, and the objective of the dual problem
can be written as:

g(λ) = f(λ1) +

L−1∑
`=2

h`(λ`−1,λ`) + λL−1y
L
1 , (34)

where:

f(λ1) = max
y1∈I

(
U(y1)− y>1 A>1 λ1

)
(35)

h`(λ`−1,λ`) = max
y`≥0

(
y>` (λ`−1 −A>` λ`)

)
. (36)

3It will be presented in [11] along with extension to the L-layer case.

For the layers ` = 1, 2, . . . , L − 1, there are k′` updates
of the layer resource variables y` for every update of the
dual variables λ`, and there are also k` updates of the
dual variables λ` for every y`+1 . Therefore, with respect
to the index of the fastest updates t, at each layer the
number of updates of the resources is decimated by a factor
p`+1 = k′`k`p` and the number of updates of the dual
variables is decimated by k′`p`, with p1 = k′1 = 1. Once
again, we can define the state of the algorithm at time index
t as follows:

θ(t) =

([
y1(t),y2(bt/p2c), . . . ,yL−1(bt/pL−1c)

]>[
λ1(t),λ2(bt/p2k′2c), . . . ,λL−1(bt/pL−1k′L−1c)

]>
)

Specifically, the iterations for the dual variables associated
with the `th layers’ resource constraints (A`y` ≤ y`+1) can
be written as a function of the index i as follows:

λ`(i+ 1) =

[
λ`(i)−G`

∂L(θ(ip`k
′
`))

∂λ`

]λ`

λ`

(37)

=
[
λ`(i) + G`

(
A`y`(ik

′
`)− y`+1(bi/k`c)

)]λ`

λ`
,

where G` is N`+1 × N`+1 diagonal matrix of step sizes
with ` = 1, . . . , L − 1. The iterations performed to update
the value of the resource allocations y` correspond to the
following recursions:

y`(j + 1) =

[
y`(j) + G′`

∂L(θ(jp`))

∂y`

]y`

y
`

(38)

=
[
y`(j)+G′`

(
λ −̀1(jk −̀1)−A>` λ`(bj/k′`c)

)]y`

y
`

,

where G′` is N` × N` diagonal matrix of step sizes with
` = 2, . . . , L− 1, and for ` = 1, we have

y1s(t) = [U̇−1s (λ1n(t))]Ms
ms
, s ∈ Sn1 . (39)

Here, we can specify the projection boundaries with recursive
relations λ

`

n = mins∈Sn
`
λ
`−1
s and λ`n = maxs∈Sn

`
λ`−1s for

` = 2, 3, . . . , L−1, where λ
1

n = mins∈Sn
1
U̇s(ms) and λ1n =

maxs∈Sn
1
U̇s(Ms). Similarly, y`n =

∑
s∈Sn

`−1
y`−1s and y`

n
=∑

s∈Sn
`−1

y`−1
s

for ` = 3, . . . , L−1, where y2n =
∑
s∈Sn

1
Ms

and y2
n

=
∑
s∈Sn

1
ms.

The result of Theorem 2 can be extended to the L-layer
decomposition for problem (2) in a straightforward manner.
As shown, there is a pattern in the convergence rates and one
can easily write convergence rates of all layers similarly for
both dual variable updates and allocated resource updates.

We can introduce a recursive definition of:

α(`)
n = max

s∈Sn
`

(|Ss−̀1|α(−̀1)
s), β(`)

n = min
s∈Sn

`

(|Ss−̀1|β(−̀1)
s), (40)

for ` = 2, .., L − 1 where α
(1)
n and β

(1)
n are defined in

(27). With respect to the dual variables λ`n associated to the
constraints of the `th layers’ resources

∑
s∈Sn

`
y`s ≤ y`+1

n

for n = 1, . . . , N`+1, when the upper layer parameters are
fixed and assuming that y`∗s (λ`n) is reached for any λ`n, the

182

projected gradient method converges to the optimum solution
λ`∗n with a linear rate, i.e., for n = 1, . . . , N`+1:∥∥λ`n(i)− λ`∗n

∥∥ ≤ (α(`)
n − β(`)

n

α
(`)
n + β

(`)
n

)i ∥∥λ`n(0)− λ`∗n
∥∥ . (41)

For the resources of `th layer, y`s, when the upper layer
parameters and λ`n are fixed and assuming that λ(`−1)∗s (y`s) is
reached for any y`s at the lower layer, the projected gradient
method converges to the optimal solution y`∗s with a linear
rate, i.e., for s = 1, . . . , N`:∥∥y`s(j)− y`∗s ∥∥ ≤ (α(−̀1)

s − β(−̀1)
s

α
(−̀1)
s + β

(−̀1)
s

)j ∥∥y`s(0)− y`∗s
∥∥ . (42)

