
366 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 3, SEPTEMBER 2016

Control Plane Latency With SDN Network
Hypervisors: The Cost of Virtualization

Andreas Blenk, Arsany Basta, Johannes Zerwas, Student Member, IEEE, Martin Reisslein, Fellow, IEEE,
and Wolfgang Kellerer, Senior Member, IEEE

Abstract—Software defined networking (SDN) network
hypervisors provide the functionalities needed for virtualizing
software-defined networks. Hypervisors sit logically between the
multiple virtual SDN networks (vSDNs), which reside on the
underlying physical SDN network infrastructure, and the cor-
responding tenant (vSDN) controllers. Different SDN network
hypervisor architectures have mainly been explored through
proof-of-concept implementations. We fundamentally advance
SDN network hypervisor research by conducting a model-based
analysis of SDN hypervisor architectures. Specifically, we intro-
duce mixed integer programming formulations for four different
SDN network hypervisor architectures. Our model formulations
can also optimize the placement of multi-controller switches in
virtualized OpenFlow-enabled SDN networks. We employ our
models to quantitatively examine the optimal placement of the
hypervisor instances. We compare the control plane latencies of
the different SDN hypervisor architectures and quantify the cost
of virtualization, i.e., the latency overhead due to virtualizing
SDN networks via hypervisors. For generalization, we quantify
how the hypervisor architectures behave for different network
topologies. Our model formulations and the insights drawn from
our evaluations inform network operators about the trade-offs
of the different hypervisor architectures and help choosing an
architecture according to operator demands.

Index Terms—Integer linear program, network hypervisor
architecture, network virtualization, software defined network-
ing, virtual software defined network embedding.

I. INTRODUCTION

NETWORK Virtualization (NV) enables multiple virtual
networks, each specifically tailored to the demands of a

particular set of network services or end-user applications, to
operate on a shared underlying physical network substrate [1].
Software Defined Networking (SDN) is an emerging paradigm
that introduces flexible operation and programmability into

Manuscript received February 15, 2016; revised May 11, 2016, June 14,
2016, and June 20, 2016; accepted June 30, 2016. Date of publication
July 7, 2016; date of current version September 30, 2016. This work is part
of a project that has received funding from the European Research Council
(ERC) under the European Unions Horizon 2020 research and innovation pro-
gram (grant agreement No 647158 - FlexNets) and from the A. von Humboldt
Foundation through an F.W. Bessel Research Award. The associate editor
coordinating the review of this paper and approving it for publication was P.
Chemouil. (Corresponding author: Martin Reisslein.)

A. Blenk, A. Basta, J. Zerwas, and W. Kellerer are with the Chair of
Communication Networks, Technische Universität München, Munich 80290,
Germany (e-mail: andreas.blenk@tum.de; arsany.basta@tum.de;
johannes.zerwas@tum.de; wolfgang.kellerer@tum.de).

M. Reisslein is with the Electrical, Computer, and Energy Engineering,
Arizona State University, Tempe, AZ 85287 USA (e-mail: reisslein@asu.edu).

Digital Object Identifier 10.1109/TNSM.2016.2587900

communication networks [2]. By combining NV and SDN,
virtual SDN networks (vSDNs) can be created on a given phys-
ical SDN network. Tenants can program their vSDN resources
via open network interfaces and protocols, e.g., OpenFlow [2],
and run their own vSDN controllers. For instance, for Network
Function Virtualization (NFV), vSDNs can be used to flexi-
bly interconnect virtual network functions and to control their
network traffic via SDN [1].

To allow multiple network operating systems to run in par-
allel, so called SDN network virtualization hypervisors have
been introduced [3]–[5]. SDN network virtualization hypervi-
sors [6], which we refer to as hypervisors for brevity, operate
as an intermediate layer between SDN network infrastructures
and vSDN controllers. SDN network hypervisors present the
vSDN controllers with virtual SDN networks (vSDNs), which
are composed of virtual SDN switches. The vSDN controllers
are connected via the hypervisors to their vSDN switches
(see Fig. 1(a)). As hypervisors operate transparently to vSDN
controllers, each vSDN controller only sees its corresponding
vSDN switches. Accordingly, hypervisors do not limit tenants
to the application-controller interfaces provided by traditional
SDN controllers, e.g., ONOS [7] or OpenDaylight [8]. With
hypervisors, tenants can still use conventional SDN network
interfaces/protocols, e.g., OpenFlow, to control their vSDNs.
Thus, as tenants are not limited to special implementations,
they can choose freely from all available SDN controller
implementations and extend them according to their needs.

In SDN networks, good control plane performance, such
as low control plane latency, is important for achieving high
network performance. For instance, high control plane laten-
cies may lead to long flow set-up times, which are detrimental
for many services, e.g., for DNS requests. In non-virtualized
SDN networks, the Controller Placement Problem (CPP) tack-
les the question of how many controllers are needed and
where to place them in the network in order to achieve a
high network performance. While SDN controllers connect
directly to the SDN infrastructure, hypervisors serve as con-
trollers to the underlying substrate network in virtualized
SDN networks. As the paths between tenant controllers and
the vSDNs have to traverse the hypervisor instances, tenants
may experience longer controller to switch connections. These
longer paths introduce control plane latency overhead, which
we call the cost of virtualization. As hypervisors are mostly
implemented in software, they can be flexibly placed in the
network, e.g., at data center locations. Efficient virtualization
of SDN networks requires sophisticated techniques for placing

1932-4537 c© 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:andreas.blenk@tum.de
mailto:arsany.basta@tum.de
mailto:johannes.zerwas@tum.de
mailto:wolfgang.kellerer@tum.de
mailto:reisslein@asu.edu
http://www.ieee.org/publications_standards/publications/rights/index.html


BLENK et al.: CONTROL PLANE LATENCY WITH SDN NETWORK HYPERVISORS: THE COST OF VIRTUALIZATION 367

hypervisor instances in the network. Only proper hypervisor
placement provides vSDN tenants with the best possible per-
formance. We call this the k-Network Hypervisor Placement
Problem (k-HPP) in this article. The k-HPP answers the ques-
tion of how many hypervisor instances k are needed and where
the hypervisor instances should be placed in the network.

While some hypervisor architectures rely only on basic SDN
features, some hypervisors can make use of special switch
functionalities, e.g., the functionality to support multiple con-
trollers, the so-called multi-controller feature. Multi-controller
switches can simultaneously connect to multiple SDN con-
trollers, i.e., multiple hypervisor instances. Multi-controller
switches may improve control plane performance, e.g., reduce
control plane latency. However, multi-controller switches may
demand additional synchronization between distributed hyper-
visor instances. For instance, hypervisor instances may need
to synchronize flow table access or to carefully plan the allo-
cation of available flow table space. Thus, the placement of
multi-controller switches needs to be carefully planned. We
refer to this planning problem as the Multi-controller Switch
Deployment Problem (McSDP) in this article.

SDN network virtualization hypervisors can be implemented
and operated in either a centralized (k = 1) or distributed
(k > 1) manner [6]. Due to the variety of existing hyper-
visor architectures and their ability to make use of special
network functionalities, the k-HPP cannot simply be solved
by referring to solutions of the SDN Controller Placement
Problem (CPP) [9]. The k-HPP is fundamentally different from
the CPP due to the following aspects: (1) the existence of
multiple vSDNs with individual demands, e.g., for control
plane latency; (2) the functionality of hypervisor instances
to serve as intermediate nodes between multiple vSDN con-
trollers and the underlying physical SDN network, i.e., the
SDN network to controller connections need to traverse the
hypervisor instances; (3) the ability of hypervisor architec-
tures to make use of the multi-controller feature of SDN nodes
(switches) for minimizing control plane latency.

Our main contribution in this article is the in-depth study
of the fundamentally new k-HPP for four different SDN net-
work hypervisor architectures with respect to control plane
latency. We provide mathematical mixed integer program-
ming models for the four architectures. Our models jointly
solve the McSDP and the k-HPP. We investigate the deter-
mination of the best locations of hypervisor instances and
multi-controller switches with our models for real network
topologies and a wide range of vSDN requests. We analyze
the trade-offs among four hypervisor latency objective met-
rics. We also closely examine the impact of virtualization on
the individual SDN network requests. Furthermore, we ana-
lyze the benefits of a priori optimization of the locations of
the vSDN controllers. Specifically, we investigate the impacts
of three different controller placement strategies on the k-HPP
and McSDP. The current study substantially extends the pre-
liminary conference paper [10] which presented results for
the placement of a single hypervisor instance (k = 1) for
single-controller switches only; in contrast, we examine in
detail the general k-HPP with multi-controller switches in
this paper.

The remainder of this paper is structured as follows. The
needed background and an overview of related work are pre-
sented in Section II. In Section III, we introduce the four SDN
network hypervisor architectures, which we examine in depth
in this paper. In Section IV, we provide mathematical for-
mulations of the k-HPP and the McSDP. In Section V, we
provide mathematical models to solve the k-HPP and McSDP
based on mixed integer programming. The evaluation set-
up is explained in Section VI, while results are presented
in Section VII. Conclusions and future work are outlined in
Section VIII.

