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ABSTRACT

Streaming of continuous media over wireless links is a notoriously difficult problem. This is due to the stringent
Quality of Service requirements of continuous media and the unreliability of wireless links. We develop a streaming
protocol for the real-time delivery of prerecorded continuous media from a central base station to multiple wireless
clients within a wireless cell. Our protocol prefetches parts of the ongoing continuous media streams into prefetch
buffers in the clients. Our protocol prefetches according to a Join—the-Shortest—Queue policy. By exploiting rate
adaptation techniques of wireless data packet protocols, the Join—the—Shortest—Queue policy dynamically allocates
more transmission capacity to streams with small prefetched reserves. Our protocol uses channel probing to handle the
location—dependent, time—varying, and bursty errors of wireless links. We evaluate our prefetching protocol through
extensive simulations with VBR MPEG encoded video traces. Our simulations indicate that for bursty VBR video
with an average rate of 64 kbit/sec and typical wireless communication conditions our prefetching protocol achieves
client starvation probabilities on the order of 10™* and a bandwidth efficiency of 90 % with prefetch buffers of 128
kBytes.

Keywords: Channel Probing, Prefetching, Prerecorded Continuous Media, Real-Time Streaming, Wireless Com-
munication

1. INTRODUCTION

Due to the popularity of the World Wide Web retrievals from web servers are dominating today’s Internet. While
most of the retrieved objects today are textual and image objects, web—based streaming of continuous media, such as
video and audio, becomes increasingly popular. At the same time there is increasingly the trend toward accessing the
Internet and Web from wireless devices. The stringent Quality of Service (QoS) requirements of continuous media
and the unreliability of wireless links combine to make streaming over wireless links a notoriously difficult problem.
In this paper we develop a high performance streaming protocol for the real-time delivery of prerecorded continuous
media over wireless links. We focus on the streaming in the downlink (base station to clients) direction. Qur protocol
allows for immediate commencement of playback. Our protocol gives a constant perceptual media quality at the
clients while achieving a very high bandwidth efficiency. Our protocol achieves this high performance by exploiting
two special properties of prerecorded continuous media: (1) the client consumption rates over the duration of the
playback are known before the streaming commences, and (2) while the continuous media stream is being played
out at the client, parts of the stream can be prefetched into the client’s memory. The prefetched reserves allow the
clients to continue playback during periods of adverse transmission conditions on the wireless links.

The prerecorded continuous media streams are prefetched according to a specific Join-the-Shortest—Queue (JSQ)
policy, which strives to balance the prefetched reserves in the wireless clients within a wireless cell. The JSQ prefetch
policy exploits rate adaptation techniques of wireless data packet protocols.! The rate adaptation techniques allow
for the dynamic allocation of transmission capacities to the ongoing wireless connections. In the Code Division
Multiple Access (CDMA) IS-95 (Revision B) standard, for instance, the rate adaptation is achieved by varying the
number of codes (i.e., the number of parallel channels) used for the transmissions to the individual clients. Roughly
speaking, the JSQ prefetch policy dynamically allocates more transmission capacity to wireless clients with small
prefetched reserves while allocating less transmission capacity to the clients with large reserves. The ongoing streams
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Figure 1. Architecture: A central base station streams prerecorded continuous media to wireless (and possibly
mobile) clients within a wireless cell.

within a wireless cell collaborate through this lending and borrowing of transmission capacities. Channel probing
is used to judiciously utilize the transmission capacities of the wireless links, which typically experience location—
dependent, time—varying, and bursty errors. Our extensive numerical studies indicate that this collaboration is highly
effective in reducing playback starvation at the clients while achieving a high bandwidth efficiency. For bursty VBR
video with an average rate of 64 kbit/sec and typical wireless communication conditions our prefetching protocol
achieves client starvation probabilities on the order of 10~* and a bandwidth efficiency of 90 % with client buffers of
128 kBytes.