IV. NUMERICAL EXAMPLES

In our numerical test, we have N = 80 end-users and their
utility functions are of the form Us(x) = ws log(1+x), with
weights ws drawn from a uniform distribution on [1, 2]. We
have a dynamic system such that ws’s are randomly drawn
every 4 seconds. We run two different implementations:
(1) the 2-Layer algorithm where the sources are directly
communicating with the central distributor, and (2) the 3-
Layer algorithm where we have O = 4 operators each
connected to 20 sources, i.e., |So| = 20, o = 1, 2, 3, 4. We
assume that main delay cause is the communication link with
the central distributor also in the 3-Layer algorithm, i.e., the
operators are located close to the edge nodes. The termination
threshold is selected as 10−5 where we allow a maximum of
100 iterations for lower layers, (i.e., k′ = k = 100). We also
set Rtot = 800, and Is = [0, 800] for all s as total resource
and feasibility boundaries, respectively. The step sizes are
γ = 2.5 · 10−5, γ′ = 400 and γ′′ = 10−4.

In the 2-Layer algorithm, the end-users start using the
optimum xs after the convergence criterion is met, since the
current iterates can be infeasible. Before convergence, they
use previous optimal rates that are produced for the previous
realization of ws’s. Similarly, for the middle layer resources
(yo’s) in the 3-Layer algorithm, one should wait for global
convergence to use them. However, the feasible yo values
of the previous layer is used at the beginning of each time
slot (each 4s), and the end-users allocations and local prices
converge in this local market. Therefore, these end-users
allocations can be used without waiting for full convergence.
With the multi-layer algorithm, the system reacts much faster
to the underlying changes in the network. As shown in
Fig. 2, 3-Layer algorithm reacts immediately whereas in
2-Layer algorithm first reaction time is basically the full
convergence time. Before full convergence of the system,
even though 3-Layer algorithm does not reach optimum, it
provides significant increase in the total utility. We observe
the same convergence rate for both algorithms (as discussed
at the end of Sec. III-B).

V. CONCLUSIONS

In order to decrease message passing costs and reaction
time of distributed price-based sharing algorithms, multi-
layer decomposition structure looks promising since it has the

0 1 2 3 4 5 6 7 8 9 10

Time(s)

287

288

289

290

291

292

293

294

295

296

297

T
o

ta
l

U
ti

li
ty

3-Layer Rates

2-Layer Rates

3-Layer Iterates

2-Layer Iterates

Fig. 2. Comparison of algorithms in a dynamic system.

same global convergence rate and error bounds characteristics
as the conventional methods. The multi-layer decomposition
reacts significantly faster to the demand change and shifts
the computation to the edges. Due to the space constraints,
optimality bounds with the projected erroneous gradient
methods in dynamic resource allocation where the optimal
result we seek changes with time will be discussed in [11].

REFERENCES

[1] L. Ferrari, N. Karakoc, A. Scaglione, M. Reisslein, and A. Thyagaturu,
“Layered cooperative resource sharing at a wireless SDN backhaul,”
in Proc. IEEE Int. Conf. on Communications Workshops (ICC Work-
shops), May 2018, pp. 1–6.

[2] J.-B. Sheu, “A novel dynamic resource allocation model for demand-
responsive city logistics distribution operations,” Transportation Re-
search Part E: Logistics and Transportation Review, vol. 42, no. 6,
pp. 445–472, Nov. 2006.

[3] Z. Zhou, M. Dong, K. Ota, and Z. Chang, “Energy-efficient context-
aware matching for resource allocation in ultra-dense small cells,”
IEEE Access, vol. 3, pp. 1849–1860, 2015.

[4] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for
communication networks: Shadow prices, proportional fairness and
stability,” J. Oper. Res. Soc., vol. 49, no. 3, pp. 237–252, 1998.

[5] S. H. Low and D. E. Lapsley, “Optimization flow control. I. basic
algorithm and convergence,” IEEE/ACM Trans. on Netw., vol. 7, no. 6,
pp. 861–874, Dec. 1999.

[6] M. Chiang, S. H. Low, R. Calderbank, and J. C. Doyle, “Layering as
optimization decomposition,” Proc. IEEE, vol. 95, no. 1, pp. 255–312,
Jan. 2007.

[7] B. Johansson, P. Soldati, and M. Johansson, “Mathematical decom-
position techniques for distributed cross-layer optimization of data
networks,” IEEE J. Sel. Area. Comm., vol. 24, no. 8, pp. 1535–1547,
Aug. 2006.

[8] D. P. Palomar and M. Chiang, “Alternative distributed algorithms
for network utility maximization: Framework and applications,” IEEE
Trans. Autom. Control, vol. 52, no. 12, pp. 2254–2269, 2007.

[9] X. Lin, N. B. Shroff, and R. Srikant, “On the connection-level stability
of congestion-controlled communication networks,” IEEE Trans. Inf.
Theory, vol. 54, no. 5, pp. 2317–2338, May 2008.

[10] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM Journal on Imaging
Sciences, vol. 2, no. 1, pp. 183–202, 2009.

[11] N. Karakoc, A. Scaglione, A. Nedic, and M. Reisslein, “Multi-
layer decomposition of network utility maximization problems,” in
preparation.

183