II. BACKGROUND & RELATED WORK

A. Background

1) Software Defined Networking & Multiple Controllers
Feature: Software Defined Networking (SDN) decouples the
control plane from the data plane of forwarding hardware, e.g.,
routers or switches. The control plane runs logically central-
ized in SDN controllers. SDN controllers run in software, thus,
can be flexibly deployed on commodity hardware, i.e., servers.
OpenFlow [11] is one protocol that enables the communica-
tion between SDN controllers and the networking hardware,
i.e., SDN switches.

OpenFlow 1.2 [12] introduced and defined the multiple
controllers feature. The multiple controllers feature allows
switches to simultaneously connect to multiple SDN con-
trollers. In non-virtualized SDN networks, the feature can be
used for controller fail-over or load balancing. The number
of controllers that a given switch simultaneously connects to
may be limited [13]. The OpenFlow specification [12] defines
an OFPCR_ROLE_EQUAL mode, in which all connected con-
trollers can fully access and control the switch resources. The
OFPCR_ROLE_EQUAL mode requires the SDN controllers
to synchronize the management of the switch resources. In
this article, we analyze how the multiple controllers fea-
ture can be used to reduce the control plane latency of
vSDNs. Specifically, we distinguish between single-controller
switches, which can connect to one SDN controller (hypervi-
sor instance) at a time, and multi-controller switches, which
use the multiple controllers feature to connect simultaneously
to multiple SDN controllers (hypervisor instances).

2) SDN Network Hypervisors: SDN network hypervi-
sors [6] sit between vSDN controllers and the underlying
physical SDN network, as illustrated in Fig. 1(a). Similar to
SDN controllers, they are mostly implemented in software.
Each hypervisor instance implements the entire virtualization
stack. That is, each hypervisor instance can virtualize a part
of the underlying physical SDN network. Distributed hyper-
visor instances may need to synchronize their states, e.g., for
load balancing purposes. The impact of the synchronization
load is outside the scope of this article, and is a direction
for future work. In general, a hypervisor instance provides
the following virtualization functions: abstraction (virtualiza-
tion), translation, and isolation [6]. Hypervisors abstract the
underlying physical SDN network, i.e., they provide all nec-
essary information for operation to the vSDN controllers, e.g.,
topology information. Tenant controllers need to connect to



368 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 3, SEPTEMBER 2016

Fig. 1. Illustration of four hypervisor architecture categories (characterized by number of hypervisor instances k and number of multi-controller switches
M) for an example SDN network with two virtual SDN networks (vSDNs). The blue and orange color differentiate the two vSDNs. A hypervisor instance
(location) is represented by a hexagon. The square dashed boxes represent the control domains in case of multiple hypervisor instances. A circle, labeled with
“V”, is a vSDN switch (node) hosted on a larger box with rounded edges, which represents a physical SDN switch (node). The solid lines between these
boxes represent the data plane connections, i.e., the edges of the physical SDN network. A dashed line represents a connection between an SDN controller
(SDN-C) and a hypervisor instance “H”. A double solid line represents a physical connection between a hypervisor and a physical SDN switch.

hypervisor instances to access their virtual network resources,
i.e., virtual SDN switches. Further, a vSDN controller can con-
nect to multiple hypervisor instances. Since all tenant control
traffic has to pass through hypervisor instances, the hypervisor
instances become a critical component of vSDNs.

B. Related Work

We review main research areas related to the virtualization
of SDN networks in this section and distinguish our present
study on SDN hypervisor placement from related work.

1) Facility Location Problem: As indicated by [9], the
general facility location problem (FLP) is the general prob-
lem behind the SDN controller placement problem. Similarly,
the k-HPP can be related to the hierarchical facility loca-
tion problem. The task of the hierarchical facility location
problem is to find the best facility locations in a multi-level
network. The facilities at higher levels have to serve the
facilities at lower levels, while customers need to be served
at the lowest level. A similar layering can be applied to
the k-HPP. Tenant controllers need to connect to hypervi-
sor instances, while hypervisor instances need to connect to
SDN switches at the lowest level. Different variations, adapta-
tions to real problems, and overviews of the FLP are provided
in [14]–[18]. The unique feature of the k-HPP is the differen-
tiation of groups of customers, i.e., individual vSDNs, which
need to be specifically operated by their corresponding tenant
controllers.

2) SDN Controller Placement: The SDN Controller
Placement Problem (CPP) for non-virtualized SDN networks
has been initiated in [9]. The CPP targets the question of how
many controllers are needed and where to place them. Using
a brute-force method, [9] evaluated the impact of controller
placement on average and maximum latency metrics for real
network topologies. The authors concluded that five controllers
are sufficient to achieve an acceptable control plane latency
for most topologies. As different optimization objectives, e.g.,
load and delay, are critical for the operation of SDN networks,
multi-objective optimization approaches have been applied to

the CPP [19]. The framework in [19] uses simulated anneal-
ing to analyze the CPP for different network topologies with
respect to multiple objectives, e.g., latency and resilience. As
real SDN networks have node and link capacity constraints,
mathematical models for solving the CPP with node and link
capacity have been studied in [20] and [21]. Considering
capacity constraints during planning protects SDN controllers
from overload situations. Distributed SDN controllers can
be organized in a hierarchy to achieve resilience [22]. The
study [22] provides an algorithm and performance compar-
isons for k-center and k-median-based algorithms. Further CPP
research either considers different metrics, e.g., resilience or
load balancing [23]–[25], or incorporates different methodolo-
gies, e.g., clustering. A dynamic version of the CPP, where the
rate of flow setups varies over time, has been studied in [26].

In the present study, we solve the CPP a priori for maximum
or average latency objectives and use the CPP solution as an
input to our optimization. This two step optimization allows
us to analyze the impact of the vSDN controller placement on
the hypervisor placement.

3) Virtual Network Embedding: The embedding of virtual
to physical network resources is an integral part of network
virtualization. There are many algorithms to solve the VNE
problem [27]. Some VNE algorithms consider technology
aspects of the infrastructure, e.g., flexible path splitting [28]. In
general, VNE research mostly neglects the control part when
virtualizing networks, i.e., neglects the connections from the
tenants to their resources. Only a few studies have incorpo-
rated the control (node) while embedding the virtual networks.
For instance, [29] uses heuristic algorithms (greedy, sim-
ulated annealing) to optimize the vSDN embedding for a
balanced load or for latency. The embedding also considers
the impact of placing the SDN controller; however, the hyper-
visor instances are not taken into account while embedding
the virtual resources. Generally, when not considering the con-
trol plane, existing VNE algorithms can be directly applied to
efficiently solve the mapping of vSDN resources [28], [30].
However, to the best of our knowledge, the VNE research to
date has not incorporated the full design and optimization of



BLENK et al.: CONTROL PLANE LATENCY WITH SDN NETWORK HYPERVISORS: THE COST OF VIRTUALIZATION 369

the control plane, i.e., the controller and hypervisor embed-
ding, which is particularly important for virtual SDN network
embedding.

III. SDN NETWORK HYPERVISOR ARCHITECTURES

In this section, we introduce four hypervisor architec-
ture categories. We categorize the architectures into central-
ized architectures and distributed architectures. We further
sub-classify the distributed architectures into architectures
operating with single-controller SDN switches or with multi-
controller SDN switches. In addition, we consider distributed
hybrid architectures that combine single- and multi-controller
SDN switches. A single centralized hypervisor instance (at a
single location) provides the virtualization functionality in a
centralized architecture. In contrast, in a distributed hypervisor
architecture, multiple hypervisor instances that are distributed
over multiple locations realize the virtualization functionality.
We denote the number of hypervisor instances by k and the
number of multi-controller switches by M.

A. Centralized Network Hypervisor Architecture

The centralized SDN network hypervisor architecture
(k = 1) deploys only a single hypervisor instance (at a sin-
gle location) for SDN network virtualization. Virtual SDNs
can be provided by running this single hypervisor instance
at one physical network location. FlowVisor [3] is an exam-
ple of a centralized hypervisor architecture. In this article, the
centralized hypervisor architecture works with SDN switches
(network elements) compliant with the OpenFlow specifi-
cation [12]. OpenFlow specification [12] compliant SDN
switches do not provide any specialized functionalities to sup-
port virtualization. In case a virtualization functionality cannot
be provided by OpenFlow compliant switches, the hypervisor
has to provide the functionality. This implies that special vir-
tualization functionalities need to be implemented outside the
OpenFlow switch domain.

Fig. 1(a) shows an exemplary centralized hypervisor archi-
tecture set-up. The hypervisor instance connects down to three
physical SDN switches (nodes, network elements) and up to
two vSDN controllers. The upper left physical SDN switch
provides a virtual switch for the left tenant. The upper right
and lower middle physical switches host two virtual switch
instances for each tenant. The single centralized hypervisor
instance is the SDN controller of all physical SDN switches.
All control traffic of the vSDNs has to pass through this sin-
gle hypervisor instance. From the switches, the hypervisor
forwards the control traffic towards the corresponding vSDN
controller. The control plane latency of such centralized SDN
hypervisor architecture has already been modeled and ana-
lyzed via simulations in [10]. In this paper, we compare the
centralized architecture to the distributed architectures and
additionally investigate the impact of the network topology.

