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Abstract—Random linear network coding (RLNC) has the
potential to improve the performance of current and future
Internet of Things (IoT) communication systems, but is computa-
tionally demanding due to matrix multiplications and inversions.
Some single-core RLNC implementations achieve already suf-
ficient coding speeds for contemporary multimedia streaming
formats. However, advances in multimedia streaming formats
and IoT applications will require the exploitation of hetero-
geneous multicore architectures, which are becoming common
for a wide range of IoT nodes, including smartphones. In this
paper, we introduce and evaluate efficient RLNC computing
strategies for IoT node architectures, including the emerging
heterogeneous big.LITTLE multicore architectures with multiple
big (fast) cores and multiple LITTLE (slow) cores. In contrast to
existing RLNC implementation strategies, we build on and adapt
highly optimized dense matrix operations from the high per-
formance computing field to RLNC on heterogeneous multicore
IoT nodes. Our approach includes the optimization of RLNC
matrix operations through optimized operations on matrix blocks
with single instruction multiple data instructions. We schedule
block operations on the heterogeneous cores through a directed
acyclic graph that avoids artificial synchronization points while
ensuring the data dependencies. We examine priority schedul-
ing according to the number of outgoing dependencies of a task
and data locality of cached blocks. Our extensive measurements
with several heterogeneous big.LITTLE multicore IoT node
and smartphone processor boards demonstrate higher RLNC
encoding and decoding throughputs than existing approaches.
Moreover, our measurements indicate that the utilization of more
cores decreases energy consumption, which is an important goal
for IoT nodes.

Index Terms—Directed acyclic graph (DAG), heterogeneous
multicore architecture, Internet of Things (IoT) node, matrix
inversion, matrix multiplication, parallel computing, random
linear network coding (RLNC), smartphone.
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I. INTRODUCTION

RANDOM linear network coding (RLNC) [2], [3] is a
popular coding approach for efficiently transferring data

in complex, chaotic, or lossy networks, such as wireless net-
works [4], [5], which are the underlying network for many
Internet of Things (IoT) settings [6]–[10]. RLNC can also
be applied for data storage where data is scattered over dif-
ferent, possibly faulty storage servers [11]–[14], in multicast
distribution networks [3], [15], and in peer-to-peer distribu-
tion networks [16]–[19]. RLNC divides the original data into
symbols, combines the symbols linearly based on random
coefficients, and distributes these coded symbols along with
the coefficients. A receiver then only needs sufficiently many
of these (linearly independent) coded symbols to solve the
linear system posed by the random coefficients to decode the
original data. This RLNC system relaxes the requirement for
specific feedback to the sender or special topologies and struc-
tures, and thus can be readily applied in complex IoT structures
or lossy IoT distribution channels. However, this simplicity
comes at the expense of increased computation complexity to
encode and decode the data in the IoT nodes.

Modern PCs, laptops, smartphones, and embedded systems,
such as WiFi access points, TVs, and network attached stor-
age systems, increasingly employ multiple heterogenous CPU
cores. Smartphones and a wide range of embedded systems
and sensors [20], [21] are envisioned to function as IoT
communication nodes and to host IoT applications [22]. For
instance, video streaming is an important form of IoT com-
munication [23]–[27] and often involves smartphones, e.g.,
for video crowdsourcing [28]–[30]. Smartphones can host
IoT event triggering [31] and cyber-physical IoT applica-
tions [32], including health related applications [33], [34].
Taking together the potential benefits of RLNC for IoT com-
munication and the importance of smartphones and similar
embedded systems as IoT communication nodes, it is highly
important to effectively exploit heterogeneous multicore sys-
tems to increase network coding throughput while decreasing
power consumption.

In this paper, we develop and evaluate parallelization strate-
gies for speeding up RLNC on heterogeneous multicore
architectures [35]–[38], which are well suited for IoT
nodes [39]–[41]. We consider homogeneous multicore archi-
tectures with multiple identical CPU cores as well as hetero-
geneous big.LITTLE multicore architectures. The big.LITTLE
architectures consist of a set of fast (big) CPU cores with
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relatively high power consumption, and a set of slow and low-
power (LITTLE) CPU cores [35]–[38]. Modern smartphones
and many other embedded systems feature these big.LITTLE
architectures to support a wide range of IoT computing and
communication applications [42]. We demonstrate that it is
possible to exploit both types of cores at the same time to
maximize throughput while minimizing power consumption.

Our general approach is to build on and to adapt multicore
parallel computing principles from the field of high per-
formance computing for RLNC on IoT nodes based on
heterogeneous multicore architectures. We optimize matrix
operations through processing matrices in blocks and opti-
mization of basic (kernel) matrix operations through single
instruction multiple data (SIMD) instructions which are com-
monly available on IoT node and smartphone processors. We
schedule the matrix block processing tasks with a directed
acyclic graph (DAG). In contrast to existing RLNC com-
puting approaches, our novel DAG approach to RLNC does
not require any artificial synchronization points. With DAG
scheduling, the synchronization is only due to the data block
dependencies. We examine schedule optimizations that con-
sider the data dependencies, i.e., prioritize tasks with the most
outgoing dependencies, and data locality, i.e., prioritize tasks
with presently cached blocks. We conduct extensive eval-
uations with heterogeneous octacore systems, including the
Samsung Exynos 5422 system on a chip (SoC), which is found
in modern smartphones, such as the Samsung Galaxy S5, and
is well suited for IoT nodes [22], [43], [44]. The evaluations
indicate increased RLNC encoding and decoding throughputs
compared to the state-of-the-art coefficient matrix duplication
(CD) approach [45], [46].

This paper is structured as follows. Section II reviews
RLNC basics. Section III presents related work on efficient
RLNC computation. Section IV introduces the optimized
matrix block operations for RLNC. Section V introduces the
DAG-based approach for scheduling the block operation tasks.
Sections VI and VII present the experimental evaluation set-up
and the evaluation results, respectively. Section VIII summa-
rizes the conclusions and outlines future work directions.

II. NETWORK CODING BASICS

RLNC performs linear operations in the Galois field
GF(2p) [3]. The sender splits the original data into n sym-
bols. Each symbol has length (symbol size) m [in units of
words, whereby for the typically considered GF(28), 1 word
= 8 bit = 1 byte]. Consecutive symbols are further grouped
into generations, whereby each generation contains g symbols,
i.e., g is the generation size. The original data of one gener-
ation can then be described as matrix M with g rows and m
columns, whereby each row represents one original symbol.