This paper is organized as follows. In Section 2 we describe our architecture for the streaming of prerecorded
continuous media in the downlink direction. Our focus is on multi-rate CDMA systems. In Section 3 we develop the
JSQ prefetching protocol. We also introduce channel probing; a mechanism that handles the location—dependent,
time—varying, and bursty errors of wireless environments. We evaluate our prefetching protocol through extensive
simulations. We discuss the related work in Section 4 and conclude in Section 5.

2. ARCHITECTURE

Figure 1 illustrates our architecture for continuous media streaming. A central base station provides streaming
services to multiple wireless (and possibly mobile) clients within a wireless cell. Let .J denote the number of clients
serviced by the base station. We assume for the purpose of this study that each client receives one stream; thus there
are J streams in process. The basic principle of our streaming protocol — exploiting rate adaptation techniques for
prefetching — can be applied to any type of wireless communication system with a slotted Time Division Duplex
(TDD) structure. The TDD structure provides alternating forward (base station to clients) and backward (clients
to base station) transmission slots.

We initially consider a multi—code Code Division Multiple Access (CDMA) system, that is, a CDMA system that
adapts rates for the synchronous transmissions in the forward direction by aggregating orthogonal code channels, that
is, by varying the number of code channels used for transmissions to the individual clients. The second generation
CDMA IS-95 (Rev. B) system is an example of such a system; as is the third generation UMTS system in TDD mode.
Let S denote the number of orthogonal codes used by the base station for transmitting the continuous media streams
to the clients. Let R(j), j = 1,...,J, denote the number of parallel channels supported by the radio front—end of
client j. Let C' denote the data rate (in bit/sec) provided by one CDMA code channel in the forward direction.

Our streaming protocol is suitable for any type of prerecorded continuous media. To fix ideas we focus on video
streams. A key feature of our protocol is that it accommodates any type of encoding; it accommodates Constant
Bit Rate (CBR) and bursty Variable Bit Rate (VBR) encodings as well as encodings with a fixed frame rate (such



as MPEG-1 and MPEG-4) and a variable frame rate (such as H.263). For the transmission over the wireless links
the video frames are packetized into fixed length packets. The packet size is set such that one CDMA code channel
accommodates exactly one packet in one forward slot; thus the base station can transmit S packets on the orthogonal
code channels in a forward slot.

Let N(j), j =1,...,J, denote the length of the video streams in frames. Let z,(j) denote the number of packets
in the nth frame of video stream j. Let ¢,(j) denote the interarrival time between the nth frame and the (n + 1)th
frame of video stream j in seconds. Frame n is displayed for a frame period of #,(j) seconds on the client’s screen.
Because the video streams are prerecorded the sequence of integers (z1(j), z2(j),-..,2n(j(j)) and the sequence of
real numbers (t1(j), t2(4),...,tn(;) (7)) are fully known when the streaming commences.

When a client requests a specific video the base station relays the request to the appropriate origin server or
proxy server. If the request passes the admission tests the origin/proxy server immediately begins to stream the
video via the base station to the client. Our focus in this paper is on the streaming from the base station over the
wireless link to the client. We assume for the purpose of this study that the video is delivered to the base station in
a timely fashion. Upon granting the client’s request the base station immediately commences streaming the video
to the client. The packets arriving at the client are placed in the client’s prefetch buffer. The video is displayed
on the client’s monitor as soon as a few frames have arrived at the client. Under normal circumstances the client
displays frame n of video stream j for ¢,(j) seconds, then removes frame n + 1 from its prefetch buffer, decodes it,
and displays it for ¢,11(j) seconds. If at one of these epochs there is no complete frame in the prefetch buffer the
client suffers playback starvation and loses the current frame. At the subsequent epoch the client will attempt to
display the next frame of the video.

In our protocol the base station keeps track of the contents of the prefetch buffers in the clients. Toward this
end, let b(j), 7 = 1,...,J, denote the number of packets in the prefetch buffer of client j. Furthermore, let
p(j), 7 =1,...,J, denote the length of the prefetched video segment in the prefetch buffer of client j in seconds.
The counters b(j) and p(j) are updated (1) when the client j acknowledges the reception of sent packets, and (2)
when a frame is removed, decoded, and displayed at client j.

