2050

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 6, DECEMBER 2016

les

Function Split Between Delay-Constrained
Routing and Resource Allocation for Centrally
Managed QoS in Industrial Networks

Jochen W. Guck, Martin Reisslein, Fellow, IEEE, and Wolfgang Kellerer, Senior Member, IEEE

Abstract—Industrial networks demand centrally con-
trolled quality of service (QoS), often in the form of hard
real-time guarantees. Software-defined networking (SDN)
provides a convenient paradigm for central QoS control.
However, existing SDN-based solutions cannot guarantee
hard real-time QoS as they rely on a control loop over
the forwarding (data) and control planes. We propose a
novel SDN-based QoS control framework that maintains
an accurate network model through network calculus to
avoid a control loop over forwarding and control planes,
allocates resources to and routes flows over a network
of “queue links,” whereby each physical network link
houses multiple queue links (with different QoS levels),
and manages QoS through a function split between
delay-constrained least-cost routing on the network of
queue links and the resource allocation to the queue
links. This function split greatly reduces the computational
complexity while achieving hard real-time QoS with high
bandwidth utilization. Our evaluation results indicate that
our function split approach allows for online runtime
admission control and can achieve bandwidth utilization
above 80% while meeting deterministic real-time QoS
requirements.

Index Terms—Bandwidth utilization, industrial network,
network calculus, real-time quality of service (QoS),
software-defined networking (SDN).

|. INTRODUCTION
A. Motivation: Industrial Networking Quality of Service

NDUSTRIAL networks carry critical messages, e.g., control
I signals, for large automated production facilities. Many of
these critical messages must be delivered with tight determinis-
tic real-time quality of service (QoS) [1]. A wide gamut of pro-
prietary industrial communications technologies have emerged
to provide these strict QoS [2]. These proprietary technologies

Manuscript received June 22, 2015; revised May 10, 2016; accepted
July 2, 2016. Date of publication July 20, 2016; date of current version
December 6, 2016. This work was supported, in part, by the European
Research Council under the European Unions Horizon 2020 research
and innovation program (under Grant 647158 FlexNets) and by the A. von
Humboldt Foundation through an F. W. Bessel Research Award. Paper
no. Tll-15-1721.R1. (Corresponding author: M. Reisslein.)

J. W. Guck and W. Kellerer are with the Department of Electrical and
Computer Engineering, Technical University of Munich, Munich 80290,
Germany (e-mail: guck@tum.de; wolfgang.kellerer@tum.de).

M. Reisslein is with the School of Electrical, Computer and Energy
Engineering, Arizona State University, Tempe, AZ 85287-5706 USA
(e-mail: reisslein@asu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/T11.2016.2592481

are typically costly and lack a uniformly accepted standardized
communication framework.

B. Basis: Software-Defined Networking

The emergence of software-defined networking (SDN) with
a standardized OpenFlow protocol [3] provides a basis (general
framework) for introducing a uniform QoS networking approach
in the industrial networking domain. As elaborated in Section II,
several SDN-based QoS networking approaches have recently
been examined. However, the approaches developed to date
are not suitable for industrial QoS networking due to slow or
inaccurate QoS control or prohibitive computational effort for
the QoS control.

In this paper, we introduce a novel SDN-based QoS network-
ing approach that is fast and accurate for industrial QoS net-
working. Specifically, the proposed QoS networking approach
is accurate by deterministically modeling resource (bandwidth,
buffer) allocation and QoS parameter (delay budget) allocation
through network calculus. The proposed approach is fast by
avoiding a QoS control loop over the forwarding and control
planes. Rather, we close the QoS control loop only over the
model, load map, and routing blocks in the SDN control plane,
as illustrated in the left part of Fig. 1.

C. Contribution: Function Split Between Routing and
Resource Allocation

The core contribution of this paper is a novel function split
between routing and resource allocation for achieving hard real-
time industrial QoS with SDN networking. In order to enable
this function split, we introduce a novel “queue link” network
topology (see top-left of Fig. 1) that represents both the under-
lying physical link topology as well as the resource and QoS
parameter allocations. In particular, the resources (transmission
bit rate, buffer space) of a given link and QoS parameter budgets
(e.g., delay budgets) are proactively allocated to a set of QoS
queues that correspond to different levels of forwarding QoS
at the link. A standard reactive QoS routing algorithm, such as
delay-constrained least-cost (DCLC) routing [4], can then find
routes through the queue link network that meet the hard real-
time QoS. The route selection, thus, determines both the path
that an admitted flow takes through the physical links as well as
the QoS queues that the flow traverses in the individual physical
links.

We compare this novel function split SDN-based QoS ap-
proach through simulations with a monolithic mixed-integer

1551-3203 © 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires |IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

GUCK et al.: FUNCTION SPLIT BETWEEN DELAY-CONSTRAINED ROUTING AND RESOURCE ALLOCATION FOR CENTRALLY MANAGED QOS

2051

Proposed Approach
A
P — .

Q“e“foé'ﬂ M'\;itwor ‘ Routing ‘

Control Plane

Forwarding Plane
‘ Network ‘

Fig. 1.

Existing Approach

o0

I

Network Load Map ’ ‘ Routing ‘

A

‘ Network ‘

Conceptual comparison of existing real-time Ethernet architectures (right) with our novel approach (left). We maintain an accurate network

resource model in the SDN control plane, thus avoiding the signaling from the forwarding (data) plane to the control plane in existing architectures.
While existing architectures route on a network load map of physical links, we route on a network load map of queue links; whereby multiple
queue links for each physical link represent the different QoS levels of transmission over a given physical link. Call admission control involves the

following steps and information exchanges: A: Receive connection request,

including QoS requirements; B: Find best path based on latest load map;

C: deploy path to network; D: update load map. Our proposed approach revises step D in the existing approaches (right side) by introducing the
network resource model. The network resource model tracks the network state D by combining static network information F, such as physical
topology, link rates, and buffer capacities, with the dynamics of the connection deployments E. The combined overall network resource model
provides then the up-to-date queue link network load map, which is utilized for the online admission control and routing.

programming (MIP)-based approach that jointly solves the
routing and resource/QoS parameter allocation problems. We
find that the novel function split approach with online admis-
sion control achieves network connection carrying capacities
and bandwidth utilizations that come relatively close to the com-
putationally prohibitive monolithic MIP approach.

[l. RELATED WORK
A. Industrial QoS Networking

Decotingie [5] provided a broad overview of Ethernet-based
real-time communication, including deterministic Ethernet stan-
dards. A common example of an Ethernet-based real-time com-
munication system is Avionics Full DupleX Switched Ethernet
(AFDX), which can provide deterministic QoS [6]. However,
AFDX requires offline admission control, whereas our proposed
approach allows for fast online admission control decisions at
runtime. Moreover, AFDX typically utilizes a single queue for
each physical link, whereas our approach features multiple pri-
ority levels (queue links) for each physical link, allowing flexible
QoS management. The opportunity of cost reduction by using
off-the-shelf commodity hardware for real-time communica-
tion instead of specialized proprietary communication systems
was one trigger for the shift to Ethernet-based technology|[2],
[7]. However, the commodity hardware does not fulfill all re-
quirements of real-time communication, which has led to the
development of proprietary Ethernet-based solutions [8]. The
proprietary industrial real-time communication solutions that
fulfill hard real-time requirements require changes of the net-
work protocol stack or topology restrictions or both, leading to
expensive hardware and software.

B. QoS Networking Frameworks

Before the emergence of SDN, several middleware layer and
interface architectures, e.g., [9], have been proposed for adaptive

QoS control that exploits real-time scheduling approaches [10].
These architectures involve a control loop that is closed over the
forwarding and control planes, as illustrated on the right side of
Fig. 1. Closed-loop control over both the forwarding and control
planes tends to introduce delays and measurement errors that are
difficult to correct to achieve fast accurate QoS control.