For encoding, we let r denote the number of redundant pack-
ets that are to be generated for a set of g packets, whereby r
is set based on the expected losses. RLNC is a rateless coding
mechanism and thus can create an arbitrary number r, r ≥ 0,
of redundant packets. A coefficient matrix C with g + r rows
and g columns with random coefficients is created for the
encoding. Encoding is then performed by multiplying the

coefficient matrix C with the original data (symbol) matrix M

X = CM. (1)

Each coded symbol x, which is a row of matrix X, is then dis-
tributed along with its corresponding coefficient (row) vector c
of matrix C as a coded packet. A receiver that has acquired at
least g linearly independent coded packets forms a new coef-
ficient matrix C̄ from the received coding vectors, and a new
coded symbol matrix X̄. The receiver matrices C̄ and X̄ differ
from the sender matrices C and X in row order and number
of rows. To decode and reconstruct the original symbol matrix
M, the receiver calculates

M = C̄−1X̄. (2)

The encoding and decoding operations share the matrix
multiplication step. In addition, the decoding operation
requires the inversion of the receiver coefficient matrix C̄.

Many applications implement decoding by combining the
inversion and matrix multiplication, e.g., by performing the
Gauss–Jordan algorithm [47] on matrix C̄, while applying row
operations on matrix X̄. These row operations on X̄ can be par-
allelized for GPUs [48]. However, there is only limited GPU
availability on resource-constrained lightweight IoT nodes and
smartphones [49]. Also, the speed-up from the combined pro-
cessing is limited for small symbol sizes (m ≤ 2048 byte),
since working with multiple threads on the same coded sym-
bol requires tight synchronization. Our general strategy is
therefore not to combine matrix inversion and multiplication.
Instead, we first explicitly invert matrix C̄ with an optimized
inversion technique. Then, we reuse the optimized matrix mul-
tiplication (from the encoding) to achieve overall very efficient
decoding.

III. RELATED WORK

This section gives an overview of the different existing
research perspectives on the computationally efficient execu-
tion of network coding and contrasts the present study from
related work on network coding on IoT nodes and smart-
phones. One research perspective has been to simplify network
coding, e.g., by coding over the small binary GF(2) Galois
field [50]–[53] or by developing alternative computationally
simpler forms of network coding (see [54], [55]). In this
paper, we focus on conventional RLNC over the commonly
considered GF(28) Galois field.

For fast implementation of GF(28) RLNC, parallelization
based on general purpose graphics processing units has been
extensively studied [48], [56]–[62]. Desktop computers and
servers have hundreds or even thousands of GPU threads avail-
able that amortize the data copying between CPU and GPU
memory. However, for IoT nodes and smartphones with a
relatively small number of GPU threads [49], the data copy
overhead can typically not be amortized [46]. Therefore, GPU-
based techniques are typically not suitable for IoT nodes and
smartphones.

However, modern IoT nodes and smartphones feature
multicore CPUs that can be exploited for parallelizing the
matrix operations [47], [63]. Moreover, modern IoT node
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and smartphone CPUs feature SIMD instructions that can be
exploited for parallel data processing [64]. More specifically,
parallelized progressive network coding (PPNC) with SIMD
instruction [65] statically partitions the coefficient matrix C̄
and the coded symbol matrix X̄ vertically to threads running
in parallel on the multiple cores. For instance, for two par-
allel threads, the left half of C̄, i.e., the left g/2 columns of
C̄, and the left half of X̄, i.e., the left m/2 columns of X̄,
are fixed assigned to thread one, while the right halves of C̄
and X̄ are assigned to thread two. PPNC, as well as its exist-
ing refinements combine matrix inversion and multiplication
to perform the decoding operation in (2). Matrix multiplication
operations have been optimized for the iPhone in [66], while
other network coding prototypes for smartphones have been
explored in [67] and [68]. The microcast study [69] compared
a pure Java implementation of network coding with a native
implementation on the phone CPU.

The static partitioning of PPNC may lead to uneven thread
loading, which has been addressed in dynamic vertical parti-
tioning (DVP) [70]. DVP adapts the number of columns of C̄
and X̄ that are assigned to threads according to the number of
rows that need to be processed. However, the parallel threads
in both PPNC and DVP need to synchronously process the
matrix partitions [65], [70]. Role division progressive decoding
(RDPD) [71] has sought to solve this synchronization issue by
defining a supervisor thread that focuses on the Gaussian elim-
ination of C̄ while worker threads focus on the encoded data
matrix X̄. RDPD thus still has dependencies, namely between
worker threads and the supervisor thread. Recently, the CD
approach [45], [46] has sought to circumvent these dependen-
cies by providing each thread with a full copy of the coefficient
matrix C̄. The CD approach builds on the previously devel-
oped partitioning approaches by assigning a vertical partition
of the encoded data matrix X̄ to each core; however, differ-
ent from prior approaches, the CD approach gives each core
the full coefficient matrix C̄. The CD approach thus essen-
tially decodes the coefficient matrix C̄ redundantly in each
thread (core), eliminating the need for tight synchronization
at the expense of duplicating the matrix inversion effort. The
CD approach exploits the advanced SIMD extension of the
ARM architecture, which is also known as NEON, and has
demonstrated superior performance over previous approaches
in the evaluations in [46]. We consider therefore the CD
approach [46] as the main performance benchmark in our
evaluations.

In contrast to the existing approaches, which combine
matrix inversion and multiplication, we compute both steps
individually. We employ matrix operation strategies that
require minimal synchronization. This allows us to minimize
the synchronization overhead while achieving excellent paral-
lelization speed-up, without adding redundant computations.

IV. OPTIMIZED MATRIX BLOCK OPERATIONS

FOR RLNC

A. General Principles

1) Review of Optimized Matrix Operations: Matrix
multiplication and inversion are standard operations in many

scientific applications and have therefore been extensively
researched in the numerical computer science and high
performance computing fields. Researchers in these fields
have focused mainly on execution on powerful servers or
supercomputers and developed optimized dense matrix com-
putation principles [72]. Standard interfaces, such as the
basic linear algebra subprograms (BLASs) [73], [74] and
LAPACK [75] provide many common vector and matrix oper-
ations. Optimized and self-optimizing libraries, such as such
as the library by Goto and van de Geijn [76] and ATLAS [77],
take cache hierarchies, translation lookaside buffer (TLB), and
SIMD instructions into account to maximize performance.
However, these libraries operate on floating point or inte-
ger numbers, not on Galois fields (i.e., the libraries are not
suitable for finite field arithmetic). Some libraries, such as
FFLAS/FFPACK [78] and LinBox [79], leverage the highly
optimized floating-point BLAS implementations for various
finite field variants by converting finite field elements to
floating point numbers and back.