B. Distributed Network Hypervisor Architecture for
Single-Controller SDN Switches

For scalability reasons, a hypervisor can be distributed into
multiple (k, k > 1) hypervisor instances that are distributed

over multiple (k) locations in the network. Suppose that the
SDN switches can only connect to one hypervisor instance at
a time (M = 0). Accordingly, the physical SDN network is
split into multiple control domains, whereby one hypervisor
instance is responsible for a given domain. An example for a
distributed SDN hypervisor architecture operating with single-
controller SDN switches is FlowN [31].

An example distributed architecture with two hypervisor
instances is illustrated in Fig. 1(b). The SDN switches are
controlled by k = 2 hypervisors. The left hypervisor instance
controls the upper left SDN switch, while the right hypervi-
sor instance controls the other SDN switches. Accordingly,
the SDN switches are split into two distinct control domains.
Each SDN switch connects to either one of the k = 2 hyper-
visor instances. Note that one hypervisor instance can connect
to multiple controllers (as illustrated for the right hypervisor
instance). As the virtual switch instances of the left SDN con-
troller 1 (colored in blue) are in different control domains of
the hypervisors, SDN controller 1 connects simultaneously to
two hypervisor instances.

C. Distributed Network Hypervisor Architecture for
Multi-Controller SDN Switches

The distributed network hypervisor architecture for multi-
controller switches realizes the SDN virtualization via mul-
tiple separated hypervisor instances (k > 1), similar to
Section III-B. However, all |V | physical SDN switches can
now simultaneously connect to multiple hypervisor instances
as all switches support multiple controllers (i.e., M = |V |).
As a result, there is no separation of the control domain
of the SDN switches as each switch can be simultaneously
controlled by multiple hypervisor instances. An example for
the distributed hypervisor architecture with multi-controller
SDN switches is DITRA [32]. With DITRA, a given physical
SDN switch can simultaneously connect to multiple hypervi-
sor instances. DITRA [32] operates with legacy SDN switches
that support the multi-controller feature, as it was introduced
with OpenFlow version 1.2 [12]. That is, DITRA does not
require extensions of the switch hardware.

While each physical SDN switch is only connected to
a single hypervisor instance in Fig. 1(b), Fig. 1(c) shows
two hypervisor control connections for each physical SDN
switch. The multi-controller feature allows an SDN switch
to connect to multiple different hypervisor instances during
operation. However, as switch resources, e.g., switch CPU and
flow tables, are shared and not strictly isolated, coordination
between the different hypervisor instances may be necessary.

D. Distributed Hybrid Network Hypervisor Architecture

In general, it may not be necessary for all SDN switches
to support the multiple controllers feature to achieve a spe-
cific optimization objective. Furthermore, due to the hardware
limitations for supporting multiple controllers and the addi-
tional coordination overhead, thorough planning of an SDN
network is important. The result of such planning could be
that only some of the switches implement or use the multi-
controller feature, while others are supporting or operating



370 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 3, SEPTEMBER 2016

only the single-controller mode. This leads to the fourth hyper-
visor architecture category, namely a distributed architecture
that operates on hybrid SDN networks. We define a hybrid
SDN network as an SDN network that simultaneously uses
single-controller and multi-controller SDN switches.

Fig. 1(d) illustrates an example of the distributed hybrid
architecture. While the upper left switch connects only to
the left hypervisor instance and the upper right switch con-
nects only to the second hypervisor instance, the lower middle
switch (M = 1) connects to both hypervisor instances. Thus,
the control domain of the lower middle switch is shared by
both hypervisor instances. We can separate the shared and
non-shared control domains, as illustrated in Fig. 1(d). The
switches of the non-shared control domains operate in single-
controller mode, i.e., they connect to only one hypervisor
instance. Specifically, our model provides the capability to pre-
scribe a maximum permissible number M of multi-controller
SDN switches for a given network topology. The solution of
our optimization problem formulation provides the optimal
number of multi-controller SDN switches and the separation
of the SDN network into different control domains.

IV. PROBLEM SETTING FOR k-NETWORK HYPERVISOR

PLACEMENT PROBLEM (k-HPP) AND MULTI-CONTROLLER

SWITCH DEPLOYMENT PROBLEM (MCSDP)

The k-Network Hypervisor Placement Problem (k-HPP)
extends the Network Hypervisor Placement Problem (HPP),
where only k = 1 network hypervisor is placed to con-
nect virtual data plane switches to their corresponding vSDN
controllers. We also introduce the Multi-controller Switch
Deployment Problem (McSDP), which determines the num-
ber and the locations of multi-controller enabled switches. This
section first introduces the setting for these problems by defin-
ing the notation for the physical SDN network and the vSDN
requests. Then, we introduce the mathematical definition of
the k-HPP and the McSDP.

A. Network Models

The input of the k-Network Hypervisor Placement Problem
is given by the set of vSDN requests R , which are to be
fulfilled with a given physical SDN network graph G(V , E).

1) Physical SDN Network Specification: Table I summa-
rizes the notation for the physical SDN network. The network
is modeled as a graph G(V , E) with physical SDN switches
(network nodes) v ∈ V connected by undirected edges e ∈ E .
The potential hypervisor nodes (locations) are given by the
set �. They are a subset of V , i.e., � ⊆ V . The latency
λ(e) of an edge e is computed from the geographical distance
between the two network nodes that are connected via edge e
(the transmission bit rate (capacity) of the edge is not consid-
ered). The edge latency λ(e) is used for evaluating the latency
of network paths. The set P contains the shortest paths of
the network between any network node pair. A shortest path
is denoted as (s, t) ∈ P . The distance, i.e., the latency, of
a shortest path is denoted by d(s, t). Furthermore, the func-
tion d(s, v, t) gives the latency of the shortest path connection

TABLE I
NOTATION FOR PHYSICAL SDN NETWORK G

TABLE II
NOTATION FOR VIRTUAL SDN NETWORK (VSDN) REQUESTS R

TABLE III
PROBLEM INPUT FOR k-HPP AND MCSDP

between nodes s and t via node v. This value is calculated as
the sum of d(s, v) and d(v, t).

2) Virtual SDN Network (vSDN) Request: Table II summa-
rizes the notation for the vSDN requests R . A vSDN request
r ∈ R is defined by the set of virtual SDN network nodes
V r and the vSDN controller cr. The physical SDN switch of
a vSDN network node is given by the function π(vr), i.e.,
π(vr) ∈ V . All vSDN network nodes need to be connected to
their controller instance cr. The location of the controller is
also chosen among the available network node locations, i.e.,
π(cr) ∈ V . Note that we assume a vSDN to operate only one
SDN controller in this paper, i.e., we do not consider multiple
SDN controllers for a given vSDN.

B. k-Hypervisor Placement Problem (k-HPP)

Table III specifies the input of the k-HPP. For a given physi-
cal SDN network G and set of vSDN requests R , a prescribed
number k of hypervisor locations need to be chosen among all
potential hypervisor locations �. The result of such an opti-
mization problem is the set of selected hypervisor locations H .
The set H specifies the hypervisor locations on the network,
i.e., the locations where the hypervisors are actually placed.



BLENK et al.: CONTROL PLANE LATENCY WITH SDN NETWORK HYPERVISORS: THE COST OF VIRTUALIZATION 371

TABLE IV
BINARY DECISION VARIABLES FOR k-HPP AND MCSDP

In real networks, those hypervisor locations could be data cen-
ter locations, which are connected to the network topology at
given network locations v ∈ V .

C. Multi-Controller Switch Deployment Problem (McSDP)

We denote M for the number of multi-controller SDN net-
work nodes. We note that in our problem formulation, we
do not specify which physical SDN switches specifically sup-
port the multi-controller feature. Instead, solving our problem
formulation determines which switches should support mul-
tiple controllers (hypervisors). An alternative input setting of
our problem formulation could include a predetermined set
of switches supporting the special multi-controller feature. In
case M = 0, no physical SDN switch supports the multi-
controller feature, i.e., no SDN switch can simultaneously
connect to multiple hypervisor instances. For 0 < M < |V |,
a subset of the physical SDN switches supports multiple con-
trollers. In case M = |V |, all physical SDN switches support
multiple controllers.

V. MIXED INTEGER PROGRAMMING FORMULATION

FOR k-HPP AND MCSDP

A. Decision Variables

Table IV specifies the binary decision variables of the mixed
integer programming formulation of the k-HPP and McSDP.
The variable xH (v) determines whether a hypervisor is located
at the network node (location) v ∈ �. Note that after having
solved the model, the variables xH (v) specify the set H of
hypervisor nodes, specifically, H = {v ∈ � : xH (v) = 1}.
For a request r ∈ R , the variable xR (vr, h, cr) is set to one
if the vSDN node vr ∈ V r is connected to the vSDN con-
troller cr via the hypervisor node (location) h ∈ �. Note that
if a path xR (vr, h, cr) is set to one, then a hypervisor needs
to be placed at the potential hypervisor node (location) h. The
variable xV ,H (v, h) indicates whether physical node v ∈ V is
controlled by the hypervisor instance placed at location h ∈ �.
The variable xM (v) indicates whether the multi-controller fea-
ture is deployed and used at physical node v ∈ V . In case of a
multi-controller SDN switch, i.e., where xM (v) = 1, the vari-
able xV ,H (v, h) for a given node v ∈ V is possibly one for
multiple hypervisor nodes (locations) h ∈ �.