SDN [3] has recently emerged as a flexible control plane
paradigm, and several studies have begun to explore the implica-
tions of SDN for QoS networking. For instance, Jain et al. [11]
report on an SDN-based traffic engineering system for effi-
cient bandwidth usage in a backbone network, while Sharma
et al. [12] propose SDN-based network QoS control frame-
works. Policy Cop [13] is a closed-control loop system (over
forwarding and control planes) for providing aggregated and
per-flow QoS guarantees. Policy Cop determines the QoS level
of each forwarding device through statistical analysis of the for-
warding characteristics measured in the forwarding plane and is
thus not designed to provide deterministic QoS. Moreover, the
Policy Cop measurements in the forwarding plane introduce de-
lays and measurements errors, which lead to slow and possibly
erroneous QoS control actions. Sharma et al. [14] focus on the
management of minimum and maximum bandwidth allocations
for different QoS levels and do not consider delay requirements.
Modifications to the OpenFlow protocol for representing QoS
mechanisms have been formulated by Ishimori et al. [15].

C. Network Calculus

Network calculus [16] provides a mathematical framework
for calculating deterministic upper delay bounds of a network.
This mathematical model has been used for the dimensioning
and offline planning of real-time systems [8]. In contrast, we
employ network calculus for online modeling of the network at
runtime. Duan [17] developed an SDN-based network as a ser-
vice framework and derived network calculus to evaluate data
rates needed for fulfilling delay requirements in such a general

2052

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 6, DECEMBER 2016

framework. Similarly, Guck and Kellerer [18] have conducted
network calculus analysis to evaluate end-to-end delay guaran-
tees in SDN environments. The network calculus results served
as a basis for an offline MIP that evaluates admission control
(resource availability) decisions and routes flows, albeit for pro-
hibitive computational cost. In contrast, in this paper, we develop
a computationally efficient online function split framework for
runtime admission decisions and routing while maintaining the
network-calculus-based real-time guarantees.

IIl. SETTING: INDUSTRIAL REAL-TIME COMMUNICATION
WiTH SDN

A. Industrial Real-Time QoS Requirements

The industrial communication network has to fulfill hard real-
time requirements [2]. This means that a data transmission has
to be completed within a given time; otherwise, the connection
is deemed as broken. There is also the soft real-time requirement
class, which defines the deadline as a soft border. The connection
counts only as broken if the deadline is violated several times.
We focus on hard real-time requirements.

B. SDN-Based QoS Approach

SDN provides fine-granular access to the forwarding (data)
plane. This fine-granular forwarding plane control can serve
as the basis for the operation of real-time QoS communication
mechanisms, including admission control, scheduling, and re-
source allocation mechanisms. Specifically, for achieving indus-
trial real-time communication based on SDN, it is first necessary
to define a model for all forwarding elements in the network.
This network model creates an abstraction layer between SDN
hardware and SDN applications. This abstraction should allow
for the development of QoS-aware SDN applications indepen-
dent from the network hardware.

The SDN hardware capabilities can include the queue buffer
size, the number of queues at the links, the employed scheduling
algorithm, the given data transmission rates, and the topology.
On the other hand, an application may simply express its de-
mands in terms of tolerable mean delay, maximum delay, jitter,
and loss rate, as well as mean data rate and burstiness of the
traffic flow. The abstraction layer should use these application
parameters and the knowledge of the network to decide how to
best fulfill the demands. This abstraction can, in principle, be
done with any imaginable network model, such as statistical, de-
terministic, measurement-based, or calculation based-models,
or combinations thereof.

C. Deterministic Network Calculus Model of Static
Priority Scheduling

We employ deterministic network calculus [16] to bound the
maximum (worst-case) delay per hop. The deterministic net-
work calculus model for the worst-case delay allows for rela-
tively easy admission control. In particular, due to the allocation
of worst-case delay budgets to the priority queues (as detailed
in Section VI-B), the models of the different priority queues at
a given link (hop) are independent. Thus, admission decisions

of low-priority queues do not have to be recalculated every time
a flow is added to a high-priority queue.

We employ nonpreemptive static priority scheduling, which
transmits a packet from a given priority class (queue) only
if all higher priority queues are empty, but does not interrupt
an ongoing packet transmission. Static priority scheduling is
simple as it does not not require any parameter configuration
beyond the number of priority queues, yet supports a broad
range of delay bounds. We assume throughout this paper
that the (computational) processing delay of each forwarding
element is negligible.

V. FUNCTION SPLIT QOS FRAMEWORK

Industrial QoS networking with a centralized SDN controller
poses the general problems of path computation (routing) and
resource allocation. The joint solution of the combined routing
and resource allocation problem is NP-hard. This can be derived
from the observation that the path computation problem corre-
sponds to the well-known DCLC routing problem [4], which is
NP-hard. Thus, the combined problem, which adds the resource
allocation problem to the DCLC problem, is also NP-hard. The
combined routing and resource allocation problem can be for-
mulated (with simplifications of some quadratic equations [18])
as a MIP. The MIP solves both the routing and resource alloca-
tion problems jointly but incurs prohibitive computation times
already for small networks (see comparisons in Section IX).
The monolithic MIP solution approach cannot be employed for
runtime decisions in realistic-sized industrial networks.

In order to reduce the computational effort for solving the
general routing and resource allocation problem so as to oper-
ate SDN-based industrial QoS networks at runtime, we split the
problem into two functions: an online function for DCLC rout-
ing [19], [20] and an offline function for resource allocation. We
operate the online routing (as explained in Section VI) within the
closed loop in the SDN control plane illustrated in the left part
of Fig. 1. We model the state of the network through a queue link
topology model introduced in Section V in conjunction with the
network resource model introduced in Section VII. The queue
link topology model represents the different priority queues that
operate on each physical network link. We allocate each priority
queue a fixed buffer size since buffer sizes are typically fixed
in practical switches. We also allocate to each priority queue
a fixed delay budget and consider the transmission bit rate as
the main “resource” to be allocated to the individual priority
queues at a link. Based on historical statistics or predictions and
a resource allocation process running in the background (see
Section VIII), we allocate the transmission bit rates offline to
the individual priority queues (queue links).

V. QUEUE LINK NETWORK TOPOLOGY

We consider origin (source) nodes connected by switching
nodes and directed links to destination nodes. We denote N
for the set of all nodes in the network. In our real-time QoS
framework, each switching node may be viewed as a collection
of queues that are allocated specific transmission bit rate and
buffer space resources. We define the network formed by the

GUCK et al.: FUNCTION SPLIT BETWEEN DELAY-CONSTRAINED ROUTING AND RESOURCE ALLOCATION FOR CENTRALLY MANAGED QOS

2053

Physical Network

%I—»;@ =@|

I

Fig. 2. lllustrative example of queue link network model. One ori-
gin node, four switching nodes, and one destination node are inter-
connected by physical links in the feedforward (left to right) direc-
tion. The nodes are indexed by integers 1 through 6, i.e., the set of
network nodes is N ={1,2,...,6}. Each physical link emanating
from a switching node contains @, , = 2 priority queue links while
source nodes have one queue. A queue link (edge) (u,v,q) con-
nects priority queue ¢ in node u to node v. Thus, the set of edges is
£={(1,2,1),(2,3,1),(2,3,2),(2,4,1),(2,4,2),...,(5,6,2)}.

queues in the switching nodes and the links interconnecting the
switching nodes as a queue link network. A preliminary outline
of the queue link network was presented in [21]. We denote
Q.,» for the number of priority queues in a given switching
node u for the physical link from switching node v to node
v; origin nodes are considered to have one priority queue. (We
note that the lowest priority queue can be defined as best effort
queue.) We define the directed queue link (u, v, q) to connect
queue ¢ in node u via the physical link between nodes « and v
to node v. The queue link concept is illustrated for the example
of a simple feedforward network with @, , = 2 queues in each
physical link in Fig. 2. We define the set £ = {(u,v,q)}, u,v €
N, qg=1,...,Qq.,todenote the set of all queue links (edges)
in a given queue link network, as summarized in Table I.