2) Optimizing Matrix Operations for RLNC: This conver-
sion approach from finite field elements to floating point
numbers and back performs generally well for large problem
sizes. However, the conversions add considerable overhead for
small problem sizes. Also, native implementations can lever-
age SIMD instruction for performing many operations for
“small” Galois field sizes, such as GF(2) and GF(28), simulta-
neously with one instruction. Our general strategy is therefore
to build on the general principles of efficient floating point
BLAS operations from the existing numerical computer sci-
ence literature. Based on these principles, we independently
develop computational strategies for small Galois fields to
efficiently compute RLNC on IoT nodes and smartphones.

B. Block-Based Operation

1) Matrix Partitioning Into Blocks for Parallel Thread
Processing: An important optimization is to let parallel
threads operate on square block partitions of matrices rather
than to process full rows and columns of a matrix, e.g., when
multiplying matrices. We define a square block of a matrix
(for brevity referred to as block) to consist of b × b words
[bytes with the considered GF(28)], whereby typical block
sizes are b = 16, 32, and 64 bytes. Working on square blocks
improves the spatial locality of the data and maximizes the
operations per fetched data, at least for O(b3) algorithms [80].
The optimal block size depends on the IoT node platform
architecture [49] and is usually chosen so that all utilized par-
allel threads are busy and all operands fit into the L1 cache.
Also, the block size b should be a multiple of the architecture’s
SIMD operation size. Further possible optimizations include
multiple levels of block formation (blocking) to match L2 and
L3 caches or the TLB, recursive blocking, and reordering the
input data to adapt to the algorithm’s access pattern [81]. For
simplicity, we focus on a single level of blocking in this paper.
(We introduce an additional level of blocking, referred to as
subblocking, to improve cache efficiency in Section IV-C2;
subblocking is not introduced to enhance parallel thread pro-
cessing.) A limitation of our blocking-based approach is that
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TABLE I
OVERVIEW OF GF(28) (BINARY 8) KERNEL (BASE) MATRIX

BLOCK OPERATIONS FOR NETWORK CODING

all coded symbols need to be received before starting the
decoding process; hence, our approach is not well suited for
online decoding.

2) Matrix Inversion: For the matrix inversion, we devel-
oped a block-based (blocked) version of the lower upper
(LU) factorization, which shares similarities with the LAPACK
GETRI routine [75]. The three main stages of the LU factor-
ization are as follows.

1) LU factoring of the input matrix A.
2) Invert upper matrix U.
3) Solve A−1L = U−1 for A−1.

Each step involves various operations on matrix blocks,
such as matrix–matrix multiplication, matrix-triangle matrix
multiplication, and triangle-matrix system solving. We indi-
vidually optimize these few base matrix operation “kernels,”
e.g., using SIMD operations.

C. Optimization of Kernel (Base) Operations

We represent each of the block matrix operations, e.g.,
matrix–matrix multiplication, matrix-triangle-matrix multipli-
cation, and triangle-matrix system solution, as a base (kernel)
operation. Each kernel operation can be represented as a task
with input blocks and output blocks in memory. We have
broken the problem into a small set of eight simple block
operations in GF(28), see Table I, which are based on cor-
responding BLAS/LAPACK functions [73]–[75]. This small
set of kernel operations makes it easy to examine which block
operations are used frequently. The most frequently used block
operations can then be optimized.

1) SIMD Operation Optimization for Matrix Multiplication:
Matrix multiplication operations can be well optimized using
SIMD operations. In particular, a matrix multiplication can be
broken into multiple vector-scalar operations. These vector-
scalar operations can be readily optimized with SIMD instruc-
tions, such as NEON for ARM processors, as has been studied
in [46] and [82]. We employ the approach from [46] and [82]
to implement the multiplication of a 16 byte wide vector
[whereby each vector element has 1 byte in GF(28)] with a
scalar. The vector elements are processed in parallel using
the SIMD instructions shift right, xor, and table
lookup (also known as shuffle). These SIMD instruc-
tions are widely available, e.g., in NEON on ARM and in
the streaming SIMD extension 3 (SSSE3) within the x86
instruction set architecture, which is widely employed for

Fig. 1. Illustration of subblocking for a 128×128 byte matrix with block size
b = 64, i.e., four 64 × 64 blocks for parallel processing on four threads (see
Section IV-B1) and 16×16 subblocks for cache efficiency (see Section IV-C2).

IoT applications [83]. The implementation requires only seven
SIMD instructions to compute the 16 multiplications for the
16 elements in a vector in parallel with a scalar [46, Sec. 3.3].

2) Subblocking for Cache Efficiency: We further optimized
the matrix multiplication through subblocking in the imple-
mentation of the kernel computation (computation kernel). We
do not subblock to divide the workload into more threads
(which is the purpose of the blocking in Section IV-B1).
Instead, we seek to improve the cache efficiency of the com-
putation kernel. That is, we seek to frequently reuse the data
in the L1 cache, while meeting the width of the SIMD instruc-
tions. Specifically, for matrix multiplication, we divide the
variable-sized block into 16×16 [bytes] subblocks that fit into
the typical 32 KiB L1 data cache and match the width of the
SIMD instructions of IoT nodes [22], [83]. For instance, in the
example with 64×64 blocks illustrated in Fig. 1, each 64×64
block is divided into 16 subblocks of dimension 16 × 16. We
perform the matrix kernel operations on the subblocks in order
to perform a matrix multiplication on the entire block. This
subblocking method enables efficient computations on large
blocks, where the input and output blocks would not fit into
the L1 cache of low-cost IoT nodes. Large blocks that do
not fit into the L1 cache have led to performance degrada-
tions in earlier studies, e.g., [46], which have not considered
subblocking for cache efficiency.

V. OPTIMIZED RLNC PARALLELIZATION

WITH SCHEDULING GRAPHS

A. Directed Acyclic Graph Schedule

1) DAG Scheduling Principle: Each of the matrix block
operations can be considered a separate task with inputs from
memory and outputs to memory. Dongarra et al. [84] have
described how to exploit these data dependencies among tasks
to parallelize matrix inversion. The basic idea is to first formu-
late the algorithm conventionally. Data operations on blocks
are then recorded, and the resolved data dependencies are
formulated in a DAG. DAG nodes represent the individual
tasks and DAG edges represent data dependencies among the
nodes. To actually invert the matrix, a scheduler distributes
tasks while meeting dependencies, until the DAG is completely
processed.
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Fig. 2. Illustration of DAG of task dependencies of matrix inversion stage 1,
LU factorization of the input matrix, for a 3 × 3 block matrix C. Red arrows
indicate read-after-write dependencies. Data is read from the green R blocks
and both read from and written to the yellow B blocks. The headers of the
illustrated blocks indicate the GF(28) kernel operations (see Table I).