B. Objective Functions

We focus on objective functions that seek to minimize the
control plane latency. In particular, we introduce four latency

metrics, namely maximum latency Lmax, average latency Lavg,
average maximum latency Lavgmax, and maximum average
latency Lmaxavg. Average and maximum latency are traditional
metrics from the related SDN controller placement problem;
we extend these metrics for the k-HPP. Note that when opti-
mizing for Lmax, Lavgmax, and Lmaxavg, additional variables and
constraints are needed. These variables and constraints are sub-
sequently introduced when the metrics are presented. As these
variables and constraints are objective specific, they are not
described in the general constraints Section V-C. We investi-
gate a model without capacity constraints in this study. The
incorporation of capacity constraints, such as data rate and
node capacity (e.g., CPU or memory capacity) are planned
for future work.

1) Maximum Latency: The maximum latency for a con-
sidered hypervisor placement is the maximum latency of all
utilized shortest paths from all requests r ∈ R . Recall that the
binary decision variable xR (vr, h, cr) indicates (i.e., is equal
to one) when the path from vr via h to cr is used. Thus, the
maximum latency of all paths that have been selected to fulfill
the requests r ∈ R is given by

Lmax = max
r∈R , vr∈V r, h∈�

xR (vr, h, cr)d
(
π

(
vr), h, π

(
cr)). (1)

Minimizing the latency metric Lmax involves minimizing a
maximum over sets, which is not directly amenable to some
solvers. The maximum over sets can be readily expressed as an
equivalent constrained minimization problem. Specifically, we
can equivalently minimize Lmax defined through the constraints

Lmax ≥ xR (vr, h, cr)d
(
π

(
vr), h, π

(
cr)),

∀r ∈ R , ∀vr ∈ V r, ∀h ∈ �. (2)

The resulting objective function is

min Lmax. (3)

2) Average Latency: The average latency is the average of
all path latencies of all vSDNs that connect the virtual network
nodes with the vSDN controllers of the respective vSDNs. For
a vSDN request r, there are |V r| vSDN nodes that need to
be connected to the vSDN controller cr. Thus, for a set of
requests R , there are overall

∑
r∈R |V r| paths and the average

latency is

Lavg = 1
∑

r∈R
∣∣V r

∣∣
∑

r∈R

∑

vr∈V r

∑

h∈�

xR (vr, h, cr)

× d
(
π

(
vr), h, π

(
cr)). (4)

Note that this metric does not differentiate between the vSDNs.
Here, no additional variable or constraint are needed, thus the
average latency objective function is

min Lavg. (5)

3) Average Maximum Latency: The average maximum
latency for a given hypervisor placement is defined as the
average of the maximum latencies for the individual vSDN
requests r ∈ R . First, the maximum path latency for each
vSDN request r is evaluated. Second, the average of all
maximum path values is evaluated, i.e., the sum of the



372 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 3, SEPTEMBER 2016

maximum path latencies is divided by the total number of
vSDN requests |R |.
Lavgmax

= 1

|R |
∑

r∈R

max
vr∈V r, h∈�

xR (vr, h, cr)d
(
π

(
vr), h, π

(
cr)). (6)

In order to circumvent the maxima over sets, we define
constraints for the maximum latency of each given vSDN
request r ∈ R :

Lr
max ≥ xR (vr, h, cr)d

(
π

(
vr), h, π

(
cr)), ∀vr ∈ V r, ∀h ∈ �.

(7)

The objective function then minimizes the average of the Lr
max

over all requests |R |:

min
1

|R |
∑

r∈R

Lr
max. (8)

This objective function provides a relaxed average latency
towards a better maximum latency per vSDN. Note that this
objective function differentiates between vSDNs.

4) Maximum Average Latency: The maximum average
latency is defined as the maximum of the average latencies
for the individual vSDNs. First, the average latency of each
requested vSDN request r ∈ R is determined. Second, the
maximum of these averages is evaluated, i.e.,

Lmaxavg = max
r∈R

1
∣∣V r

∣∣
∑

vr∈V r

∑

h∈�

xR (vr, h, cr)

× d
(
π

(
vr), h, π

(
cr)). (9)

This metric corresponds to the maximum of the vSDN average
latencies, i.e., the maximum latencies are relaxed per vSDN
towards a better overall maximum average latency. Minimizing
the maximum over the set R is equivalent to minimizing
Lmaxavg defined through the constraints

Lmaxavg ≥ 1
∣
∣V r

∣
∣

∑

vr∈V r

∑

h∈�

xR (vr, h, cr)d
(
π

(
vr), h, π

(
cr))

∀r ∈ R . (10)

The objective function then minimizes Lmaxavg:

min Lmaxavg. (11)

C. Constraints

We proceed to introduce the constraints for the k-HPP and
McSDP.

1) Hypervisor Selection Constraint: We ensure that the
number of placed hypervisor instances (i.e., the number of
selected hypervisor nodes (locations)) is equal to k:

∑

h∈�

xH(h) = k. (12)

2) Virtual Node Path Selection Constraint: Each virtual
node vr ∈ V of each vSDN request r ∈ R must be connected
to its corresponding controller cr via exactly one hypervisor
node h. This means that per virtual node vr per request r,
exactly one path has to be used:

∑

h∈�

xR (vr, h, cr) = 1, ∀r ∈ R ,∀vr ∈ V r. (13)

3) Hypervisor Installation Constraint: We place (install)
a hypervisor instance at location h (i.e., set xH (h) = 1) if at
least one virtual node vr is connected to its controller cr via the
hypervisor location h (i.e., if xR (vr, h, cr) = 1). At the same
time, at most

∑
r∈R |V r| virtual nodes can be connected via

a given hypervisor location h to their respective controllers.
Thus,

∑

r∈R

∑

vr∈V r

xR (vr, h, cr) ≤ xH (h)
∑

r∈R

|Vr|, ∀h ∈ �. (14)

4) Physical Node to Hypervisor Assignment Constraint:
We let a hypervisor node (location) h control a physical
SDN switch (network node) v, if a path is selected to con-
nect a virtual node vr to its controller cr via h (i.e., if
xR (vr, h, cr) = 1) and additionally, this virtual node is hosted
on v, i.e., π(vr) = v. Thus:

xR (vr, h, cr) ≤ xV ,H (π
(
vr), h),

∀r ∈ R , ∀vr ∈ V r, ∀h ∈ �. (15)

5) Multiple Hypervisors Constraint: We determine the
physical SDN switches v ∈ V that can be controlled by
multiple hypervisors, i.e., the switches v (with xM (v) = 1)
that support multiple controllers. For a given physical multi-
controller SDN switch v ∈ V (with xM (v) = 1), the number
of controlling hypervisors must be less than or equal to the
total number of hypervisor nodes k, if the switch hosts at least
one virtual SDN switch (which needs to be connected to its
controller). On the other hand, for a physical single-controller
SDN switch v ∈ V (with xM (v) = 0), the number of control-
ling hypervisors must equal one, if the switch hosts at least
one virtual SDN switch. Thus, for an arbitrary physical SDN
switch (node) v ∈ V (irrespective of whether v is a single- or
multi-controller SDN switch), the total number of controlling
hypervisor instances (locations) must be less than or equal to
[1 − xM (v)] + kxM (v). Thus,

∑

h∈�

xV ,H (v, h) ≤ [
1 − xM (v)

] + kxM (v), ∀v ∈ V . (16)

We note that some solvers may unnecessarily set some
xV ,H (v, h) to one for a hypervisor node h, even though net-
work node v does not host any virtual node vr that is connected
to its corresponding controller cr via hypervisor node h. This
is because the solver can find a valid minimal latency solu-
tion while setting some xV ,H (v, h) unnecessarily to one. We
circumvent this issue by forcing xV ,H (v, h) to zero if no
corresponding path for this hypervisor instance was selected:

xV ,H (v, h) ≤
∑

r∈R

∑

{vr∈V r :
v=π(vr)}

xR (vr, h, cr), ∀v ∈ V ,∀h ∈ �.

(17)



BLENK et al.: CONTROL PLANE LATENCY WITH SDN NETWORK HYPERVISORS: THE COST OF VIRTUALIZATION 373

TABLE V
EVALUATION SETTINGS

6) Multi-Controller Switches Constraint: We limit the
number of special multi-controller SDN switches that are
physically deployed in the network:

∑

v∈V

xM (v) ≤ M. (18)

Note that via this constraint the four different architectures, as
introduced in Section III, can be modeled, optimized, and ana-
lyzed. Setting M = 0 forces all xM (v) to zero. Accordingly,
there are no physical multi-controller SDN switches in the net-
work, i.e., a physical SDN switch node can only be controlled
by one hypervisor node. Thus, shared control domains, i.e.,
one node being controlled by multiple hypervisor nodes, are
not possible.

VI. EVALUATION SET-UP

We extended our Python-based framework from [10] with
our new models introduced in this paper. The framework
uses Gurobi as solver for the MIP formulation. In this paper,
the evaluation focuses mainly on the latency analysis, i.e.,
the hypervisor placement (HP) latency values (defined in
Section V-B) and the latency values of the individual vSDN
requests (defined in Section VII-B). Following [9], we use
real network topologies to evaluate the architectures. The
evaluation settings are summarized in Table V.