VI. ONLINE ROUTING AND ADMISSION CONTROL
A. Background on a General DCLC Routing Problem

For a network graph G consisting of the set of network nodes
N and edges &, i.e., G = (N, &), let P(o,d) denote the set of
paths between the given source (origin) node o and destination
node d of flow f with delay limit (constraint) ¢;. For a path
cost function C(P;), the DCLC routing problem [4] is generally
formulated with the objective function

i C(P; 1
P, (P M

and constraint
P'(0,d) = {P, € P(o,d) | D(P;) <ts} 2)

where D(P;) denotes the end-to-end delay of path P,. That
is, only the end-to-end paths P; € P’(0,d) that meet the delay
limit ¢; of flow f, i.e., the paths P; that satisfy D(P;) < ty,
are considered in the search for the minimum cost path. We
denote DCLC Algorithm(G, ¢;) for an algorithm, e.g., based
on [4], [19], and [20], that solves the conventional DCLC

TABLE |
SUMMARY OF MAIN NOTATIONS

Network model

N Set of nodes in network
Qu,v Number of priority queues in physical link (u, v)

(u,v,q) Queue link from node u to node v via queue g
in node u
Ly v Set of queue links traversing physical link (u, v)
Ry .. Transm. bit rate [bit/s] of physical link (u, v)
E={(u,v,q)} Set of edges in queue link network
G= (N8 Queue link network graph
I(u) Set of incoming physical links to node u
Flow model

F Set of active (accepted) flows in network
Fuv,q Set of flows traversing queue link (u, v, q)
of,dy Origin and destination nodes of flow f € F
Ty Avg. (mean) bit rate [bit/s] of flow f
by Burstiness parameter [Byte] of flow f
ty End-to-end delay limit [s] of flow f

Network resource model
Apglu,v,q] Bit rate allocated to queue link (u, v, q)
Agplu,v,q] Buffer capacity allocated to queue link (u, v, q)
Uglu,v,q] Utilized mean bit rate of queue link (u, v, q)
Usplu,v,q] Utilized buffer space of queue link (u, v, q)

Iz [n,u,v,q] Incoming agg. mean rate from prior node n
via queue ¢ of node u to node v
Incoming burst from prior node n

via queue ¢ of node u to node v

Ip[n,u,v,q]

Queue link (edge) model

c(u,v,q) —» R Cost of using queue link (u, v, q)

p(u,v,q) Priority level of queue feeding into
—1,2,...,Qu.» queue link (u, v, q)
S(u,v,q) Transm. bit rate available to queue link (u, v, q)

(= R, , — bitrate alloc. to higher priority queues)
Tlu,v,q] Delay budget (worst-case delay) of queue link

(w, v, q)

Path model

P(o,d) Set of all possible paths from origin o € A to

destination d € \ over edges in €.
Py DCLC path {(up, vp . p) }p=0,1,....pp,
Cost of path P; , see Eq. (11)
End-to-end worst-case delay of path P; , see Eq. (3)

problem represented by objective function (1) and constraint (2)
in a centralized fashion in the SDN controller.

B. Proposed Online Routing and Admission Control

1) Offline Worst-Case Delay (Delay Budget) Alloca-
tion: Our function split QoS framework allocates to each queue
link (u,v,q) a delay budget (worst-case delay) T[u, v, q] (see
Section VIII). We base the delay budget T[u, v, ¢] on the worst-
case queue link delay resulting from the offline queue link allo-
cations of transmission bit rate A p[u, v, g] and buffer capacity
Ag[u,v,q] [see (12)]. Our online admission control evaluates
the path delay based on the worst-case queue link delays (queue
link delay budgets), i.e.,

D(P)= Y Tluv,q. 3)

(u,v,q)€P;

2) Online Rate, Buffer, and Delay Budget Checking:
The network calculus based evaluation of the queue link delay
budget T[u, v, q] ensures that the actual packet delay at queue

2054

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 6, DECEMBER 2016

link (u, v, q) does not exceed T[u, v, ¢| as long as the utilized
rate Up[u, v, q] and buffer Upu, v, ¢] stay below the corre-
sponding queue link allocations of rate Ag[u,v,¢] and buffer
A u, v, q]. For the online admission control, it suffices, there-
fore, to verify that a newly added flow f meets three constraints.
1) Rate constraint: The rate utilization due to already
admitted flows Ug[u,v,q] plus the rate of the new
flow r; stays below the rate allocation Ag[u,v,q],
ie, Uglu,v,q] +rf < Aglu,v,q| at each queue link
(u,v,q).

2) Buffer (burst) constraint: The buffer utilization stays
below the buffer allocation, ie., Uglu,v,q] + by <
A g[u, v, q] at each queue link (u, v, q).

3) Delay constraint: The worst-case path delay D(FP;) is
below the flow delay limit ¢, i.e., D(P;) < t;.

In the proposed online admission control, the worst-case path
delay is based only on the offline rate and buffer allocations and
is independent of the routes of the admitted flows through the
queue link network. The rates and buffers utilized by the routes
of the admitted flows through the queue link network are tracked
(online) by the network resource model (see Section VII) and are
used for checking the rate and buffer constraints. In summary,
in the proposed online admission control, the checking of the
delay constraint does not consider the utilization of the network.
Rather, the checking of the rate and buffer constraints consider
the current network utilization and ensure that the utilizations
stay low enough to assure the (offline) allocated worst-case
delays (delay budgets).

3) Implementation With Standard DCLC Algorithm:
We implement our online admission control with a conven-
tional DCLC algorithm as follows. First, we restrict the set of
edges £*(f) considered for the routing of a new flow f to the
edges that can accommodate the rate ry and burst size by in
addition to the already utilized rate U [u, v, ¢] and buffer space
Up[u, v, q] while not exceeding the rate allocation Ay [u, v, g
and buffer allocation A p|u,v, g, as specified in lines 2 and 3
of the online routing and admission control algorithm in Fig. 3.
The resulting network graph G*(f) (see line 4) along with the
delay limit ¢ ; is the input for a standard DCLC routing algorithm
(line 5 in Fig. 3).

If no path is found, then the flow request is rejected (lines 6-8);
otherwise, the flow is admitted. We denote P; for the path of an
admitted flow f. Specifically, we denote

Pf = {(U’P7UP’qp)}}?:0~1¢---7pxnax.f (4)

for the ordered sequence of queue links that constitute the path,
whereby (ug, vy, qo) denotes the queue link from the source
node to the first switching node and (wp,, .., Vpoos ;s @puax. ;)
denotes the queue link from the last switching node on the path
to the destination node.