Fig. 3. DAG of task dependencies of multiplication of a square coefficient
matrix C (1024 × 1204) with a rectangular symbol matrix M (1536 × 1024)
at block size b = 512 to obtain coded symbol matrix X.

2) DAG Schedule Creation (Recording): For our problem
setting of RLNC encoding and decoding, we schedule the par-
allel matrix block multiplication and inversion operations as
follows. We first record (create) the DAG schedule by simulat-
ing the execution of a single-thread program. The simulation
does not execute the block operations (tasks); instead it records
the input and output data of each block operation as well as
the order of the block operation. Next, we explicitly find the

dependencies between the tasks and prepare a DAG repre-
sentation of the dependencies. We illustrate the DAG created
for the first stage of the inversion (see Section IV-B2) of a
3 × 3 (block) matrix in Fig. 2. Fig. 3 illustrates the DAG for
a matrix multiplication. For each node, the involved blocks
have been colored: green blocks with letter “R” are blocks
from which data is read, red blocks with letter “W” are written
to, and both operations are performed on yellow blocks with
letter “B.” Green arrows indicate write-after-read dependen-
cies, while red arrows indicate read-after-write dependencies.
We observe from Fig. 3 that the matrix multiplication DAG
provides a very high degree of parallelism to exploit. This is
because all blocks of the output matrix are computed inde-
pendently through the various matrix–matrix multiplications
of the respective blocks, as recorded in the DAG.

The final step of the DAG schedule creation places the
task(s) from the DAG that do not have any dependencies, i.e.,
the first task(s) into a “task queue.” The task queue is a simple
linked list of tasks that are ready, i.e., do not depend on other
tasks to be finished first.

3) DAG Schedule Execution: The execution of a prere-
corded schedule proceeds as follows. We first start up multiple
threads. Then, each thread accesses the task queue to obtain
a new task to work on. After a task has been processed by
a core, the list of tasks that depend on the just completed
task is traversed. For each of those outgoing dependent tasks,
a dependency counter is decreased, whereby the dependency
counter denotes the number of dependencies that have to be
met before the task can be scheduled. When the dependency
counter of a task reaches zero, all dependencies have been
cleared, and the task is added to the beginning (head) of the
task queue. The rationale for adding the task to the head of
the queue, i.e., for the last-in-first-out/stack scheduling policy,
is to improve the data locality for the first-task scheduler (see
Section V-C1), since the same core will immediately try to
pick up the next task.

The execution is completed when the task queue is empty
and all cores have returned to their idle state. In a practi-
cal implementation of an IoT application, the schedule can
be prerecorded during an offline computation. The prere-
corded schedule can then be executed in an online manner
by copying the DAG graph for each invocation of a gener-
ation. Accordingly, we define a schedule and execute (SE)
throughput measure (for online SE) and an execute through-
put measure (for offline scheduling and online execution), see
Section VI-C.

4) DAG Schedule Properties: This DAG-based method has
important properties: first, the synchronization depends only
on data dependencies, no artificial synchronization points need
to be inserted. More specifically, parallel programs typically
require artificial synchronization points, where threads are
created and joined after a particular processing step. In con-
trast, with the DAG approach, the synchronization depends
only on data dependencies. No artificial synchronization points
are needed, not even between the different steps defined
in Section IV-B2. Rather, threads are created on startup of
the matrix operation, and can pick a task with satisfied
dependencies at any time. This dynamic processing with low
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Fig. 4. Recorded example schedule for a matrix inversion on big.LITTLE IoT node architecture with four big (fast) cores on top and four LITTLE (slow)
cores on the bottom, for generation size g = 1024, block size b = 128: white color patches indicate idle times, and red color patches indicate overhead time,
e.g., for waiting for a dependency. Through the schedule tuning strategies described in Section V-B, we reduced the white and red color patches.

synchronicity allows threads that run on slow cores or threads
that take breaks (e.g., for processing I/O, other system tasks,
or other IoT applications) to contribute to the computation
without creating idle time on other cores.

Second, the task creation overhead is minimized as the
scheduler creates threads based on the number of used cores
on startup, whereby a thread is pinned to each core. Keeping
threads open is substantially faster than creating new threads,
since the operating system overhead can be avoided and
threads only need to work with the light-weight data struc-
tures of the task queue. Finally, this DAG approach can cope
very well with heterogeneous cores running at different speeds,
e.g., big.LITTLE heterogeneous multicore IoT node architec-
tures [39]–[41], [49], and systems where some cores may
be busy with other tasks, e.g., input/output processing or
processing of the received data.

B. Schedule Tuning

For evaluating and tuning our scheduler, we tracked the
execution times and created a graphical representation to find
hotspots and problems in the overall execution. An example
run on the ODROID XU-3 big.LITTLE octacore system (see
Section VI-A1) is shown in Fig. 4. The x-axis represents time,
and each row shows one core, whereby the four fast cores are
on top and the four slow cores on the bottom. White patches
represent idle time, bright red patches represent overhead time
(e.g., for acquiring a new task or for waiting for a lock), while
other colors denote different block operations.

1) Data Chunk Splitting: The graphical representation of
the recorded schedule revealed long running tasks that oper-
ated on “big data chunks” consisting of multiple blocks, e.g.,
on a 16×128 data chunk. By splitting the big data chunk into
smaller chunks (whereby a smaller chunk could consist of a
single block or multiple blocks) we reduced the idle times
of the other processors. We note that the data chunk split-
ting is orthogonal to the kernel optimization in Section IV-C
in that more tasks on smaller inputs/output chunks/blocks are
created, but the kernel computation is still the same and can
be optimized separately.

2) Adapt Block Processing Order to Avoid Cache Line
Conflicts: One limitation of the block size selection is the
cache line size of the processor architecture (platform). On
many contemporary IoT platforms, including the evaluated
platforms (see Section VI-A), the L1 cache line size is
64 bytes [49], [83]. Column-major order is the standard
format for storing matrix data in FORTRAN, in particular
in the BLAS/LAPACK [73]–[75] subprograms. We built on
the principles of the mathematical kernels and algorithms

Fig. 5. Illustration of cache line conflicts for two cores working on the same
cache line in the column-major data layout and conflict resolution through
adapting the block processing order: a black square denotes an SIMD/subblock
of 16×16 bytes. The 32×32 block computed by core 1 is indicated by the blue
square, while the green square indicates the block computed by core 2. In the
upper left, the two cores operate on the same 64-byte cache lines (which hold
columns of four SIMD/subblocks), creating conflicts. In the upper right, the
two cores operate on blocks that are held in different columns, i.e., different
cache lines, avoiding the conflict.

from BLAS/LAPACK and therefore employ the prerequisite
column-major order. An alternative approach could employ
row-major order; however, the row-major order would require
extensive redesign and reprogramming of mathematical ker-
nels and algorithms.