A. Substrate Networks

The performance evaluations focus initially on the hyper-
visor instance placement for the Internet2 Open Science,
Scholarship and Services Exchange (OS3E) network topol-
ogy. The OS3E network is a well known research network
with OpenFlow capability. The OS3E network has 34 nodes
and about 41 edges. The geographical node locations are used
to calculate the latency of the network edges. We neglect
additional latency, e.g., due to nodal processing. We con-
duct general topology evaluations for the Abilene, Quest,
Bellcanada, OS3E, and Dfn networks [33].

B. Virtual SDN Network (vSDN) Request

For a given vSDN request r, the number of vSDN nodes,
i.e., |V r|, is randomly determined by a uniform distribution
between 2 and 10. The vSDN node locations are chosen ran-
domly among all physical locations V . The number of vSDN
nodes per physical node is limited to one per request. The
number of vSDN controllers per request r is set to one. In order
to evaluate the impact of the virtual controller placement (CP)
on the hypervisor placement (HP) latency, we consider three
vSDN CPs, namely random (rnd), average (avg), and maxi-
mum (max). Random CP selects the node location π(cr) of
the vSDN controller of a given request r randomly among all
physical node locations V . The average and maximum CPs [9]
optimize the controller location for the locations of vSDN
switches V r. The potential controller locations are always the
set of physical node locations V . For a given request r ∈ R ,
the maximum CP minimizes the maximum control latency of
all virtual switches V r to their corresponding controller cr.
The average CP minimizes the average control latency for all
controller cr to switch connections per vSDN request. As we
are interested in the study of a priori CPs, the vSDN controller
locations are optimized a priori and fed as input into the MIP
models.

C. Architecture Comparison

For all architectures, we assume that all network nodes can
host a hypervisor node, i.e., � = V . The number of hyper-
visor nodes k and the number of multi-controller switches M
determine the type of hypervisor architecture. The centralized
architecture, see Section III-A and Fig. 1a, is characterized
by k = 1 and M = 0, i.e., each switch has only one con-
troller (hypervisor) connection. Note also that k > 0 and
M = 0 corresponds to the distributed architecture operating
on single-controller switches (see Section III-B and Fig. 1b),
while 0 < M < |V | corresponds to the hybrid architecture
(Section III-D, Fig. 1d) and M = |V | represents the dis-
tributed architecture where only multi-controller switches are
deployed (see Section III-C, Fig. 1c). We set M through the
ratio Mr = M/|V | = 0, 0.25, 0.5, 0.75, 1 that specifies the
maximum number of network nodes supporting the multi-
controller feature. For instance, Mr = 0.5 corresponds to
M = 17 multi-controller switches that can be placed inside the
OS3E network. We initially compare all four SDN network
hypervisor architectures in terms of the HP latency metrics
defined in Section V-B. All latency results will be given in
kilometers [km]. Subsequently, we analyze the latency values
of the vSDN requests in order to evaluate the impact of virtu-
alization. We then show through a generalized topology-aware
analysis how the architectures behave for varying network
topologies. Every optimization setup was executed 200 times
to achieve statistically reliable results.

VII. EVALUATION RESULTS

A. Impact of Hypervisor Placement (HP) on Latency Metrics

We first present and discuss a compact representation of the
results for varying number of vSDN requests |R | and increas-
ing number of hypervisor instances k in Fig. 2. Based on our



374 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 3, SEPTEMBER 2016

Fig. 2. The heatmaps show the latency values (in kilometers [km]) averaged over 200 independent runs. Light yellow represents high latency values, while
dark red represents low latency values. For each subfigure, the numbers of vSDN requests |R | are indicated on the left, the numbers of hypervisor instances
k on the bottom, and the heatmap scale for the latencies on the right. Fixed param.: no multi-controller switches Mr = 0, random controller placement (CP).

observations we then conduct a more detailed evaluation of
selected set-ups in Fig. 3 to clearly illustrate the effects of dif-
ferent architecture attributes, namely multi-controller switches,
number of hypervisor instances k, and controller place-
ments (CPs). In order to evaluate the virtualization overhead,
i.e., the cost of virtualization, in terms of additional control
plane latency, we conclude the OS3E evaluation by investi-
gating the individual request latencies of the vSDN requests
in Figs. 5–7. Finally, we provide an analysis of five different
substrates in Figs. 8–10 to assess how our observations may be
generalized.

1) Severe Impact of Number of vSDN Requests and
Hypervisor Instances on HP Latency Metrics: Figures 2a–d
provide a compact representation of the HP latency met-
rics for every combination of number of hypervisors k and
number of vSDN requests |R |. We consider the random CP
strategy in order to focus on the impact of the parameters
k and |R |. The figures show heatmaps of the latency values
averaged over 200 independent runs. The lowest latency value
is represented in black color and the highest latency value
in bright yellow color. Red represents intermediate latency
values.

When only a single vSDN is considered (|R | = 1), increas-
ing the number of hypervisor instances k does not reduce any
of the resulting latency metrics. When only a single hypervi-
sor instance is considered (k = 1), the latencies significantly
increase with increasing number of vSDN requests |R |. On
the other hand, for multiple requested vSDNs (|R | > 1), we
observe from Fig. 2 that increasing the number of hypervisor
instances k generally reduces the latencies.

The number of requested vSDNs |R | plays an important
role when optimizing the HP. For small |R |, a small number of
hypervisor instances k suffices to achieve optimal placements.
In order to investigate the impact of k, M (Mr), and the CP in
more detail, we set |R | = 70 for the subsequent evaluations
as this setting has shown a clear effect of increasing k on the
HP latencies.

2) Increasing the Number of Hypervisor Instances k
Minimizes Latency Metrics Differently: Figures 3a–d show the
impact of the number of hypervisors k, the number of multi-
controller switches M, and the virtual CPs on the achieved
latencies. Each figure shows the result of one HP objec-
tive. Further, the random CP is compared to the best CP,
i.e., either average or maximum CP, which achieved the best
results in the conducted simulations. For each metric, the

95% confidence interval of the mean value over 200 runs
is shown.

We observe from Figs. 3a–d that additional hypervisor
instances generally reduce the latency objectives for all set-
ups. This decrease of latencies with increasing k is consistent
with the observations from Figs. 2a–d, which considered
increasing k for a range of numbers of vSDN requests |R |
(and Mr = 0). Notice in particular, the continuous drop of
Lavg in Fig. 2d.

However, we also observe from Figs. 3a–d that for increas-
ing k there is typically a point of diminishing returns,
where adding hypervisor instances does not further reduce the
latency. This point of diminishing returns varies according to
latency objective and CP. For instance, the point of diminishing
returns ranges from k = 2 for random CP with the Lmax objec-
tive and M = 34 (Fig. 3a), to k = 9 for Lavg (Fig. 3d). That
is, the convergence point differs strongly among the set-ups.
Thus, in case of changing the operation goal of a hypervi-
sor deployment, e.g., for Mr = 0 from Lmaxavg to Lavgmax,
a re-optimization of the HP may be necessary as a different
number k of hypervisors may be needed for achieving an opti-
mal latency value (e.g., from k = 5 for Lmaxavg to k = 9 for
Lavgmax with random CP).

3) More Multi-Controller Switches Demand Less
Hypervisor Instances for an Optimal Solution: Figs. 3a–d
also show that all objectives benefit from multi-controller
switches. This means that increasing the number of multi-
controller switches M decreases the number of hypervisor
instances k required for an optimal solution. Further, the
point of diminishing returns is affected. For instance, for
Lmax with random CP (Fig. 3a), k = 2 hypervisor instances
achieve the lowest latency when M = 17 or 34, instead of
k = 5 for M = 0. Lavg shows a more significant benefit of
multi-controller switches over all k (Fig. 3d). This is shown
by the non-overlapping blue solid (M = 0) and red dashed
(M = 34) lines. To conclude, with respect to all objectives,
only 50 % of switches need to support the multi-controller
feature in order to achieve an optimal HP, as it is shown
by the overlapping green dotted (M = 17) and red dashed
(M = 34) lines.

4) The Best Controller Placement Strategy Depends on the
Hypervisor Latency Objective: Figs. 3a–d indicate that opti-
mized CP significantly decreases the values of all latency
metrics, in some cases by more than 50 %. For instance, for
the objective Lmax, the latency is reduced by nearly 42 %



BLENK et al.: CONTROL PLANE LATENCY WITH SDN NETWORK HYPERVISORS: THE COST OF VIRTUALIZATION 375

Fig. 3. Latency values (95 % confidence intervals over 200 runs, in kilometers [km]) obtained with the different latency minimization objectives Lmax,
Lmaxavg, Lavgmax, and Lavg as a function of number of hypervisor instances k. The number of multi-controller switches is M = 0 (Mr = 0, solid lines),
M = 17 (Mr = 0.5, green dotted lines), and M = 34 (Mr = 1, red dashed lines). The controller placement (CP) strategies are random (square boxes),
maximum (crosses), and average (triangles).

from an average value of 5 ·103 km to 2.9 ·103 km (Figs. 3a).
The optimized CP also improves the centralized architecture
(k = 1) for the Lmax, Lavg, and Lavgmax objectives. For Lmaxavg,
however, an optimized CP does not significantly reduce the
latency of the centralized architecture (k = 1). Furthermore,
the best CP strategy depends on the HP objective. The maxi-
mum CP achieves the most pronounced latency reduction for
the Lmax and Lavgmax latency objectives. For Lavg and Lmaxavg,
the average CP shows the best performance improvement.