VII. NETWORK RESOURCE MODEL

A. Overview

The network resource model tracks the usage of the link queue
transmission bit rates and buffers, i.e., all the variables in the
network resource model section of Table I. These resource usage

1: procedure ADD-FLOW(f)

2: EX(f)={(u,v,q) €E|AR[u,v,q>Ug[u,v,q] + 1
3: NAglu,v,q) > Uplu,v,q] + by}
& G« VLE)

5: Py <~DCLC-Algorithm(G*(f),t¢)

6. if Py == null then

7 return False

8

9

end if

for all p=1,2,..., pmax s do
10: Upd. incom. rate, burst from prior node 7, =u,_1:
11: Ir[ny, up, Up, Gp] < Ir[np, up, vp, gp] + 75
12: Ip[np, up, vp, ap] <= 1 [np, vp, up, qp] + bf
13: end for
14: for all p=1,2,... pnax s do
15: Upd. rate, buffer util. at switch node u,:
16: URrlup, vp, @p] < Urlup, vy, qp] + 75
17: Uty vy, gp] < Bmax(up, vp, gp)
18: end for
19: return True

20: end procedure

Fig. 3. Algorithm for online routing and admission control. If a new flow
f is admissible, i.e., a path is found that can accommodate the added
rate r; (line 2), added burst size b, (line 3), and delay limit (deadline
constraint) ¢; (line 5), then the new flow f is added to the network
calculus based network resource model (lines 9-18).

metrics are required for the online admission decisions, i.e., the
search for a DCLC path for a new flow. Based on the tracked
resource usage metrics (which are maintained in the queue link
network load map), the model allows for fast online admission
control decisions in the control plane without interacting with
the data plane.

We present the algorithms for tracking the resource usage
in Section VII-B. The resource tracking requires the available
transmission bit rates S(u, v, q) and the maximum buffer uti-
lizations By ax (4, v, q) of a queue link (u, v, ¢) on a path con-
sidered for a new flow. We note that S(u, v, ¢) and By, .« (u, v, q)
are auxiliary variables that are only computed for updating
(tracking) the buffer usage Up [u, v, g| in our network resource
model. The evaluation of these auxiliary variables S(u,v,q)
and By, .x(u, v, q) is detailed in Section VII-C. Section VII-D
presents routing cost functions, including one cost function
building on the maximum buffer utilization By, .y (u, v, q).

B. Resource Tracking

If there is a suitable path P;, then the incoming rate and burst
variables I, and I for the source node and all nodes along the
path are updated (see Fig. 3, lines 9—13). Then, the bandwidth
and buffer utilization variables Uy and Up are updated, using
the maximum buffer utilization B, derived in Section VII-C
(see Fig. 3, lines 14-18). Fig. 4 presents the algorithm for the
removal of a flow f. The flow parameters have to be subtracted
from every corresponding counter variable.

C. Evaluation of Available Transmission Bit Rate and
Maximum Buffer Utilization

The available queue link transmission bit rate S(u, v, q) is
the (physical) link transmission bit rate R, minus the sum of

GUCK et al.: FUNCTION SPLIT BETWEEN DELAY-CONSTRAINED ROUTING AND RESOURCE ALLOCATION FOR CENTRALLY MANAGED QOS

2055

: procedure REM-FLOW(f)

1

2 for all p=1,2,... ,pmax ¢ do

3 IR[”I)’U;D?UIHQ;D] — IR[”;IHUI)’UP?(]I)} Ty
4 Iglny, up, vp, 4p] < Ip[np, up, vp, gp] — by
5 URglup, vp, gp] < Ur[up, vp, ¢p] — 7y

6 Uplup, Up, gp] = Bmax(up, p, Gp)

7 end for

8: end procedure

Fig. 4. Algorithm for removing an existing flow f from the network
resource model.

the transmission bit rates allocated to the queues with higher
priority than the considered queue ¢:

S(”v”vQ) = Ruyv - Z AR [U7U7l] 1{p(u,v,l)>p(u,v,q)} (5)
lely,

where 1{ A) denotes the basic indicator function, which is one if
A is true and zero otherwise.

Based on network calculus principles [16], [18], our net-
work resource model evaluates a bound on the maximum buffer
utilization By,.x(u, v, q) for a queue link (u, v, q) as follows.
We consider a given node u and first bound the amount of
traffic arriving from incoming physical links from prior nodes
n € Z(u). For a given prior node n, the amount of incom-
ing traffic to queue link (u,v,q) is bounded by the incom-
ing burst size Iz [n, u, v, ¢] and mean aggregate incoming traf-
fic rate I [n,u, v, q|. Specifically, the incoming traffic amount
cannot exceed Ip[n,u,v,q] + Ig[n,u,v,]t for any positive
time duration t. Moreover, the incoming traffic cannot ex-
ceed the transmission bit rate R,, ,, of the physical link (n,u).
For positive burst size Ip[n,u,v,q] and a stable link with
Iz[n,u,v,q] < R, ., the overall bound

Oy, (t) = min {IB [n7 u,v, Q] + IR [’I’L, u, v, q}t, Rn,ut} (6)

on the amount of traffic arriving over a time period ¢ is concave.
In order to reduce notational clutter, we omit the queue link
notation (u,v,q) from ay, (t); however, it is understood that
ay, (t) applies to a given queue link (u, v, ¢). The concave bound
oy, (t) has a “knee point” at the time value where the two bounds
in (6) intersect, i.e., at

IB [na u,v, (I]

Aln,u,v,q] = (7

Rn;u - IR [’I’L, u,v, Q] ’

The aggregate amount of traffic arriving from the set of prior
nodes n € Z(u) to queue link (u, v, q) is bounded by the sum
of the bounds «, (t) from the individual prior nodes n:

> an(t). (8)

nel(u)

at) =

The concave bound «(t) on the amount of arriving traffic is
illustrated for an example with two prior nodes in Fig. 5. The
aggregate bound a(t) has knee points at times A(n, u, v, q), n €
Z(u), i.e., there are as many knee points as prior nodes feeding
into queue link (u, v, ¢) (whereby multiple knee points can co-
incide when the corresponding parameter values are identical).

a(t

amount of g
traffic[bit]
= Biax(u, v, q)
2=
E A
a8
S]g = S(u,v,q) t

<

3 ‘

L A[2,u,v,q) time t[s]
All,u,v,q]

Fig. 5. lllustration of evaluation of maximum buffer utilization By, . at
a queue link (u, v, q). The transmission bit rates R,, , of the incoming
physical links as well as the incoming mean bit rates and burst sizes of
the admitted flows determine the concave bound «(¢) on the maximum
amount of arriving traffic within a time interval of duration ¢t. Comparing
the differences between «(t¢) and the traffic transmitted with the guaran-
teed available transmission bit rate S(u, v, ¢) at the “knee points” of the
concave bound «(t) gives By, ax -

The buffer occupancy (utilization) at queue link (u, v, q) is
bounded by the difference between the aggregate bound «(t) on
the amount of arriving traffic and the amount of traffic transmit-
ted with the available transmission bit rate S(u, v, ¢) from (5).
In particular, due to the concave shape of the aggregate bound
a(t), the maximum buffer utilization By,.x(u,v,q) of queue
link (u, v, ¢) must occur at one of the knee points specified by
(7). Thus

Bmax(u,vaq) = max {O[(A[?’L,U,U,q])
nel(u)

- S(U,U,C])A[TL,’U;,’U,C]]}. (9)

D. Routing Cost Functions

We introduce two per-hop cost components and correspond-
ing cost functions. Our “simple” per-hop cost component counts
the number of queues ¢ with a priority level less than or
equal to the priority level p(u,v,q) of the queue ¢ traversed
by the considered flow. With ¢ = 1 denoting the lowest prior-
ity and ¢ = @Q),,, denoting the highest priority, the number of
queues with lower (or equal) priority than queue ¢ is simply
Cs (’U,, v, q) =q.

Our “buffer-aware” per-hop cost component counts the buffer
usage B{;dx — Bnax due to anew flow fy being added to the
existing set of flows. This buffer usage is normalized by the
allocated buffer space Ap[u,v,q] and the burstiness by, . of
the new flow:

max

Bliiz (4.0,0) = Buax(w,0,0) (0

Cb (U7 U’ q) B AB [u’ rU’ q] bfncw

The total cost of an end-to-end path is the sum of the per-
hop cost components ¢(u, v, q) (e.g., c(u,v,q) = ¢s(u,v,q) or
¢ (u, v, q)) along the traversed path, i.e.,

Z c(u, v, q).