First, consider the update when packets are acknowledged. For the sake of illustration suppose that the z,(j)
packets of frame n of stream j have been sent to client j during the just expired forward slot. Suppose that all z,(j)
packets are acknowledged during the subsequent backward slot. When the last of the z,(j) acknowledgments arrives
at the base station, the counters are updated by setting b(j) < b(j) + z,(j), and p(j) < p(j) + tn(4)-

Next, consider the update of the counters when a frame is removed from the prefetch buffer, decoded, and
displayed at the client. Given the sequence t,(j), n =1,..., N, and the starting time of the video playback at the
client the base station keeps track of the removal of frames from the prefetch buffer of client j. Suppose that at
a particular instant frame 6(j) is to be removed from the prefetch buffer of client j. The base station tracks the
prefetch buffer contents by updating b(j) < [b(4) — zg(;) ()] and p(j) < [p(j) —te¢;)(F)], where [2]* = max(0, z).
Note that the client suffers playback starvation when b(j) — zg(;)(j) < 0, that is, when the frame that is supposed to
be removed is not in the prefetch buffer.

3. JSQ PREFETCH POLICY

For each forward slot the base station must decide which packets to transmit from the .J ongoing streams. The
prefetch policy is the rule that determines which packets are transmitted. The maximum number of packets that
can be transmitted in a forward slot is S. The Join—the—Shortest—Queue (JSQ) prefetch policy strives to balance the
lengths of the prefetched video segments across all of the clients serviced by the base station. The basic idea is to
dynamically assign more codes (and thus transmit more packets in parallel) to clients that have only a small reserve
of prefetched video in their prefetch buffers. We first introduce a basic prefetch policy. This basic prefetch policy
assumes that all clients (1) support S parallel channels, and (2) have infinite prefetch buffer space. We shall address
these two restrictions in a refined prefetch policy.

3.1. Basic JSQ Prefetch Policy

Let z(j), j =1,...,J, denote the length of the video segment (in seconds of video run time) that is scheduled for
transmission to client j in the current forward slot. The following scheduling procedure is executed for every forward
slot. At the beginning of the scheduling procedure all z(j)’s are initialized to zero. The base station determines the



client j* with the smallest p(j) + z(j). The base station schedules one packet for transmission (by assigning a code
to it) and increments z(j*): 2(j*)  2(j*) + to(j+)(5*)/To(j+)(5*), where o(j*) is the frame (number) of stream j*
that is carried (partially) by the scheduled packet. (Although the length of the prefetched video segment grows in
increments of t,,(j) seconds whenever the transmission of the x,(j) packets carrying frame n of stream j is completed;
for simplicity we account for partially transmitted frames by incrementing the prefetched segment by t,,(5)/zn(j) for
each transmitted packet.) The base station repeats this procedure S times, that is, until the S available codes are
used up. At each iteration the base station determines the j* with the smallest p(j) + z(j), schedules one packet for
client j* and increments z(5*). Throughout this scheduling procedure the base station skips packets from a frame
that would miss its playback deadline at the client.

During the subsequent backward slot the base station waits for the acknowledgments from the clients. If all
packets sent to client j are acknowledged by the end of the backward slot we set p(j) «+ p(j) + z(j). If some of the
acknowledgments for a stream j are missing at the end of the backward slot, p(j) is left unchanged. At the end of
the backward slot the scheduling procedure starts over. The z(j)’s are re-initialized to zero and the base station
schedules packets for the clients with the smallest p(j) + z(j).