5) The Average/Maximum Controller Placements Demand
More Hypervisors for an Optimal Solution: In addition to
reducing the latency values in general, the maximum and aver-
age CPs affect the point of diminishing returns with respect
to the number of hypervisor instances k (Figs. 3a–d). Also,
the number of multi-controller switches M impacts the con-
vergence point per HP objective. For the Lmaxavg, Lavgmax,
and Lavg objectives, there is a small gap between M = 0
and M = 34. However, for Lmax, there is a pronounced gap
between M = 0 and M = 34; and only for k = 9 hypervi-
sor instances do the M = 0 and M = 34 curves converge.
For the Lmaxavg objective, the convergence point is also only
reached for k = 9 hypervisor instances. When comparing all
latency values for k = 1, only Lmaxavg benefits neither from
optimized CP nor from multi-controller switches. This effect
can be explained by the examination of the individual latencies
of the vSDN requests, as conducted in the next subsection.

B. Analysis of the vSDN Requests’ Control Plane
Latency—The Cost of Virtualization

Before analyzing the impact of the HP on the individual
vSDN requests, we first examine the impact of the CP on
the individual requests without virtualization. This means that
we calculate for each request the best possible latency values,
which are determined by the CP. Without virtualization, the
connections between the requested switches and controllers do
not have to pass through any hypervisor instance. We define
the maximum request latency

LVN,CP
max (r) = max

vr∈V r
d
(
π

(
vr), π

(
cr)), ∀r ∈ R (19)

Fig. 4. Cumulative distribution functions of average (P(X ≤ LVN,CP
avg )) and

maximum (P(X ≤ LVN,CP
max )) latencies for direct virtual switch to controller

connections of individual requested vSDNs r ∈ R , without traversing hyper-
visors. The controller placement (CP) strategies are: random (blue solid line),
average (green dotted line), and maximum (red dashed line).

and the average request latency

LVN,CP
avg (r) = 1

|V r|
∑

vr∈V r

d
(
π

(
vr), π

(
cr)), ∀r ∈ R . (20)

Note that these are the definitions of the request latencies
without any virtualization. For calculating the latencies with
virtualization LVN,HP

avg (r) and LVN,HP
max (r), d(π(vr), π(cr)) needs

to be replaced by d(π(vr), h, π(cr)), i.e., by the distance of the
paths via the used hypervisor instances. We omit the request
specification ‘(r)’ in the following to avoid notational clutter.

Figs. 4a–b show the LVN,CP
avg and LVN,CP

max CDFs for the ran-
dom, average, and maximum CPs without virtualization (i.e.,
no HP). In general, they show the best possible request laten-
cies that can be achieved for each request. Virtualization, i.e.,
hypervisor placement, will in the best case achieve the latency
values as shown by the figures. The maximum and the average
placement strategy reduce the request latency values LVN,CP

avg

and LVN,CP
max . The average CP achieves the lowest latency values

for LVN,CP
avg , while the maximum CP achieves the lowest laten-

cies for LVN,CP
max . Interestingly, the results of the maximum CP

are close to the average CP for LVN,CP
avg . The reason is that the

maximum CP places the controller in the middle of the longest
path between two virtual SDN switches to reduce LVN,CP

max . This



376 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 3, SEPTEMBER 2016

Fig. 5. Mean values and 95 % confidence intervals of average (LVN,HP
max ) and maximum (LVN,HP

avg ) latencies for virtual switch-hypervisor-controller connections
of individual vSDNs r ∈ R . For each HP latency minimization objective, the impact of k hypervisor instances and the controller placement (CP) are depicted:
random CP (blue boxes), average CP (red triangles), and maximum CP (green crosses). Fixed param.: Mr = 0.5 multi-contr. switches.

is in most cases a central position of the vSDN, which leads
also to low LVN,CP

avg values.
Figures 5a–h show the impact of CPs and the number

of hypervisor instances k on the request latencies LVN,HP
max

and LVN,HP
avg . Each figure shows the behavior for a given HP

objective. For distributed architectures (k > 1), we set the
number of multi-controller switches to M = 17 as the hybrid
architecture has already optimal HP latency values.

1) Adding Hypervisor Instances May Increase the
Request Latency With Maximum-Based Objectives: For the
maximum-based latency objectives, namely Lmax, which
considers the maximum of all individual path latencies
d(π(vr), h, π(cr)), vr ∈ V r of all requests r ∈ R (see
Eqn. (1)), and Lmaxavg, which considers the maximum of the
average vSDN (request) latencies (see Eqn. (9)), we observe
from Figs. 3a, b, e, and f mixed behaviors. For instance,
for the maximum CP, which achieves generally the lowest
individual maximum request latencies LVN,HP

max , additional
hypervisor instances are beneficial for the Lmax objective, but
may increase latencies for the Lmaxavg objective. Similarly,
additional hypervisors increase the request latencies for
several other combinations of CP and request latency metric
in Figs. 3a, b, e, and f. This is because the maximum-based
latency objectives Lmax strive to minimize the maximum path
latency over all requested vSDNs (see Eqn. (1)). For this, Lmax

relaxes the maximum request latency LVN,HP
max (r) and average

request latency LVN,HP
avg (r) for some vSDN requests r in order

to improve the maximum latency over all requests. Similarly,
Lmaxavg strives to minimize the maximum average request
latency LVN,HP

avg (r) over all requested vSDNs (see Eqn. (9)).
Thus, a single vSDN request, namely the vSDN with the
longest virtual node-hypervisor-controller path (for Lmax) or
the highest average request latency (for Lmaxavg) governs the
optimal latency objective value. For the remaining vSDN
requests, i.e., the requests that do not affect the objective,

Fig. 6. Cumulative distribution functions of average (P(X < LVN,HP
avg ))

and maximum (P(X < LVN,HP
max )) individual vSDN request latencies with HP

(virtualization); LVN,CP
max and LVN,CP

avg show the request latencies without virtu-
alization (see Fig. 4). Fixed param.: k = 9 hypervisors, Mr = 0.5 multi-contr.
switches.

the responsible hypervisors may not be placed optimally
with respect to LVN,HP

max and LVN,HP
avg . Therefore, some vSDN

requests may experience increased latencies when adding
hypervisors in order to improve the optimal latency objective
value, as demonstrated by Figs. 3a, b, e, and f. We plan to
propose an algorithm that addresses this issue in future work.

2) Average-Based Latency Objectives Always Benefit
From Additional Hypervisor Instances: We observe from
Fig. 5c, d, g, and h that for the average-based latency objec-
tives Lavgmax and Lavg, the individual requests always benefit
from additional hypervisor instances, i.e., from increasing k.
Through the averaging over all path lengths (Lavg) or the
maximum path lengths of all vSDN requests (Lavgmax), the
average-based latency metrics consider all vSDN requests
and exploit additional hypervisor instances to achieve lower
latency objectives and lower individual vSDN request laten-
cies. We also observe from Figs. 5c, d that the maximum CP
achieves the lowest maximum request latencies LVN,HP

max while
the average CP achieves the lowest average request latencies
LVN,HP

avg (Figs. 5g, h). Overall, the objective Lavg (Figs. 5d, h)
achieves the lowest request latencies LVN,HP

max and LVN,HP
avg .



BLENK et al.: CONTROL PLANE LATENCY WITH SDN NETWORK HYPERVISORS: THE COST OF VIRTUALIZATION 377

Fig. 7. Boxplots for the maximum and average latency overhead ratios RVN
max and RVN

avg (Eqs. (21) and (22)) for OS3E network. An overhead ratio of one
corresponds to no overhead, i.e., a zero cost of virtualization. The blue boxes show the upper 75 % quartile and the lower 25 % quartile. The green filled
squares show the mean and the red line the median. In case the upper quartile and the lower quartile are equal, the whiskers reach the maximum outlier value,
shown via blue dashed lines. The black crosses indicate the outliers that do not fall into the 1.5 times interquartile range of the whiskers. For each figure,
k = 1, 2, 5, 9 hypervisor instances are compared for the controller placement (CP) strategies (rnd, max, avg). Y-axes are scaled logarithmically.

3) Significant Request Latency Trade-Offs Among All
Objectives Can be Observed: In order to achieve their opti-
mization goal, the objectives lead to trade-offs among the
request latencies LVN,HP

max and LVN,HP
avg . We illustrate these trade-

offs for the hybrid architecture (M = 17) with k = 9
hypervisor instances. The following observations hold in gen-
eral also for most other set-ups. As depicted in Fig. 6a, the Lavg
objective achieves the lowest request latencies. We observe
a clear trade-off between the Lavgmax and Lmaxavg objectives
with respect to LVN,HP

avg . As expected, Lmaxavg pushes down the
maximum average latency among all requests, thus, achieving
lower latencies for the upper 20 % of the requests. By pushing
down the individual maximum path latencies over all requests,
Lavgmax pays more attention to the individual paths, i.e., con-
troller to switch connections, of the requests. Consequently,
Lavgmax accepts larger values for 20 % of the requests in order
to improve the latency of the 80 % remaining requests.