(u,0.q)€P;

C(P) = (1)

2056

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 6, DECEMBER 2016

VIIl. OFFLINE RESOURCE ALLOCATION
A. General Considerations

With our network model, the resource allocation can read-
ily be executed periodically in the background to optimize the
queue link configuration of each physical link. Generally, a po-
tential resource allocation algorithm has to optimize the alloca-
tion of the physical transmission bit rate to the different queues
of a link to eliminate bottlenecks. Bottlenecks could arise for
each of the three types of resources:

1) data rate, indicated through the utilized mean transmis-
sion bit rate Ug|[u, v, q;

2) buffer space, indicated through the utilized buffer
Up [u7 v,q];

3) delay limit utilization, indicated through the difference
between the delay limits ¢y and the worst-case path delays
D(Py) (3).

For an actual network operating with the proposed function
split approach, only the online routing needs to be executed
when a new flow requests admission. As the arrivals of new
flow requests or departures of existing flows occur typically on
a slow time scale, significant changes in the resource utilization
of the queue links occur only slowly. Thus, executing the re-
source allocation periodically in the background will typically
be sufficient for conducting the routing (and admission control)
with a resource allocation that is (nearly) up to date and close
to optimal for the currently carried flows.

The resource allocation in the background should allocate
transmission bit rates A i [u, v,] to the individual priority queue
links so as to minimize a general resource allocation cost func-
tion based on the utilized rate, buffer, and delay budget. Based
on the transmission bit rate allocations Ay [u, v, g, we evaluate
then the worst-case delay (delay budget) T'[u, v, q] of a given
queue link based on network calculus principles [16], [18]. Re-
call that A p [u, v, (] specifies the available buffer size for queue
link (u, v,1) and let P,,.x denote the maximum size of Ethernet
packets (typically 1500 Byte). Moreover, recall from Section
VII-C that S(u, v, ¢) (5) denotes the transmission bit rate avail-
able at queue link (u,v,q). In the worst case, a given packet
has to wait for transmission of all buffered traffic with the same
or higher priority as well as, possibly, the completion of an
ongoing transmission of a lower priority packet that cannot be
interrupted, i.e.,

Zleﬁu\. Ap [U, v, l] 1{p(u71!,l)2p(u,v,q)} + Prax
S(u,v,q)

T(u,v,q) = .
12)
The optimal solution of the general resource allocation prob-
lem is beyond the scope of this paper. However, in order to
illustrate a possible resource allocation approach for our over-
all function split QoS framework, we propose an elementary
resource (rate) allocation algorithm in the next subsection.

B. Elementary Resource Allocation Algorithm

Initially, for the commencement of operation of a network,
link rates are allocated according to historic traffic observations
for similar networks and predictions of traffic patterns, similar

1: procedure RESOURCEALLOCATION

2 for all Switching Nodes o € N do

3 for all Next-hop Nodes w € O, do

4: Virtual Netw. Res. Model < Netw. Res. Model
5: Execute Steps on Virtual Netw. Res. Model

6 Tow = Set of admitted flows traversing o, w
7 for all f €7, do
8 REM-FLOW(f)
9

: end for
10: Frax =0
11: for all Ag[o,w,ql4cc, ., € R do
12: F = FlowCountEst(A [0, w, qleer,)
13: if F' > I, then
14: Frax = F
15: AR,max = AR[Uy W, Q]qGLa_W
16: end if
17: end for
18: if Finax > |75/ then
19: Netw. Res. Model < A g max [0, W, Glger, .,
20: for all (o,w,q) € L, do
21: Evaluate T[o,w, ¢] from Eqn. (12)
22: end for
23: for all f €7, do
24: REM-FLOW(), ADD-FLOW(f)
25: end for
26: end if
27: end for
28: end for

29: end procedure

Fig. 6. Resource allocation algorithm executed periodically in back-
ground. The algorithm cycles through all switching nodes o, and corre-
sponding physically connected outgoing (next-hop) nodes w. The cur-
rent real network resource model is first copied over to a virtual net-
work resource model to examine candidate resource (rate) allocations
Aplo,w,dlgec, , to the set £, of queue links traversing physical
link (o, w). The candidate allocations Ay [0, w, ¢]4ez, ., are from a pre-
scribed set R. The resource allocation A g .« supporting the highest
number of flows, as determined by the flow count estimation algorithm
in Fig. 7, is implemented in the real network resource model (provided
A R max supports more flows than the current allocation).

to [22]. Then, the resource allocation algorithm in Figs. 6 and 7
is periodically employed in the background (offline) to sequen-
tially examine rate allocations at the individual switching nodes
o. For a given switching node o, each physically connected out-
going (next-hop) node w € O, is considered. The current state
of the network resource model (see Section VII) is copied over
to a virtual network resource model, which is then used (in the
background) for executing the resource allocation algorithm.

The brute-force search in line 11 of Fig. 6 is over a prescribed
reasonably large set R of rate allocations Ar[o,w, qlsez, . tO
all the queue links ¢ € L, , traversing the considered physical
link (o,w). For instance, in our numerical evaluations in
Section IX-B, we consider the allocation of the total physical
transmission bit rate 1 Gb/s in 5 Mbyte/s steps to the individual
queue links.

For a given considered rate allocation to all the queue links
Arlo,w,ql4ec, , , the algorithm in Fig. 7 estimates the number

GUCK et al.: FUNCTION SPLIT BETWEEN DELAY-CONSTRAINED ROUTING AND RESOURCE ALLOCATION FOR CENTRALLY MANAGED QOS

2057

1: procedure FLOWCOUNTEST(A g0, w, qlqec.)
2 for all Admitted flows f € 7., do
3 if ADD-FLOW(f) = False then
4: return O

5: end if

6 end for

7 FlowCount = |75 .|

8 New flow n = StatModel(75,.)

9: while ADD-FLOW(n) = True do
10: New flow n = StatModel(75,.,)
11: FlowCount + +

12: end while

13: return FlowCount

14: end procedure

Fig. 7. Flow count estimator algorithm for testing a candidate resource
(rate) allocation Ay [0, w, ql4ez, ., - The admitted flows that are currently
traversing the examined physical link (o,w) are added one by one to
the virtual network resource model. After all admitted flows have been
successfully added, additional new flows are generated according to
a statistical model of the flows currently traversing the link (o,w). The
total number of flows (already admitted flows plus new flows from the
statistical model) that the node can accommodate subject to the QoS
constraints is returned to the resource allocation algorithm in Fig. 6.

of flows that can be supported in two main steps. In a first step
(lines 2-6), the already admitted flows are added one-by-one
back into the virtual network resource model. If all admitted
flows can still be accommodated, the second step (lines 8—12)
estimates the number of additional flows that the node can carry
with the considered rate allocation. For this estimation, new
flows are generated from a statistical flow model. The statistical
flow model could, for instance, average the flow model parame-
ter values (see Table I) of the admitted flows 7, ,, or uniformly
randomly draw each added flow from 7, ., (which is considered
in our evaluations in Section IX).

We note that the resource allocation algorithm in Fig. 6 always
starts from a valid state since the admission control has only ad-
mitted flows whose delay limits can be met with the currently
considered network resource allocation. The search for a new
rate allocation pattern on the virtual network resource model de-
livers a pattern that supports at least the currently admitted flows
(and potentially additional new flows). Thus, already admitted
flows are guaranteed to still have a valid path when a new re-
source allocation pattern is adopted in line 19 of Fig. 6. Line 21
uses (12) to update the queue link delay budgets T[o,w,q],
which are used to evaluate the delay constraints of new flow
requests [see (3)]. The flows are shifted to their valid paths with
the new resource allocation pattern through executing the flow
removal and addition in line 24 of Fig. 6. Running this resource
allocation algorithm periodically in the background following
the general strategies for periodic background processes in net-
works [23] adapts the resource allocation to the admitted traffic
flows and, if possible, allows for the admission of new flows.