3.2. Refined JSQ Prefetch Policy

In this section we discuss refinements of the JSQ prefetch policy that limit (1) the number of packets, that are sent
(in parallel) to a client in a forward slot, and (2) the number of packets that a client may have in its prefetch buffer.
Suppose that the clients j, j = 1,...,J, support at most R(j) parallel channels, and have limited prefetch buffer
capacities of B(j) packets. Let r(j), j = 1,..,J, denote the number of packets scheduled for client j in the upcoming
forward slot. Recall that b(j) is the current number of packets in the prefetch buffer of client j. The refinements
work as follows. Suppose that the base station is considering scheduling a packet for transmission to client j*. The
base station schedules the packet only if

r(7*) <R(") -1, (1)

and

b(j*) < B(j*) — L. 2)

If one of these conditions is violated, that is, if the packet would exceed the number of parallel channels of client j* or
the packet would overflow the prefetch buffer of client j*, the base station removes connection j* from consideration.
The base station next finds a new j* that minimizes p(j) + z(j). If conditions (1) and (2) hold for the new client j*,
we schedule the packet, update z(5*) and r(j*), and continue the procedure of transmitting packets to the clients
that minimize p(j) + z(j). Whenever one of the conditions (1) or (2) (or both) is violated we skip the corresponding
client and find a new j*. This procedure stops when we have either (1) scheduled S packets, or (2) skipped over all

J streams.

3.3. Simulation of Prefetch Protocol

In this section we describe the simulations of our protocol for continuous media streaming in wireless environments.
In our simulations we consider a generic wireless communication system with Time Division Duplex. We assume
throughout that the base station allocates S = 15 channels (e.g., orthogonal codes in CDMA or time slots in TDMA)
to continuous media streaming. We assume that each channel provides a data rate of C' = 64 kbit/sec in the forward
(downlink) direction. Throughout we consider scenarios where all J clients have the same buffer capacity of B
packets and support the same number of parallel channels R, i.e., B(j) = B and R(j) = Rforall j =1,...,.J.

We evaluate our streaming protocol for video streams encoded at a Variable Bit Rate (VBR) and a constant
frame rate (e.g., MPEG-1 encodings). We generated ten pseudo traces by scaling MPEG-1 traces obtained from
the public domain to an average rate of # = 64 kbps. The traces have a fixed frame rate of 25 frames/sec and are
40.000 frames long. The generated pseudo traces are highly bursty with peak—to—mean ratios in the range from 7 to
18; see? for details.

For each of the J ongoing streams in the wireless cell we select randomly one of the MPEG traces. We generate
random starting phases 6(j), j = 1,...,J, into the selected traces. The 6(j)’s are independent and uniformly
distributed over the lengths of the selected traces. The frame 6(j) is removed from the prefetch buffer of client j at
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Figure 3. Sample path plot: Prefetch buffer contents
(in kBytes) of 3 clients as a function of time: Client 1
experiences a bad channel.

Figure 2. Sample path plot: Prefetch buffer contents
(in kBytes) of 3 clients as a function of time: Client 1
starts over

the end of the first frame period. All clients start with empty prefetch buffers. Furthermore, we generate random
stream lengths N(j), j =1,...,J. The N(j)’s are independent and are drawn from an exponential distribution with
mean N7 frames (corresponding to a video run time of T' seconds). We initially assume that the client consumes
without interruption N(j) frames starting at frame number 6(j) of the selected trace. When the N(j)th frame is
removed from the prefetch buffer of client j, we assume that the client immediately requests a new video stream.
For the new video stream we again select randomly one of the traces, a new independent random starting phase 6(j)
into the trace, and a new independent random stream lifetime N (j). Thus there are always J streams in progress.

In simulating the wireless links we follow the well-known Gilbert-Elliot model. We simulate each wireless link
(consisting of up to R(j) parallel code channels) as an independent discrete-time Markov Chain with two states:
”good” and "bad”. We assume that all parallel code channels of a wireless link (to a particular client) are either in
the good state or the bad state. The transition probabilities of the Markov Chains are set to typical values such that
the steady state probability of being in the ”good” state is 7, = 0.99 (and 7, = 0.01 accordingly); the average sojourn
times are 9 seconds for the ”good” state and 1 second for the "bad” state. We set the channel error probabilities
such that a packet is lost with probability P/ = 0.05 in the good channel state, and with probability Plb = 1 1in the
bad channel state. We assume that acknowledgments are never lost in the simulations.