As illustrated in Fig. 5, using block sizes of b = 16
or 32 [byte] could result in having multiple cores work on
separate blocks that occupy the same cache lines. The two
32 × 32 blocks in the upper left of Fig. 5 are computed by
cores 1 and 2, indicated by blue and green squares, respec-
tively. In the employed column-major format, cores 1 and 2
will need to work on the same (vertical) 64 byte cache lines.
This will result in synchronization among the L1 caches of
the two cores, increasing the computation latency through syn-
chronization stalls (“cache thrashing”) [85], [86]. This cache
thrashing can significantly slow down the matrix operations as
a cache coherency protocol will need to stall a processor core
until the data has been synchronized with the other processor
core that is currently “in charge” of the cache line.

We avoided this cache thrashing problem for the matrix
multiplication through adapting the processing order of the
blocks. Specifically, we first loop over row blocks, as illus-
trated in the upper right of Fig. 5. That is, the blocks that
cores 1 and 2 are computing are arranged horizontally in the
upper right of Fig. 5. Cores 1 and 2 work now on blocks in
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the same row (instead of the same column). In the employed
column-major format, the two cores thus work on different
cache lines, avoiding cache thrashing and cache coherency
stalls. Accordingly, we have constructed the loops to first
sweep through the row blocks of the result matrix contain-
ing the product of the matrix multiplication, i.e., X in (1) or
M in (2).

The looping of row blocks implies that for matrix multipli-
cation, the cores typically operate simultaneously on blocks
in the same row. However, some instances of cores working
on the same (vertical) cache lines can still arise. One example
instance is that the cores “wrap around” during the looping
over the block rows. For example, suppose four cores are
operating on a matrix that is three blocks wide. Then, the
fourth core would already work on the next row (wrapped
around) and can conflict with the first core operating on the
first block in the preceding row. Another instance can arise
through “online” conflicts, e.g., when one core has been busy
with another task and returns to operate on a block while
another core has advanced to operating on a block directly
below the block with the returning core.

An alternative approach for avoiding the cache thrashing is
to reorder the data into “tiles” so that all elements of one
block are in a contiguous buffer [87]. However, this tile-
based approach adds reordering overhead before and after
each coding operation. This reordering overhead can be quite
significant, especially for small generation sizes g. In partic-
ular, matrix multiplication touches each element in the result
matrix g times; thus for small g with relatively low multipli-
cation effort, the reordering overhead can be quite significant.
Another alternative approach could be to add hints for the
scheduler to avoid scheduling the same cache lines on different
processors.

C. Priority Scheduling: Data Dependencies and Locality

1) First Task Scheduling: An elementary “first task”
scheduling policy schedules the first task in the task queue
(see Section V-A2) for the next available processor, irrespec-
tive of whether it is a fast or slow processor. In addition
to this elementary first task scheduling, we examine priority
scheduling according to task dependencies and data locality
and a combination thereof, as introduced next. Throughout, all
scheduling policies give fast cores precedence over slow cores.
More specifically, each of the considered scheduling policies
instructs slow cores to go to sleep and wake fast cores, when
a slow core (that has just finished a task) finds a fast core
waiting for new tasks.

2) Task Dependency Scheduling (Priority for Tasks With
Most Outgoing Dependencies): We observed from the graph-
ical representation of the execution times, as illustrated in
Fig. 4, in conjunction with graphical illustrations of the task
dependencies, as illustrated in Figs. 2 and 3 that tasks with
many outgoing dependencies have the tendency to hold up
(delay) many subsequent tasks. We have addressed this delay
due to many outgoing dependencies through prioritizing tasks
with the most outgoing dependencies. More specifically, our
scheduler parses the list of queued open tasks. For each open

task, the scheduler counts the number of outgoing dependen-
cies. The scheduler then schedules the queued task with the
most outgoing dependencies on the next available fast core.
On the other hand, the queued task with the fewest outgoing
dependencies is scheduled for the next available slow core.

3) Data Locality Scheduling (Priority for Tasks Operating
on Cached Blocks): A related scheduling optimization is to
prioritize the tasks that operate on a block that is presently
in the cache so as to exploit data locality. In particular, the
scheduler parses the list of queued open tasks for tasks that
operate on a presently cached block. More specifically, we
remember the last call processed on a given core. For each
open task in the queue, we compare each input/output block
with the input/output blocks of the task that has just completed
its processing on the considered core. We award a score of one
for each match. For example, if both tasks work on exactly
the same blocks and we have two input blocks and one output
block, as is common, we award a score of three. The sched-
uler then selects the task with the highest score for the next
available core (irrespective of whether it is a fast or slow core).

4) Combined Priority for Task Dependency and Data
Locality: Our combined priority policy distinguishes between
the slow and fast cores. The combined priority score of the
slow cores is computed as the score from the data locality
scheduling policy (see Section V-C3) minus the dependency
count from task dependency scheduling (see Section V-C2).
Subtracting the dependency count from the data locality score
encourages the slow cores to select less “important,” but
still local tasks. In contrast, for the fast cores, the combined
priority policy adds the dependency count from task depen-
dency scheduling (see Section V-C2) and the locality score
from data locality scheduling (see Section V-C3) to obtain
a combined priority score. Thus, important tasks with sev-
eral dependencies, are assigned with priority to the fast cores.
Throughout, we select the task with the highest score for the
considered (slow or fast) core.

VI. EVALUATION SETUP

A. IoT Node Boards

1) ODROID XU-3: We have conducted experimental
evaluations mainly with the ODROID XU-3 board [88].
The ODROID XU-3 board features the Samsung Exynos
5422 SoC, which is widely considered as basis for IoT
nodes [22], [43], [44]. The Samsung Exynos 5422 SoC has
a (big) Cortex-A15 quad core CPU clocked at up to 2.0 GHz
and a (LITTLE) Cortex-A7 quad core CPU clocked at up to
1.4 GHz. The Samsung Exynos 5422 SoC implements the
big.LITTLE architecture with heterogeneous multiprocessing
(HMP). The HMP can simultaneously use all eight cores, com-
pared to previous big.LITTLE systems that could only utilize
combinations of up to four cores out of a total of eight cores.
Each core has a 32 KiB (KiB = 210 byte) L1 data cache and
a 32 KiB L1 instruction cache, which is organized as 2-way
(Cortex A15 [89]) or 4-way (Cortex A7 [90]) set-associative
cache with a fixed cache line length of 64 bytes. The four A-
15 cores share a 2 MiB (MiB = 220 byte) L2 cache, while the
A7 cores share a 512 KiB L2 cache. Both quad core CPUs
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are connected to each other and to a 2 GiB LPDDR3 RAM
clocked at 933 MHz with an 128-bit AMBA ACE Coherent
Bus interface. All cores support the NEON extension with the
128-bit SIMD instruction set, which can greatly speed up the
GF(28) operations [82], [91].