IX. SIMULATION EVALUATION
A. Network Setup and Traffic Mixes

We emphasize that the function split QoS framework pro-
posed in the preceding Sections VI-VIII is applicable to

n6
—> 1“
%
i nl_a” ns \/<!
N SDN- qlﬂ B
s - Controller %@
e
- N
Fig. 8. lllustration of unidirectional ring physical link topology for eval-

uation of the end-to-end real-time QoS framework with function split be-
tween resource (transmission bit rate) allocation to priority queue links
and routing through queue links. Each link has 1 Gb/s and four prior-
ity queues, each with 90 000 Byte buffer (as per NEC PF5240 switch
specifications).

TABLE Il
TRAFFIC CHARACTERISTICS AND DELAY LIMITS OF THE CONSIDERED
INDUSTRIAL TRAFFIC SERVICE CLASSES

Service Mean Bit Rate Burst Size Delay Limit
Class r. [kByte/s] b. [Byte] t. [ms]
1 10 100 5
=2 10 100 10
=3 10 100 20
4 10 100 50

Each traffic class has a packet size of 64 Byte.

arbitrary network structures that can be modeled with the queue
link network topology introduced in Section V. For the simula-
tion evaluations in this section, we consider a unidirectional ring,
which is a typical elementary industrial network structure, to
illustrate the performance characteristics of the proposed func-
tion split QoS framework. The ring has six switching nodes and
six source/destination nodes (see Fig. 8). Each switching node
output port (link) has four output queues operating with strict
priority scheduling (without preemption). Note that the result-
ing queue link network has for three hops already 64 possible
paths. Each flow belongs to one of the four service classes in
Table II. Specifically, we consider the ensemble of 968 traffic
mixes obtained by letting each of the four traffic service classes
contribute 5, 10, 15,. .., 85% of the total traffic. Independently
of the service class, we draw for each flow a random hop dis-
tance according to a short (S) hop distance scenario with 70%
of the flows transmitted over one hop, 20% over two hops, and
10% over three hops and a long (L) hop distance scenario with
10% one hop, 10% two hops, 20% three hops, 30% four hops,
and 30% five hops flows.

B. Evaluation Procedures

1) Online Routing and Admission Control: In order
to obtain detailed insights into the performance of our on-
line routing algorithm, including the online admission con-
trol for new flows, we consider the online routing initially in

2058

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 6, DECEMBER 2016

TABLE Il
COMPARISON OF COMPUTATION TIMES FOR SHORT-HOP-DISTANCE
SCENARIO: ONLINE ROUTING AND ADMISSION CONTROL FOR A SINGLE
FLow VERSUS OFFLINE (BACKGROUND) RESOURCE ALLOCATION (ONE
ITERATION THROUGH ALL SiX SWITCHING NODES) VERSUS MIP FOR
RESOURCE ALLOCATION AND ROUTING.

Online Routing Offline Resource ~ MIP: Res. Alloc.

and Adm. Control Allocation and Routing
25th percentile 2.85 us 24.9s 148 s
mean 3.47 ps 27.1s 333 s
75th percentile 3.95 ps 29.9s 333 s

isolation from the offline resource allocation algorithm in
Section VIII-B. In particular, we consider 2925 rate alloca-
tion patterns A g [u, v, ¢] obtained by allocating the R = 1 Gb/s
physical link rate in 5 MByte/s steps to the (), , = 4 priority
queue links (¢ = 1, 2, 3, 4) for each physical link. For each rate
allocation pattern, we successively add in flows according to a
given considered traffic mix (out of a total of 968 considered
traffic mixes). For each new flow, we run the online routing
and admission control algorithm. We gradually add in as many
flows as admissible subject to the QoS requirements. We, thus,
find the best and the worst resource allocation pattern, i.e., the
pattern that leads to the most carried (admitted) flows and the
fewest carried flows in the network among the 2925 considered
rate allocation patterns.

2) Offline Resource Allocation: For the evaluation of the
offline resource allocation from Section VIII, we simulate the
continuous operation of the network for each of the 968 traffic
mixes. Specifically, we initialize the network with a uniform
(equal) split of the physical transmission bit rates to the queue
links. Then, we continuously try to add in more flows of the
considered traffic mix (using the online routing and admission
control), while the resource allocation proceeds once in the
background through all six switching nodes.

3) Comparison Benchmark: MIP Solution: We compare
with the results generated by the offline MIP solution to the joint
problem of routing and resource allocation in [18]. This compar-
ison provides a benchmark for the performance of 1) our online
routing and admission control algorithm, which is only optimal
for the routing of each flow, and 2) our offline resource alloca-
tion algorithm which sequentially considers rate allocations at
individual nodes. The MIP solution finds an overall optimum
for the joint routing and resource allocation.

C. Computation Time

In Table I1I, we compare the computation time of the offline
MIP algorithm [18] with the total computation time for the re-
source allocation algorithm from Section VIII-B and the online
routing (and admission control) from Section VI-B. We con-
sider the short-hop-distance scenario with up to three hops, for
which the MIP is computationally feasible (the MIP becomes
computationally prohibitive for the long-hop-distance scenario).
All times were measured for computations on the same phys-
ical computing hardware in order to allow for meaningful

1= [I . v T
— 3} 1
c H [
Re) : n I
§osr 3 ~
= g i !
=] fymm—— - H
o il , !
T 0.6 £ . 1
~ 3 i
£ El ! i
2 04 3 ' i
g 043 ; i
(0] ; 1 .
> . I
® i ! J
Vo2 fi ! P 1
X i ! i
o H J [
H| -]
i 1 |l
0 -
0 0.2 0.4 0.6 0.8 1
average link rate utilization
= = = S scf-worst ===m== S bef-worst srersren L bcf-worst
= = = S scf-best ===m== S bcf-best L bcf-best

L bcf-res. alloc.

S MIP S bcf-res. alloc.

Fig. 9. Comparison of the CDF (across the 968 traffic mixes) of the
average link (rate) utilization for the online routing evaluation for fixed
rate allocations from Section IX-B1 (showing curves for the worst and
the best rate allocation), the evaluation of online routing in conjunction
with the background resource allocation algorithm from Section IX-B2
(bcf-res. alloc.), and the MIP benchmark evaluation from Section IX-B3.
The short (S, up to three hops) and long (L, up to five hops) hop distances
are considered. The scf and the bcf routing cost functions are considered
for the evaluation from Section IX-B1.

computation time comparisons of the different approaches. The
computation times in Table III are based on the 968 different
traffic mixes, i.e., the variations of the computing times repre-
sent the variations due to the different traffic mixes. We observe
that the mean total computation time (for a given arbitrary traf-
fic mix) for the online routing and admission decision for a
new flow seeking admission to the network is less than 5 us.
While the delay for making routing and admission decisions in
the controller does not impact the packet delay of established
flows on the forwarding (data) plane, the very fast routing and
admission control computation in combination with real-time
QoS control channel flows that could be established between
switches and the controller could ensure delay bounds for flow
establishment.

One iteration of the resource allocation algorithm through all
six switching nodes, which is executed in the background, i.e.,
does not impede the online routing and admission control, takes
on the order of 30 s. In contrast, the MIP takes on the order of a
few hundred seconds.

D. Utilization of Links, Buffers, and Delay Limits

We present cumulative distribution function (CDF) plots
(across the 968 traffic mixes) in Figs. 9—11 for the following.
1) The average link (rate) utilization defined as the mean
utilization of all links in the network (see Fig. 9).
2) The average buffer utilization defined as the mean uti-
lization of all buffers in the network (see Fig. 10).