Fig. 6b shows again important trade-offs among all objec-
tives. Although Lmax minimizes the maximum request latency,
it accepts overall worse request latencies than Lavg and Lavgmax.
Further, the min Lmaxavg curve illustrates the model’s work-
ing behavior when optimizing for Lmaxavg. While minimizing
Lmaxavg pushes the maximum average latencies of all requests
down (Fig. 6a), it relaxes the request latencies LVN,HP

max towards
higher values (Fig. 6b).

4) Controller Placement Strategy and Additional
Hypervisor Instances Can Significantly Reduce Virtualization
Overhead: Having observed that the different latency
objectives provide generally varying trade-offs between the
request latencies, we now analyze the virtualization overhead
per vSDN request in detail. In order to investigate how
much overhead virtualization adds to the request latency,

we introduce metrics that reflect the virtualization overhead
ratio, i.e., the cost of virtualization. We define the maximum
latency overhead ratio

RVN
max(r) = LVN,HP

max (r)

LVN,CP
max (r)

, ∀r ∈ R (21)

and the average latency overhead ratio

RVN
avg(r) = LVN,HP

avg (r)

LVN,CP
avg (r)

, ∀r ∈ R . (22)

A request is affected by virtualization if an overhead ratio
is larger than one. An overhead ratio of one means that the
request latency is not increased by virtualization.

For analysis, the distributed hybrid architecture (k > 1, M =
17) is chosen as it has shown an optimal performance for the
HP latency objectives. We selected k = 1, 2, 5, 9 to provide a
representative set to illustrate the impact of using additional
hypervisor instances. Figs. 7a–h represent the latency overhead
ratios of all latency objectives. Boxplots depict how additional
hypervisor instances and the CP impact the overhead ratios.
As shown by Fig. 7, for some vSDN requests the controller
latency is up to 15 times higher. The random CP has the lowest
virtualization overhead. This is because the random CP has
already relative high latencies LVN,CP

avg and LVN,CP
max , see Fig. 4.

Generally, we observe from Fig. 7 that the objectives
Lavgmax and Lavg achieve the lowest overheads. Specifically,
for RVN

max, the objectives Lavgmax and Lavg achieve decreas-
ing latency overheads as more hypervisor instances are
deployed, i.e., k is increased. More than 75 % of the
requests (Fig. 7c and Fig. 7d) achieve an overhead ratio



378 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 3, SEPTEMBER 2016

Fig. 8. Latency reduction due to adding hypervisor instances for differ-
ent substrate topologies (indicated by line styles and colors). Multi-controller
ratios Mr = 0 and Mr = 1 are compared for average CP.

RVN
max = 1, i.e., their maximum latencies are not increased

at all by virtualization, when k = 5 or 9. In contrast, the
maximum-based latency objectives Lmax and Lmaxavg exhibit
again the mixed behavior for increasing k as observed in
Section VII-B1.

For RVN
avg, the objectives Lmaxavg, Lavgmax, and Lavg benefit

from additional hypervisors for all CP strategies. To conclude,
with a moderately high number of hypervisor instances (k = 5
or 9), the average-based latency objectives Lavgmax and Lavg
have demonstrated the lowest overhead ratios, irrespective of
the CP strategy. Thus, when individual request latencies need
to be optimized, the objectives Lavg and Lavgmax should be
chosen over Lmax or Lmaxavg.

C. Analysis of Different Substrate Network Topologies

We now examine the impact of different network topologies.
The goal of this examination is to determine whether some
of the observations and conclusions from the OS3E network
can be generalized to other network topologies. We focus on
the Lavg HP latency minimization objective as it has generally
achieved low latency values so far, including for the individual
request latencies LVN,HP

max and LVN,HP
avg . The substrate topologies

have varying numbers of network nodes and links. We set the
number of requested vSDNs to |R | = 70 to allow for a close
comparison to the preceding detailed analysis. Throughout,
we present the results as relative values, i.e., the performance
gain of a specific feature is compared to a baseline set-up,
in order to facilitate comparisons across different network
topologies.

1) Impact of Adding Hypervisor Instances: We start to
examine the impact of adding hypervisor instances, i.e., we
evaluate the latency reduction (performance gain) G

Lavg
k=1 =

1 − Lavg(k = x)/Lavg(k = 1). Lavg(k = x) denotes the HP
latency for x hypervisor instances and Lavg(k = 1) is the
latency of the centralized architecture. A higher ratio indicates
a better objective improvement (latency reduction). Figs. 8a–b
show the ratios when using the average CP for up to k = 9
hypervisor instances. The latency reduction can reach 40 %,
even without (Mr = 0) multi-controller switches (Fig. 8a). As
already seen for the OS3E topology, the improvement slowly
converges from k = 5 onward. This also holds for the dis-
tributed architectures, where all switches (Mr = 1) can operate
in multi-controller mode (Fig. 8b).

Fig. 9. Relative latency reduction due to increasing ratio Mr of multi-
controller switches in 0.25 steps for different topologies (indicated by line
styles and colors). Distributed architectures are compared for k = 2 and 9
hypervisor instances for average CP.

Fig. 10. Latency reduction due to maximum and average CP relative to
random CP for different topologies (indicated by line styles and colors) for
k = 1, . . . , 9 hypervisor instances for Mr = 1.

2) Impact of Adding Multi-Controller Switches: We pro-
ceed to examine the performance gain from adding multi-
controller switches. We evaluate the relative performance gain
(latency reduction) G

Lavg
Mr=0 = 1 − Lavg(Mr = x)/Lavg(Mr = 0)

when increasing the ratio (proportion) of multi-controller
switches from Mr = 0 to Mr = x = 0.25, 0.5, 0.75, 1.
We focus on k = 2 and 9 hypervisor instances. When
Mr = 0.5 (50 %) multi-controller switches are deployed, an
architecture with k = 2 hypervisor instances can achieve up
to 8 % performance gain (Fig. 9a). Generally, larger topolo-
gies (Dfn) benefit more from the multi-controller feature than
smaller topologies (Abilene). The point of diminishing returns
of the considered topologies ranges from Mr = 0.25 to 0.5. For
k = 9 hypervisor instances, the performance gain is slightly
lower than for k = 2 instances. Again, larger topologies, such
as Dfn, benefit more from the deployment of multi-controller
switches than smaller topologies.

3) Impact of Controller Placement CP Strategies: Finally,
we investigate the performance gains due to CP strategies. We
evaluate the relative performance gain of the maximum and
average CP versus the random CP. We allow all network nodes
to provide the multi-controller feature (Mr = 1). Figs. 10a–b
show the performance gain for Lmax and Lavg as a function of
the number of hypervisor instances k. The maximum CP leads
to performance gain over all topologies between 0.3 and 0.5.
In both cases, the point of diminishing returns is k = 4, which
would be the preferred number of hypervisor instances in those
set-ups.

VIII. CONCLUSION

When virtualizing software-defined networks, the control
plane latency plays an important role for the performance



BLENK et al.: CONTROL PLANE LATENCY WITH SDN NETWORK HYPERVISORS: THE COST OF VIRTUALIZATION 379

of the individual virtual SDN networks (vSDNs). In partic-
ular, when providing programmability and virtualization in
future communication networks, such as Internet of Things
and 5G networks [34], [35], low control plane latencies are
important. In this article, we have investigated the hypervi-
sor placement, i.e., the placement of the hypervisor instances
that provide the virtualization functionality. We have defined
mixed integer programming models for a centralized and
three distributed SDN network virtualization hypervisor archi-
tectures. Furthermore, we have investigated the impact of
multi-controller switches that can simultaneously connect to
multiple hypervisor instances. For evaluation of the four mod-
eled architectures, we have investigated the impact of the
hypervisor placement on the control plane latencies of the
entire network as well as individual vSDNs. We have identified
the control plane latency overhead due to the requirement that
the SDN switch to controller connections traverse a hypervisor
instance for virtualization. This latency overhead represents
the cost of virtualization. We have observed that virtualiza-
tion can add significant control latency overhead for individual
vSDNs. However, we have also shown that adding hypervi-
sor instances and using flexible multi-controller switches can
significantly reduce the hypervisor latencies for a range of
different substrate network topologies. Overall, the introduced
optimization models provide network operators with a for-
mal mechanism to rigorously examine the trade-offs of SDN
hypervisor placement and multi-controller SDN switch usage
for vSDNs.

Important directions for future research include the exten-
sion of the hypervisor placement study to a wider set of
performance metrics. For instance, to reduce energy consump-
tion, vSDN assignments can be consolidated on hypervisor
instances at runtime. As such consolidations would mod-
ify established control plane paths, thorough planning and
optimization of such consolidation operations are needed to
avoid control plane interruptions. Moreover, a high number
of assigned vSDNs per hypervisor may overload the hypervi-
sor CPU. Thus, load balancing schemes may need to balance
the number of physical switches, virtual switches, and tenant
controllers that are assigned to a given hypervisor. While this
study found that multi-controller switches reduce the hyper-
visor control plane latency, their use for reliability or load
balancing has not yet been investigated, presenting important
future work directions.

When extending the network model from Section IV-A to
limited link (edge) capacities, a packet-based optimization
may become necessary. For instance, packet-level congestion
problems may need to be addressed, e.g., through traffic shap-
ing. As network virtualization allows for flexible dynamic
adaptation of virtual networks at runtime, runtime updates
of hypervisor instances are another important research direc-
tion. More specifically, new hypervisor placement models
should be developed to dynamically plan and optimize the
hypervisor placements as the virtual network demands fluc-
tuate over time. Such optimization models might require
considering the different migration and state synchroniza-
tion techniques that are needed when adapting placements at
runtime.