Figures 2 and 3 show typical sample path plots from the simulations. In this experiment we simulate the streaming
to clients with a buffer capacity of B = 32 kBytes. The figure shows the prefetch buffer contents of three clients
in kBytes. The plots illustrate the collaborative nature of the JSQ prefetch policy in conjunction with the rate
adaptation of the wireless communication system. We observe from Figure 2 that at time ¢t = 5.1 sec the buffer
content of client 1 drops to zero. This is because the video stream of client 1 ends at this time; the client selects a
new video stream and starts over with an empty prefetch buffer. Note that already at time ¢ = 1.0 second all frames
of the ”old” video stream have been prefetched into the client’s buffer and the client continued to consume frames
without receiving any transmissions. When the client starts over with an empty prefetch buffer, the JSQ prefetch
policy gives priority to this client and quickly fills its prefetch buffer. While the prefetch buffer of client 1 is being
filled the JSQ prefetch policy reduces the transmissions to the other clients; they ”live off” their prefetched reserves
until client 1 catches up with them.

Notice from Figure 3 that at time ¢ = 0.4 sec the buffer occupancy of client 1 drops. This is because this client
experiences a bad channel that persists for 2.1 sec (a rather long period chosen for illustration, in our numerical work
we set the average sojourn time in the bad channel state to 1 sec), that is, the client is temporarily cut off from the
base station. The prefetched reserves allow the client to continue playback during this period. As the prefetched
reserves of client 1 dwindle the JSQ prefetch policy allocates larger transmission capacities to it. This, however, cuts
down on the transmissions to the other clients, causing their prefetched reserves to dwindle as well. This degrades
the performance of the streaming protocol as smaller prefetched reserves make client starvation more likely.



3.4. Channel Probing

In this section we introduce a channel probing refinement designed to improve the performance of the purely JSQ
based prefetch protocol. Note that the prefetch protocol introduced in Section 3 does not directly take the physical
characteristics of the wireless channels into consideration. The JSQ transmission schedule is based exclusively on the
prefetch buffer contents at the clients (and the consumption rates of the video streams). Wireless channels, however,
typically experience location—dependent, time—varying, and bursty errors, that is, periods of adverse transmission
conditions during which all packets sent to a particular client are lost. Especially detrimental to the prefetch protocol’s
performance are the persistent bad channels of long—term shadowing that is caused by terrain configuration or
obstacles. As illustrated in Figure 3(b), the excessive transmission resources expended on the client that experiences
the bad channel, tend to reduce the prefetched reserves of all the other clients in the wireless cell.

To fix this shortcoming we introduce the channel probing refinement. The basic idea is to start probing the
channel (client) when acknowledgment(s) are missing at the end of a backward slot. While probing the channel the
base station sends at most one packet (probing packet) per forward slot to the affected client. The probing continues
until an acknowledgment for a probing packet is received. More specifically, if the acknowledgment for at least one
packet sent to client j in a forward slot is missing at the end of the subsequent backward slot, we set R(j) = 1. This
allows the JSQ algorithm to schedule at most one packet (probing packet) for client j in the next forward slot. If
the acknowledgment for the probing packet is returned by the end of the next backward slot, we set R(j) back to its
original value; otherwise we continue probing with R(j) = 1.

To evaluate the performance of this simple probing scheme we compare it with an ideal scenario where the base
station has perfect knowledge of the states of the wireless channels. In the perfect knowledge scenario the base
station schedules packets only for clients in the good channel state. The base station does not schedule any packet
(not even a probing packet) for clients experiencing a bad channel.