GUCK et al.: FUNCTION SPLIT BETWEEN DELAY-CONSTRAINED ROUTING AND RESOURCE ALLOCATION FOR CENTRALLY MANAGED QOS

2059

25
e, &
s | '
= 08¢ ot
s 1 1
-]
= 1 1
% 0.6 i I
|]
a 1 I
@« [
()] I“
© 0.4
)
=
(1]
Wl
x 0.2 U
o 1
]
0 1 ~
0 0.2 0.4 0.6 0.8 1
average buffer utilization
= = = S scf-worst =m=mem= S bcf-worst L bef-worst
= = = S scf-best =mmmu= S bcf-best * L bef-best
S MIP S bcf-res. alloc. **#*reeeee L bef-res. alloc.

Fig. 10. Comparison of the CDF of the average buffer utilization of
the overall network for the three evaluation procedures from Sections
IX-B1-1X-B3 for the scf and bcf for short (S) and long (L) hop distance
scenarios.

0.8 [

0.6 [

04

P(x < average delay deviation)

° 0 0.2 0.4 0.6 0.8 1
average delay deviation
= = =S scf-worst ===m== S bef-worst wrresnenn L bcf-worst
= = =S scf-best ==m== S bef-best wrrrrrnnn L bcf-best
S MIP S bef-res. alloc. ********** L bcf-res. alloc.

Fig. 11. Comparison of the average delay deviation (difference be-
tween delay limit t; and worst-case path delay D(P;)) of the overall
network for the three evaluation procedures from Sections IX-B1-IX-B3
for the scf and bcf for short (S) and long (L) hop distance scenarios.

3) The average delay deviation defined as the average of the
deviations of the end-to-end worst-case path delay D (Py)
form the delay limit ¢; in percent, i.e., the average of
(ty — D(Py))/ty, over all flows f carried in the network
(see Fig. 11).

We focus initially on the online routing and MIP results for
the link rate utilization in Fig. 9 and the buffer utilization in
Fig. 10 for the short-hop-distance scenario. The results for the
link utilization in Fig. 9 indicate higher bandwidth utilizations

with the buffer-aware routing cost function (bcf) than the simple
cost function (scf). For the best resource (rate) allocation, the
bef routing achieves up to 93% link utilization compared to up
to close to 60% link utilization with scf routing (and compared
to up to 100% with the MIP).

At the same time, we observe from Fig. 10 that the scf rout-
ing leads to a higher average buffer utilization than bcf routing.
For the best resource allocation (that maximizes the number of
flows), the scf routing almost fully utilizes the buffers, whereas
bef routing utilizes approximately 65-92% of the buffers. The
scf (see Section VII-D) counts the number of queues with equal
or lower priority and thus strives to route flows through low-
priority queues. However, due to the principles of deterministic
network calculus, the low-priority queues have only relatively
low guaranteed available transmission bit rates S [see (5)], since
the transmission bit rates allocated to higher priority queues are
not considered to be available for the low-priority queue. The
low level of guaranteed available transmission bit rate S' leads
to a high worst-case maximum buffer occupancy (utilization)
Biax [see (9)] for the low-priority queues. In contrast, the
buffer-aware cost function (bcf) considers directly the maxi-
mum buffer occupancy [see (10)] and accordingly routes flows
through a mix of low- and high-priority queues so as to “save”
buffer space. Comparing Figs. 9 and 10, we observe that for the
considered networking scenario, the buffer space becomes the
bottleneck resource for the scf routing: The scf routing utilizes
nearly all available buffers for average link utilizations close to
60%. In contrast, bef routing achieves up to 93% link utilization
while requiring less than 92% of the available buffer for the
worst-case By, .x requirements.

We observe that for a given routing cost function, there is
a wide gap between the utilization achieved with the best and
worst resource (rate) allocations patterns A p[u, v, q]. We plot
the utilization results for both the best and worst rate allocations
to illustrate the impact of the rate allocation on the performance
of the introduced function split QoS framework. Moreover, we
observe from Fig. 9 that the elementary resource allocation al-
gorithm from Section VIII-B (bcf-res. alloc. curve) also covers
a fairly wide range of utilization levels. The elementary algo-
rithm that considers rate allocations at individual nodes gives
poor rate allocations for some traffic mixes, as indicated by the
wide gap to the bef-best curve at the bottom of Fig. 9. However,
for over 60% of the traffic mixes, the elementary resource allo-
cation is within 25% of the maximal supported number of flows
of the bef-best scenario. The refinement of the resource alloca-
tion within the function split QoS framework, e.g., by jointly
considering rate allocations to several switching nodes, is an
important direction for future research.

We observe from Figs. 9 and 10 that the long (L) hop
distance scenario gives generally lower link and buffer uti-
lizations than the short (S) hop distance scenario. The bcf
routing with offline resource allocation (bcf-res. alloc. curve),
for instance, has 5-10% lower link and buffer utilizations for
the long-hop distance than for short-hop distance. The bef-best
approach achieves bandwidth utilizations up to around 84%
for the long-hop-distance scenario compared to up to 93% for
the short-hop-distance scenario. This is mainly because the

2060

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 6, DECEMBER 2016

long-hop-distance flows require rate and buffer allocations at
more successive switch queue links and are, therefore, more
difficult to accommodate, leading to fewer admitted flows and
hence lower utilization levels.

Fig. 11 indicates that the bef (for the best rate allocation) has a
slightly higher average delay deviation between the delay limits
and the worst-case path delays than the scf. This means that the
bef gives on average a shorter path delay D(FPs), i.e., utilized
less of the available delay limit ¢, than the scf. However, even
the MIP has an average deviation of over 60%, i.e., the path de-
lays D(Py) are less than 40% of the delay limits ¢ for all traffic
mixes. The delay deviation curves are fairly close together, ex-
cept for the scf (with the worst rate allocation) which utilizes on
average only about 10% of the delay limits for roughly 70% of
the traffic mixes. Overall, these delay deviation results indicate
that the delay limits are on average only partly utilized, i.e., the
packet traffic arrives typically well before the deadlines. We also
observe from Fig. 11 that the long-hop-distance scenario utilizes
10-20% more of the delay budget than the short-hop-distance
scenario.

Overall, the results indicate that the introduced split function
QoS framework makes very quick runtime admission decisions
while providing deterministic worst-case QoS guarantees. In
conjunction with suitable offline (background) resource alloca-
tion, the connection carrying capacity and bandwidth utilization
of our split function QoS network comes for short-hop distances
in the considered ring topology example network to within 7%
of the performance of a monolithic MIP that jointly optimizes
routing and resource allocation.

X. CONCLUSION

We have developed a novel function split framework for
achieving the hard real-time QoS required by industrial commu-
nication based on SDN. Our approach splits the online routing
(and admission control) from the background allocation of trans-
mission bit rates to priority queues. The function split operates
in the context of a network of queue links that provide a range of
QoS priorities at each switching nodes. Online DCLC routing
selects the switching nodes as well as QoS priority queues that a
flow traverses so as to meet its end-to-end delay requirement and
to minimize a routing cost function. The function split frame-
work can be implemented with any SDN controller that has a
global view of the network and can set the queue level flow rules.

Our evaluations for two routing cost functions indicate that
the proposed function split approach makes accurate routing
and admission control decisions within a few microseconds,
compared to hundreds of seconds required by a monolithic MIP
approach that jointly optimizes routing and resource allocation.
At the same time, our approach achieves up to approximately
93% average link utilization in an example industrial commu-
nication scenario compared to close to 100% utilization by the
MIP approach.