REFERENCES

[1] R. Mijumbi et al., “Network function virtualization: State-of-the-art
and research challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart. 2016.

[2] D. Kreutz et al., “Software-defined networking: A comprehensive
survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[3] R. Sherwood et al., “Carving research slices out of your production
networks with OpenFlow,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 1, pp. 129–130, Jan. 2010.

[4] A. Al-Shabibi et al., “OpenVirteX: A network hypervisor,” in Proc.
Open Netw. Summit, Santa Clara, CA, USA, Mar. 2014, pp. 1–2.

[5] A. Blenk, A. Basta, and W. Kellerer, “HyperFlex: An SDN virtualiza-
tion architecture with flexible hypervisor function allocation,” in Proc.
IFIP/IEEE IM, Ottawa, ON, Canada, May 2015, pp. 397–405.

[6] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on net-
work virtualization hypervisors for software defined networking,” IEEE
Commun. Surveys Tuts., vol. 18, no. 1, pp. 655–685, 1st Quart. 2016.

[7] P. Berde et al., “ONOS: Towards an open, distributed SDN OS,” in Proc.
ACM Workshop HotSDN, Chicago, IL, USA, 2014, pp. 1–6.

[8] OpenDaylight. (2013). A Linux Foundation Collaborative Project.
[Online]. Available: http://www.opendaylight.org

[9] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” ACM SIGCOMM Comput. Commun. Rev., vol. 42, no. 4,
pp. 473–478, Sep. 2012.

[10] A. Blenk, A. Basta, J. Zerwas, and W. Kellerer, “Pairing SDN with
network virtualization: The network hypervisor placement problem,” in
Proc. IEEE NFV-SDN, San Francisco, CA, USA, 2015, pp. 198–204.

[11] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[12] ONF. (Dec. 2014). OpenFlow Switch Specifications 1.5.
[Online]. Available: https://www.opennetworking.org/images/
stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-spec-v1.5.pdf

[13] Hewlett-Packard. (Jun. 2015). HP Switch Software OpenFlow
v1.3 Administration Guide K/KA/WB 15.17. [Online]. Available:
http://h10032.www1.hp.com/ctg/Manual/c04656675

[14] K. Aardal, M. Labbé, J. Leung, and M. Queyranne, “On the two-level
uncapacitated facility location problem,” INFORMS J. Comput., vol. 8,
no. 3, pp. 289–301, Aug. 1996.

[15] A. Klose and A. Drexl, “Facility location models for distribution system
design,” Eur. J. Oper. Res., vol. 162, no. 1, pp. 4–29, 2005.

[16] H. Pirkul and V. Jayaraman, “A multi-commodity, multi-plant, capac-
itated facility location problem: Formulation and efficient heuristic
solution,” Comput. Oper. Res., vol. 25, no. 10, pp. 869–878, 1998.

[17] S. Guha, A. Meyerson, and K. Munagala, “Hierarchical placement and
network design problems,” in Proc. IEEE FOCS, Redondo Beach, CA,
USA, 2000, pp. 603–612.

[18] R. Z. Farahani, M. Hekmatfar, B. Fahimnia, and N. Kazemzadeh,
“Hierarchical facility location problem: Models, classifications, tech-
niques, and applications,” Comput. Ind. Eng., vol. 68, no. 1,
pp. 104–117, 2014.

[19] S. Lange et al., “Heuristic approaches to the controller placement prob-
lem in large scale SDN networks,” IEEE Trans. Netw. Service Manag.,
vol. 12, no. 1, pp. 4–17, Mar. 2015.

[20] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller place-
ment problem in software defined networks,” IEEE Commun. Lett.,
vol. 18, no. 8, pp. 1339–1342, Aug. 2014.

[21] A. Sallahi and M. St-Hilaire, “Optimal model for the controller place-
ment problem in software defined networks,” IEEE Commun. Lett.,
vol. 19, no. 1, pp. 30–33, Jan. 2015.

[22] Y. Jiménez, C. Cervelló-Pastor, and A. J. García, “On the controller
placement for designing a distributed SDN control layer,” in Proc. IFIP
Netw., Trondheim, Norway, Jun. 2014, pp. 1–9.

[23] S. Lange et al., “Specialized heuristics for the controller placement
problem in large scale SDN networks,” in Proc. ITC, Ghent, Belgium,
Sep. 2015, pp. 210–218.

[24] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “On reliability-
optimized controller placement for software-defined networks,” China
Commun., vol. 11, no. 2, pp. 38–54, Feb. 2014.

[25] L. F. Müller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, and
M. P. Barcellos, “Survivor: An enhanced controller placement strategy
for improving SDN survivability,” in Proc. IEEE GLOBECOM, Austin,
TX, USA, Dec. 2014, pp. 1909–1915.

[26] M. F. Bari et al., “Dynamic controller provisioning in software defined
networks,” in Proc. CNSM, Zürich, Switzerland, Oct. 2013, pp. 18–25.

http://www.opendaylight.org
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.5.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.5.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.5.pdf
http://h10032.www1.hp.com/ctg/Manual/c04656675


380 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 3, SEPTEMBER 2016

[27] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Commun. Surveys Tuts.,
vol. 15, no. 4, pp. 1888–1906, 4th Quart. 2013.

[28] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: Substrate support for path splitting and migration,” ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29, Apr. 2008.

[29] M. Demirci and M. Ammar, “Design and analysis of techniques for map-
ping virtual networks to software-defined network substrates,” Comput.
Commun., vol. 45, pp. 1–10, Jun. 2014.

[30] M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 206–219, Feb. 2012.

[31] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in software-defined networks,” IEEE Internet Comput., vol. 17, no. 2,
pp. 20–27, Mar./Apr. 2013.

[32] A. Basta, A. Blenk, H. B. Hassine, and W. Kellerer, “Towards a dynamic
SDN virtualization layer: Control path migration protocol,” in Proc.
CNSM, Barcelona, Spain, Nov. 2015, pp. 354–359.

[33] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet topology zoo,” IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765–1775, Oct. 2011.

[34] N. Omnes, M. Bouillon, G. Fromentoux, and O. Le Grand, “A pro-
grammable and virtualized network & IT infrastructure for the Internet
of Things: How can NFV & SDN help for facing the upcoming
challenges,” in Proc. IEEE ICIN, Paris, France, Feb. 2015, pp. 64–69.

[35] E. Hossain and M. Hasan, “5G cellular: Key enabling technologies
and research challenges,” IEEE Instrum. Meas. Mag., vol. 18, no. 3,
pp. 11–21, Jun. 2015.

Andreas Blenk received the Diploma degree in
computer science from the University of Würzburg,
Germany, in 2012. He is currently pursuing the
Ph.D. degree with the Technische Universität
München (TUM). In 2012, he joined the Chair of
Communication Networks with the TUM, where he
is a Research and Teaching Associate, and also
a member of the Software Defined Networking
and Network Virtualization Research Group. His
research is focused on service-aware network vir-
tualization, virtualizing software defined networks,

as well as resource management and embedding algorithms for virtualized
networks.

Arsany Basta received the M.Sc. degree in commu-
nication engineering from the Technische Universität
München (TUM), in 2012, where he is currently
pursuing the Ph.D. degree. He joined the TUM
Institute of Communication Networks, in 2012, as
a member of the research and teaching staff. His
current research focuses on the applications of soft-
ware defined networking, network virtualization, and
network function virtualization to the mobile core
toward the next generation (5G) network.

Johannes Zerwas (S’14) received the B.Sc. degree
in electrical engineering and information technology
from the Technische Universität München, Munich,
Germany, in 2015, where he is currently pursuing
the M.Sc. degree, and is also a Research Assistant
with the Chair of Communication Networks.

Martin Reisslein (S’96–A’97–M’98–SM’03–F’14)
received the Ph.D. in systems engineering from
the University of Pennsylvania, in 1998. He
is a Professor with the School of Electrical,
Computer, and Energy Engineering, Arizona State
University, Tempe. He served as an Editor-in-Chief
for the IEEE COMMUNICATIONS SURVEYS AND

TUTORIALS, from 2003 to 2007, and as an Associate
Editor of the IEEE/ACM TRANSACTIONS ON

NETWORKING, from 2009 to 2013. He currently
serves as an Associate Editor for the IEEE

TRANSACTIONS ON EDUCATION, Computer Networks, and Optical Switching
and Networking.

Wolfgang Kellerer (M’96–SM’11) has been a
Full Professor with the Technische Universität
München, heading the Chair of Communication
Networks with the Department of Electrical and
Computer Engineering, since 2012. He was the
Director and the Head of Wireless Technology and
Mobile Network Research with NTT DOCOMO’s
European Research Laboratories and DOCOMO
Euro-Laboratory, for over ten years. His research
focuses on concepts for the dynamic control of
networks (software defined networking), network

virtualization and network function virtualization, application-aware traf-
fic management, and machine-to-machine communication, device-to-device
communication, and wireless sensor networks with a focus on resource man-
agement toward a concept for 5th generation mobile communications in
wireless networks. His research resulted over 200 publications and 29 granted
patents in the areas of mobile networking and service platforms. He is a
member of ACM and the VDE ITG.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