3.5. Simulation Results

We now present a quantitative evaluation of the JSQ prefetch protocol. We first define two key measures of the
performance of a streaming protocol. We define the bandwidth efficiency & of a wireless streaming protocol as
the sum of the average rates of the streams supported by the base station divided by the total available effective
transmission capacity of the base station, i.e.,

J-r
Cm- (=P +m - (1-P)]-C min(R-J, )

£

We define the client starvation probability P,ss as the long run fraction of encoding information (packets) that
misses its playback deadline at the clients. We conservatively consider all z,,(-) packets of frame n as deadline misses
when at least one of the frame’s packets misses its playback deadline. We warm up each simulation for a period
determined with the Schruben’s test and obtain confidence intervals on the client starvation probability Poss using
the method of batch means. We run the simulations until the 90 % confidence interval of Piogs is less than 10 % of
its point estimate. Unless stated otherwise, all the following experiments are conducted for the streaming of VBR,
MPEG video to clients with a buffer capacity of B = 32 kBytes and support for R = 15 parallel channels. The
average lifetime of the video streams is set to 7' = 10 minutes unless stated otherwise. Throughout, the base station
has a total of S = 15 channels available for video streaming.

Figure 4 shows the client starvation probability Pj,ss without channel probing, with channel probing, and with
perfect knowledge of the channel state as a function of the average sojourn time in the "bad” channel state. For this
experiment the number of clients is fixed at J = 13 (and 12 respectively). We observe from the figure that over a
wide range of channel conditions, channel probing is highly effective in reducing the probability of client starvation.
In scenarios with persistent bad channel conditions, probing reduces Pogs by over one order of magnitude. We also
observe that the client starvation probabilities achieved by our simple channel probing scheme are only slightly above
the client starvation probabilities achieved with perfect knowledge of the channel state. This indicates that more
sophisticated channel probing schemes could achieve only small reductions of the client starvation probability. We
set the average sojourn time in the ”bad” channel state to 1 sec for all the following experiments.
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Figure 5. Client starvation probability P as a func-
tion of the maximum number of channels R per client
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Figure 5 shows the client starvation probability P as a function of the maximum number of parallel channels
R that can be assigned to an individual client. We observe from Figure 5 that P, drops by over one order of
magnitude as R increases from one to two, allowing for collaborative prefetching through the lending and borrowing
of channels. Now consider prefetching with J = 13 clients. For prefetching with channel probing and with perfect
knowledge of the channel state, Poss drops steadily as R increases. For prefetching without channel probing, however,
Piyss increases as R grows larger than two. This is because JSQ prefetching without channel probing tends to waste
transmission channels on a client experiencing a persistent bad channel. This reduces the prefetched reserves of all
clients in the cell, thus increasing the likelihood of client starvation. The larger the number of parallel channels R
that can be assigned to an individual client the larger is this waste of transmission channels. Another important
observation from Figure 5 is that already a low—cost client with support for a few parallel channels allows for effective
prefetching.

Figure 6 shows the client starvation probability P, as a function of the bandwidth efficiency £. Noteworthy
is again the effectiveness of the simple channel probing scheme. The client starvation probability Poss achieved
with channel probing is (i) generally over one order of magnitude smaller than without channel probing, and (i)
only slightly larger than with perfect knowledge of the channel state. Throughout the remainder of this paper
we use prefetching with channel probing. Importantly, the results in Figure 6 indicate that a crude admission
control criterion that limits the bandwidth efficiency to less than 0.9, say, is highly effective in ensuring small client
starvation probabilities. We note, however, that more research is needed on admission control for streaming in
wireless environments.

Figure 7 shows the client starvation probability Poss as a function of the client buffer capacity B. The results
demonstrate the dramatic improvement in performance that comes from prefetching. For J = 13 ongoing VBR
streams the client starvation probability drops by over two orders of magnitude as the clients’ buffers increase from
8 kBytes to 128 kBytes. (A buffer of 128 kBytes can hold on average 16 second segments of the VBR, videos with an
average rate of 7 = 64 kbit/sec.) With client buffers of B = 128 kBytes and J = 13 ongoing streams our prefetch
protocol achieves a client starvation probability of less than 10~* and a bandwidth efficiency of 90%!

Table 1 gives the client starvation probability Pss as a function of the average stream lifetime 7" for the streaming
of VBR MPEG-1 video to J = 13 clients each with a buffer capacity of B = 64 kBytes. Our prefetching protocol
performs very well for stream lifetimes on the order of minutes or longer. For stream lifetimes shorter than one minute
Pyyss increases considerably as the lifetime decreases. This is because stream lifetimes this short allow for very little
time to build up prefetched reserves. Even for an average stream lifetime of T = 10 sec, however, prefetching reduces
the client’s starvation probability from 2.8-10~2 without any prefetching to 4.5:10~2 with prefetching.
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Table 1. Client starvation probability Pss as a function of the average stream lifetime T for VBR, video.