2) ODROID XU+E: For benchmark comparison with the
recent evaluation results for the CD approach [45], [46], we
also conducted evaluations with the ODROID XU board. The
ODROID XU board is identical to the ODROID XU+E board
used for the evaluations in [45] and [46], except for the miss-
ing energy measurement components. The ODROID XU+E
board is similar to our main ODROID XU-3 evaluation board.
However, the ODROID XU+E board has an earlier version of
the (big) Cortex-A15 quad core CPU clocked at up to 1.6 GHz.
While the ODROID XU+E has also a big.LITTLE architec-
ture with an Cortex-A7 quad core (LITTLE) CPU, it does not
yet have HMP; thus, only four cores out of the total of eight
cores can be utilized at a time. The ODROID XU+E has also
a slightly slower RAM clocked at 800 MHz.

3) Cubieboard 4: The Cubieboard, which is a widely con-
sidered IoT node platform [92], [93], is implemented around
an AllWinner A80 SoC, which contains a (big) Cortex-A15
quad core CPU clocked at up to 2.0 GHz and a (LITTLE)
Cortex-A7 quad core CPU clocked at up to 1.3 GHz. The
big.LITTLE architecture supports HMP. The 2 GB DDR3
memory is clocked at 480 MHz, i.e., substantially slower than
the ODROID-XU3. The cache configuration is identical to the
ODROID-XU3 with separate 32 KiB L1 caches for instruc-
tions and data on each core and separate 2 MiB and 512 KiB
L2 caches for the A15 and A7 cores, respectively.

4) Raspberry Pi 2: For comparison with our earlier evalu-
ations [1] we conducted measurements on the Raspberry Pi 2
Model B board, which features four ARM Cortex-A7 cores in
a Broadcom BCM2836 SoC, clocked at 900 MHz. Each core
features a 32 KiB L1 data cache and a 32 KiB L1 instruction
cache. All cores share a 512 KiB L2 cache. The Raspberry
Pi 2 also features the NEON SIMD instructions, but has only
four homogenous cores.

B. Parameter Settings and Test Matrices

We conduct evaluations for a wide range of generation sizes
g and symbol sizes m. Specifically, we consider symbol sizes
ranging from m = 1024 and 1536 bytes, which are multiples of
512 close to the standard Ethernet maximum transfer unit, to
m = 16 384 bytes, which would be applicable for data centers
and storage usage. We randomly fill the data (symbol) matrix
and the coefficient matrix and consider matrices that do not
require pivoting. As is common for the evaluation of network
coding computations, we set the number r of redundant pack-
ets to zero. We performed test runs for all available block sizes
b. We report results for the best performing block size, which
would be employed in a real IoT implementation. All bench-
mark results presented in this paper have been performed with
NEON-enabled code using optimized GF(28) operations which
have been adopted from the fifi/kodo library [94]. We initially
employ the first task scheduling policy (see Section V-C1). We
conducted independent replications for each evaluation so that
the widths of the 95% confidence intervals of the performance

metrics were less than 2% of the corresponding sample means.
The confidence intervals are not plotted so as to avoid visual
clutter.

C. Throughput Metrics

As reviewed in Section II, encoding requires a matrix
multiplication, while decoding requires one matrix inversion
and one matrix multiplication. For a given combination of
generation size g, symbol size m, and block size b, we
measured the execution (run) time [s] for creating and execut-
ing the schedule for the matrix multiplication for encoding,
resp. the matrix inversion and multiplication for decoding. We
define the respective encoding and decoding throughput met-
rics [bytes/s] as the measured execution times divided by the
size gm [bytes] of the data (symbol) matrix M.

More specifically, for both the encoding throughput and the
decoding throughput, we provide two throughput measures:
1) the throughput for creating the schedule and executing the
schedule, referred to as the SE throughput and 2) the through-
put for executing a precomputed schedule, referred to as the
E throughput. When employing our DAG scheduling-based
encoding or decoding approach in practice, the DAG sched-
ule needs to be computed (recorded) only once for a given
parameter combination, i.e., a given combination of generation
size g, symbol size m, and block size b. Subsequent encod-
ing or decoding operations can utilize the exact same DAG
schedule, i.e., only need to execute the DAG schedule. Thus,
the first encoding or decoding for a particular combination
of generation size g, symbol size m, and block size b needs
to compute the DAG schedule and execute the DAG sched-
ule, i.e., achieves the SE throughput. Subsequent encoding
or decoding operations for the same parameter combination
only need to execute the prerecorded DAG schedule and thus
achieve the higher E throughput. We note that execution of a
prerecorded DAG schedule incurs overhead for copying and
reinitializing the DAG schedule. However, this overhead is
typically negligible.

D. Energy Metric

The ODROID XU-3 board features integrated power sensors
that individually measure the currents and voltages of the big
A15 cores, the little A7 cores, the GPU, and the RAM. For
our power evaluations, we have combined all four sensors to
form one overall power value [Watts]. We have repeatedly
sampled the power sensors, near the beginning and end of the
execution and every 5 ms during the execution. We integrated
the sampled power values over time to obtain the consumed
energy [Joules] for a given encoding or decoding task.

VII. EVALUATION RESULTS

Initially, we examine the impact of the block size b on
the throughput performance in Section VII-A. We then pro-
ceed to investigate the implications of operating multiple
threads on heterogeneous multicore systems by contrasting
the throughout levels for a single thread (see Section VII-B)
with the throughput levels achieved for multiple threads
(see Section VII-C) on the ODROID XU3 board. We then
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Fig. 6. Average matrix multiplication and inversion execution times [s]
as a function of block size b [bytes] for range of generation sizes g.
Fixed parameters: ODROID XU3 board with four utilized threads, symbol
size m = 1536.

compare the decoding throughput of our approach based
on the DAG scheduling of parallel matrix block with the
CD approach of Shin and Park [46] for the ODROID XU
board in Section VII-D. In Section VII-E, we compare the
throughput performance of our DAG-based approach for the
different boards described in Section VI-A. Consumed energy
is reported in Section VII-F for the ODROID XU3 board
while the different scheduling policies (see Section V-C) are
evaluated in Section VII-G.