There are several directions for future research within the
split function QoS framework introduced in this article. One di-
rection is to explore a wider range of routing cost functions and
scheduling policies. Extensions to more complex scheduling

policies than the static priority scheduling considered in this
study could bring performance enhancements [24]. Another
important direction is to investigate refinements of the back-
ground (offline) resource (transmission bit rate) allocation. Yet,
another direction is to consider statistical (soft) real-time QoS
which can achieve increased utilizations at the expense of rare
deadline violations [25].

REFERENCES

[1] L. Seno, F. Tramarin, and S. Vitturi, “Performance of industrial commu-
nication systems: Real application contexts,” /EEE Ind. Electron. Mag.,
vol. 6, no. 2, pp. 27-37, Jun. 2012.

P. Gaj, J. Jasperneite, and M. Felser, “Computer communication within in-

dustrial distributed environment—A survey,” IEEE Trans. Ind. Informat.,

vol. 9, no. 1, pp. 182189, Feb. 2013.

[3] D.Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined networking: A comprehensive survey,”
Proc. IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015.

[4] D. S. Reeves and H. F. Salama, “A distributed algorithm for delay-
constrained unicast routing,” IEEE/ACM Trans. Netw., vol. 8, no. 2,
pp- 239-250, Apr. 2000.

[5] J.-D. Decotignie, “Ethernet-based real-time and industrial communica-

tions,” Proc. IEEE, vol. 93, no. 6, pp. 1102-1117, Jun. 2005.

H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Improving the worst-case de-

lay analysis of an AFDX network using an optimized trajectory approach,”

IEEE Trans. Ind. Informat., vol. 6, no. 4, pp. 521-533, Nov. 2010.

J. Jasperneite, J. Imtiaz, M. Schumacher, and K. Weber, “A proposal for

a generic real-time Ethernet system,” IEEE Trans. Ind. Informat., vol. 5,

no. 2, pp. 75-85, May 2009.

T. Skeie, S. Johannessen, and O. Holmeide, “Timeliness of real-time TP

communication in switched industrial Ethernet networks,” IEEE Trans.

Ind. Informat., vol. 2, no. 1, pp. 25-39, Feb. 2006.

K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li, “QoS-aware middleware

for ubiquitous and heterogeneous environments,” I[EEE Commun. Mag.,

vol. 39, no. 11, pp. 140-148, Nov. 2001.

L. Sha et al., “Real time scheduling theory: A historical perspective,”

Real-Time Syst., vol. 28, nos. 2/3, pp. 101-155, 2004.

S. Jain et al., “B4: Experience with a globally-deployed software defined

WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 3—14,

2013.

P. Sharma, S. Banerjee, S. Tandel, R. Aguiar, R. Amorim, and D. Pinheiro,

“Enhancing network management frameworks with SDN-like control,” in

Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage, 2013, pp. 688—691.

M. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “PolicyCop:

An autonomic QoS policy enforcement framework for software defined

networks,” in Proc. IEEE SDN Future Netw. Serv., 2013, pp. 1-7.

S. Sharma et al., “Implementing quality of service for the software defined

networking enabled future internet,” in Proc. IEEE Eur. Workshop Softw.

Defined Netw., Sep. 2014, pp. 49-54.

A. Ishimori, F. Farias, E. Cerqueira, and A. Abelém, “Control of multiple

packet schedulers for improving QoS on OpenFlow/SDN networking,” in

Proc. IEEE Eur. Workshop Softw. Defined Netw., 2013, pp. 81-86.

J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-

ministic Queuing Systems for the Internet, vol. 2050. Berlin, Germany:

Springer, 2001.

Q. Duan, “Network-as-a-Service in software-defined networks for end-

to-end QoS provisioning,” in Proc. IEEE Wireless Opt. Commun. Conf.,

May 2014, pp. 1-5.

J. W. Guck and W. Kellerer, “Achieving end-to-end real-time quality of

service with software defined networking,” in Proc. IEEE Int. Conf. Cloud

Netw., Oct. 2014, pp. 70-76.

Y. Han, M. Yao, and Z. Liu, “A scalable method for DCLC problem

using hierarchical MDP model,” Comput. Commun., vol. 36, no. 12,

pp. 1310-1316, 2013.

Z. Jia and P. Varaiya, “Heuristic methods for delay constrained least cost

routing using k-shortest-paths,” IEEE Trans. Autom. Control, vol. 51,

no. 4, pp. 707-712, Apr. 2006.

J. W. Guck, M. Reisslein, and W. Kellerer, “Model-based control plane for

fast routing in industrial QoS network,” in Proc. IEEE Int. Symp. Quality

Serv, Jun. 2015, pp. 65-66.

[2

—

[6

[}

[7

—

[8

—_

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

GUCK et al.: FUNCTION SPLIT BETWEEN DELAY-CONSTRAINED ROUTING AND RESOURCE ALLOCATION FOR CENTRALLY MANAGED QOS

2061

[22] A. Bianco, J. M. Finochietto, G. Giarratana, F. Neri, and C. Piglione,
“Measurement-based reconfiguration in optical ring metro networks,”
J. Lightw. Technol., vol. 23, no. 10, pp. 3156-3166, Oct. 2005.

[23] S. Floyd and V. Jacobson, “The synchronization of periodic routing mes-
sages,” IEEE/ACM Trans. Netw., vol. 2, no. 2, pp. 122-136, Apr. 1994.

[24] J. Liebeherr, D. E. Wrege, and D. Ferrari, “Exact admission control for
networks with a bounded delay service,” IEEE/ACM Trans. Netw., vol. 4,
no. 6, pp. 885-901, Dec. 1996.

[25] J.-L. Scharbarg, F. Ridouard, and C. Fraboul, “A probabilistic analysis
of end-to-end delays on an AFDX avionic network,” IEEE Trans. Ind.
Informat., vol. 5, no. 1, pp. 38-49, Feb. 2009.

Jochen W. Guck received the Dipl.-Ing. degree
in ingenieurinformatik from the University of Ap-
plied Sciences Wuerzburg-Schweinfurt, Schwe-
infurt, Germany, in 2009, and the M.Sc. degree
in electrical engineering from the Technical Uni-
versity of Munich, Munich, Germany, in 2011.

In September 2012, he joined the Chair of
Communication Networks at the Technical Uni-
versity of Munich as a member of the research
and teaching staff. His research interests include
real-time communication, industrial communica-
tion, software-defined networking, and routing algorithms.

Martin Reisslein (A’96—-S'97-M’98-SM’03—
F’14) received the Ph.D. degree in systems en-
gineering from the University of Pennsylvania,
Philadelphia, PA, USA, in 1998.

He is currently a Professor in the School of
Electrical, Computer, and Energy Engineering,
Arizona State University, Tempe, AZ, USA.

Dr. Reisslein served as the Editor-in-Chief for
the IEEE COMMUNICATIONS SURVEYS AND TUTO-
RIALS from 2003 to 2007 and as an Associate
Editor for the IEEE/ACM TRANSACTIONS ON NET-
WORKING from 2009 to 2013. He currently serves as an Associate Editor
for the IEEE TRANSACTIONS ON EDUCATION as well as Computer Networks
and Optical Switching and Networking.

Wolfgang Kellerer (M\'96—-SM’11) is a Full Pro-
fessor with the Technical University of Munich,
heading the Chair of Communication Networks
with the Department of Electrical and Com-
puter Engineering. Before, he was for over
ten years with NTT DOCOMO.s European Re-
search Laboratories. He received his Dr.-Ing. de-
gree (Ph.D.) and his Dipl.-Ing. degree from Mu-
nich University of Technology, Munich, Germany,
in 1995 and 2002, respectively. His research re-
sulted in over 200 publications and 29 granted
patents in the areas of mobile networking and service platforms. He cur-
rently serves as an associate editor for IEEE Transactions on Network
and Service Management and on the Editorial Board of the IEEE Com-
munications Surveys and Tutorials. He is a member of ACM and the VDE
ITG.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