T [sec] 10 | 50 | 100 | 600 | 1200
Ploss [10°7 | 45 | 73 | 46 | 4.4 | 2.1

4. RELATED WORK

There is a large body of literature on providing QoS in wireless environments. Much of the work in this area has
focused on mechanisms for channel access; see Akyildiz et al.® for a survey. Choi and Shin* have recently proposed
a comprehensive channel access and scheduling scheme for supporting real-time traffic and non—real-time traffic on
the uplinks and downlinks of a wireless LAN. Recently, packet fair scheduling algorithms that guarantee clients a
fair portion of the shared transmission capacity have received a great deal of attention.®” These works adapt fair
scheduling algorithms originally developed for wireline packet—switched networks to wireless environments. Another
line of work addresses the efficiency of reliable data transfer over wireless links.?”

We note that to our knowledge none of the existing schemes for providing QoS in wireless environments takes ad-
vantage of the special properties (predictability and prefetchability) of prerecorded continuous media, that are expected
to account for a large portion of the future Internet traffic. There is an extensive literature on the streaming of pre-
recorded continuous media, in particular VBR video, over wireline packet—switched networks; see Krunz'® as well as
Reisslein and Ross'! for a survey. In this literature a wide variety of smoothing and prefetching schemes is explored
to efficiently accommodate VBR video on fixed bandwidth wireline links. Among these schemes is a prefetching
scheme based on the Join-the-Shortest-Queue (JSQ) principle developed by Reisslein and Ross.!! Their scheme is
designed for a Video on Demand service with VBR encoded fixed frame rate MPEG video over an ADSL network
or the cable plant. It does not handle the location—dependent, time—varying, and bursty errors that are typical for
wireless environments.

Elaoud and Ramanathan'? propose a scheme for providing network level QoS to flows in a wireless CDMA
system. Their scheme dynamically adjust the signal to interference and noise ratio requirements of flows based on
MAC packet deadlines and channel conditions. The Simultaneous MAC Packet Transmission (SMPT) scheme of
Fitzek et al.'® provides transport level QoS by exploiting rate adaptation techniques of CDMA systems. The SMPT
scheme delivers transport layer segments (e.g., UDP or TCP segments, which are divided into several MAC packets)
with high probability within a permissible delay bound. Qur work in this paper differs from'?'3 in that they propose
decentralized schemes for backward (uplink) transmissions. Also, there is no prefetching in.'?!3  Moreover,'%1? do



not take the characteristics of the application layer traffic into consideration; the scheme'? operates on one MAC
packet at a time and SMPT'? operates on one TCP or UDP segment at a time.

5. CONCLUSION

We have developed a high performance prefetching protocol for the streaming of prerecorded continuous media in a
cellular wireless system. Our prefetching protocol can be employed on top of any of the rate adaptation techniques
of wireless communication systems. Our protocol accommodates CBR and VBR encodings as well as fixed frame
rate and variable frame rate encodings. Channel probing is critical for the performance of our protocol. With
channel probing the base station allocates transmission resources in a judicious manner avoiding the allocation of
large portions of the available transmission capacity to clients experiencing adverse transmission conditions.

In the extended technical report? we conduct a more extensive evaluation and discuss several extensions of the
prefetching protocol. We consider streaming with client interactions, such as pause/resume and temporal jumps. We
also consider the streaming of live content, such as the audio and video feed from a sporting event. We outline how
to use the prefetching protocol for prefetching in the uplink (clients to base station) direction. Moreover, we outline
how to deploy the prefetching protocol in third generation CDMA systems as well as TDMA and FDMA systems.
We also discuss the deployment of the prefetching protocol on top of physical layer error control schemes.
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the work presented in this paper.
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