A. Block Size b Tradeoffs

In Fig. 6, we plot the average execution times for the matrix
inversion and the matrix multiplication as a function of the
block size b for the ODROID XU3 board with four utilized
threads for a symbol size of m = 1536. The results for the
other boards and symbol sizes are very similar and are not
included due to space constraints. We focus initially on the
multiplication times for a large generation size of g = 512 or
1024 in Fig. 6. We observe that the multiplication time initially
decreases as the block size b increases. The multiplication
time then reaches a minimum for medium block sizes, e.g.,
for b = 128 for g = 512. Further increases in the block size
b lead to an increase in the multiplication time. This behavior
is mainly due to a tradeoff between the level of parallelism
and the cache efficiency. Small block sizes lead to many tasks
that can be executed in parallel on the four utilized threads.
However, loading many small blocks into the cache creates
inefficiencies. Thus, the block size b that provides a ratio of
generation size g to block size b of four—so as to have a
sufficient level of parallelism for the four cores that are typical
for IoT nodes [49], [83], [93]—achieves generally the shortest
multiplication times. We found in additional evaluations that
when utilizing only one thread, larger block sizes generally
result in shorter multiplication times. When utilizing only one
thread, there is no parallelism to exploit; thus, cache efficiency
governs the overall performance.

We note that the block sizes b achieving the short-
est multiplication times in Fig. 6 may exceed the L1

(a)

(b)

(c)

Fig. 7. Encoding (Enc) and decoding (Dec) throughputs [MiB/s = 220 Byte/s]
for using 1, 4, and 8 threads of the ODROID XU3 board for a range of
combinations of generation size g and symbol size m. The schedule creating
and executing (SE) throughput is represented by the solid bars, while the
bar outlines indicate the execution (E) throughput. (a) g = 16. (b) g = 64.
(c) g = 256.

cache size of IoT nodes. The matrix multiplication uses
the B8_GEMM kernel (see Table I), which employs sub-
blocking (see Section IV-C2). The subblocking ensures high
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cache efficiency for the large block sizes that exceed the L1
cache size.

Turning to the inversion times in Fig. 6, we observe that
the shortest inversion time is generally achieved for the block
size b that corresponds to half the block size that achieves
the shortest multiplication time. For instance, for generation
size g = 512, the block size b = 128 achieves the shortest
multiplication time, while b = 64 achieves the shortest inver-
sion time. Aside from the B8_GEMM kernel which employs
subblocking, the inversion requires other time consuming ker-
nels, such as B8_trsm and B8_trmm (for which we have not
yet implemented subblocking; these subblocking implementa-
tion are left as future work). Therefore, the inversion incurs
some inefficiencies when the block size exceeds the L1 cache
size and performs generally better for smaller block sizes b
compared to multiplication.

Throughout the remainder of this paper, we employ the
respective block sizes achieving the shortest matrix inver-
sion and multiplication times. That is, for a given decoding
scenario, we employ the block size achieving the shortest
inversion time during the matrix inversion step and then the
block size achieving the shortest multiplication time during
the matrix multiplication step.

B. Throughput for Single Thread

For a single thread (i.e., the “Enc1” and “Dec1” results),
we observe from Fig. 7 that the throughput levels generally
decrease with increasing generation size g. This trend contin-
ues for generation sizes g > 256, which we cannot include due
to space constraints. From additional evaluations, we observed
that the throughput level for a single thread drops to around
3.5 MiB/s for g = 512 and to around 1.5 MiB/s for g = 1024.
In order to explain the dropping throughput for increasing g,
we focus initially on the encoding. The encoding through-
put is proportional to the ratio of encoding data size g · m to
the matrix multiplication computational complexity of order
O(g2 · m) for multiplying the g × g matrix C with the g × m
matrix M (1), that is,

Encoding Throughput ∼ g · m

g2 · m
= 1

g
. (3)

Thus, the encoding throughput is essentially independent of
the symbol size m, and inversely proportional to the gen-
eration size g. Intuitively, each byte in a symbol (row) of
the original data (payload) matrix M has to be combined
g times with the corresponding bytes of the other symbols.
We note that smaller generation sizes g require more frequent
reinitialization of the DAG; however, the DAG reinitialization
overhead is typically negligible compared to the actual matrix
multiplication computations. Decoding additionally incurs the
computational complexity O(g3) for the inversion of the coef-
ficient matrix C̄, further reducing the decoding throughput
for increasing generation size g. Generally, large generation
sizes g are beneficial for some IoT application scenarios, e.g.,
for compensating “bursty” losses, i.e., when several succes-
sive packets are lost. Also, large g decrease the likelihood of
linearly dependent packets [95]. On the other hand, small g
are preferable for low-latency IoT communication [96]–[98].

We also observe from Fig. 7 that for a given generation size
g, the encoding throughput stays nearly constant for increasing
symbol size m. This nearly constant encoding throughput is
in agreement with (3). The very slight increase of the encod-
ing throughput with larger symbol size m in Fig. 7 is due to
the increase of parallelization opportunities, which permit the
hiding of overheads. In contrast, we observe from Fig. 7 that
the decoding throughput for a single thread (Dec1) for a given
generation size g increases for increasing symbol size m. This
is because the decoding involves the matrix inversion, which
has computational complexity O(g3) followed by the matrix
multiplication with complexity O(g2 · m). Thus, the decoding
throughput is proportional to

Decoding Throughput ∼ g · m

O
(
g3

) + O
(
g2 · m

) . (4)

With increasing symbol size m, the impact of the inversion
complexity O(g3) is reduced relative to the multiplication com-
plexity O(g2·m), leading to a decoding throughput approaching
the encoding throughput [see (3)] for large symbol size m.

Another important observation from Fig. 7 for one thread is
that for the small generation size g = 16, the E throughput for
executing a prerecorded schedule is significantly higher than
the SE throughput for creating (recording) and executing the
schedule. This throughput increase achieved for executing a
prerecorded schedule becomes more pronounced for increas-
ing thread numbers and will be examined in detail in the next
section.

C. Throughput Increases for Multiple Threads

In this section, we examine the throughput increases
achieved by utilizing multiple threads (cores) of the exam-
ined big.LITTLE IoT node architecture. We first estimate the
theoretical peak performance with eight heterogeneous cores,
by evaluating the execution times with a single thread on a
big core and on a little core, respectively. For this evalua-
tion, we set the generation size to g = 1024, the symbol size
to m = 4096, and the block size to b = 64 in order to test
a configuration with plentiful parallelization opportunities. We
found that the big cores were on average 3.64 times faster than
the little cores for the multiplication, and 3.27 times faster for
the inversion. Therefore, a peak speed-up of 5.1 to 5.22 can
be expected when all four big cores and all four little cores
are employed (relative to employing a single big core).

We observe from Fig. 7 that using four threads gener-
ally achieves speed-ups over using a single thread; except
for decoding for g = 16 with m = 1024 and 1536, which
is slowed by the additional cores. For the small symbol size
m = 1024 or 1536, the matrix inversion effort is still quite
significant [it diminishes for large m, see (4)]. The small gen-
eration size g = 16 matches the minimum considered block
size b = 16. Thus, there is only a single block available for
processing the inversion of the receiver coefficient matrix C̄,
which has dimension 16 × 16 for the considered g = 16 and
r = 0. Thus, for the small g = 16 and small m = 1024 or
1536 scenarios, the matrix inversion, which accounts for a sig-
nificant portion of the overall decoding effort, cannot benefit
from the multiple threads. However, the operation of multiple
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(a) (b)

(c) (d)

Fig. 8. Comparison of decoding throughputs (SE as solid bars, E as outlines) of our DAG-based approach (Dec) with Shin and Park [46] approach (Shin) for
1 to 4 threads on ODROID XU board for different combinations of generation size g and symbol size m. (a) g = 32. (b) g = 64. (c) g = 128. (d) g = 256.

threads incurs some overhead. Thus, the decoding is overall
slightly slowed down when employing multiple threads for the
small g = 16 and small m = 1024 or 1536 scenarios.

We observe from Fig. 7 that the speed-ups are particularly
pronounced for encoding moderate to large generation sizes
g, whereby the speed-up factors are consistently around three
or somewhat higher for the entire range of symbol sizes m.
In contrast, for decoding, the speed-up factor increases with
increasing symbol size m. This is because matrix inversion
has generally more data dependencies compared to matrix
multiplication, as illustrated by the DAGs for a matrix inver-
sion step in Fig. 2 and a matrix multiplication in Fig. 3. Thus,
matrix multiplication is more amenable to parallelization on
multiple threads than matrix inversion. With increasing sym-
bol size m, the matrix multiplication accounts for increasingly
larger portions of the decoding effort [see (4)]. Thus, our
parallelization-based approach achieves increasing decoding
throughputs for increasing symbol size m.

We also observe from Fig. 7 that using eight threads
achieves speed-ups over using four threads only for moder-
ate to large generation sizes in combination with large symbol
sizes m. The throughput reduction when going from four to

eight threads for the small symbol sizes and small genera-
tion sizes is partly due to cache effects. In particular, each set
of cores (big and LITTLE) has its own layer 2 cache, which
needs synchronization when altered. Moreover, when employ-
ing eight cores, there is chance that some important tasks (with
relatively many outgoing dependencies) are scheduled on a
slow (LITTLE) core. Then, fast (big) cores may have to wait
for the slow core to complete the task. Also, operating the
eight cores increases the overall overhead compared to oper-
ating only four cores. Large symbol sizes m and generation
sizes g offer many parallelization opportunities. The plentiful
parallelization opportunities amortize the additional overheads
and potential slow downs due to using eight cores. Thus, for
large symbol sizes m and generation sizes g, the eight cores
can be productively employed to enhance the encoding and
decoding throughputs.

Importantly, we observe from Fig. 7 that our DAG-based
network coding approach achieves high execution (E) to SE
throughput ratios for the small generation size g = 16 and
moderate to large symbol sizes m. For m = 16 384, the E
throughputs for both encoding and decoding are more than
twice the corresponding SE throughputs. The computational
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effort for the schedule creation, which is single threaded,
depends mainly on the number of tasks, because the schedul-
ing has to consider the dependencies between the tasks. The
number of tasks, in turn depends mainly on the ratio of the
generation size g and symbol size m to the block size b.
Generally, small blocks imply many tasks, and therefore large
scheduling overhead. Thus, for the small blocks which corre-
spond to small generation sizes, see Section VII-A, large E to
SE throughput speed-ups are achieved.

We note that small generation sizes g are generally preferred
for low-latency IoT networking scenarios. Thus, our DAG-
based approach with the high E throughput for small g appears
particularly well suited for low-latency IoT and smartphone
communication [96]–[98].

D. Comparison With Shin and Park [46]

In Fig. 8, we compare the decoding throughput results of
the CD approach by Shin and Park [46] (marked by “Shin” in
Fig. 8) with our approach. The CD approach has been shown
in [46] to achieve the highest throughput levels of all existing
network coding approaches suitable for IoT and smartphone
settings. We observe from Fig. 8 that our approach achieves
higher throughputs than the CD approach for scenarios with
small generation sizes g in combination with small to moder-
ately large symbol sizes m as well as for scenarios with large
generation sizes g in combination with large symbol sizes m.
We also observe that for the multithread decoding with four
cores, which is highly relevant in IoT practice, our approach
achieves higher throughput in all examined scenarios.

These decoding throughput differences between our DAG-
based approach and the CD approach of Shin and Park [46] are
due to several differences in the computing dynamics. First, the
CD approach appears to have a relatively high static overhead
that becomes particularly apparent for small generation sizes g.
More specifically, we expect from (3) that doubling the gen-
eration size g cuts the throughput (as governed by the matrix
multiplication effort) in half. Indeed, our Dec1 results for a
single thread in Fig. 8(a) and (b) clearly illustrate this “halv-
ing” trend. In contrast, for symbol sizes m = 1024 and 4096,
the Shin1 decoding throughputs for a single thread remain
nearly constant as the generation size is increased from g = 32
[Fig. 8(a)] to g = 64 [Fig. 8(b)]. This indicates that the Shin1
decoding throughputs for small g appear to be governed by
a high static overhead that dominates over the computational
complexity of the matrix multiplication (which is inversely
proportional to g). Our DAG approach avoids such a static
overhead and achieves for small generation sizes g = 32 and
64 for the small symbol size m = 1024, which is realistic for
IoT packet networks, roughly twice the decoding throughput
of the CD approach.

On the other hand, we observe from Fig. 8(a) and (b) that for
the large symbol size m = 16 384, the CD throughput with a
single thread (Shin1), is higher than our single-thread through-
put (Dec1). Similarly, we observe from Fig. 8(c) and (d)
that for the moderately large symbol size m = 4096 (as
well as for m = 1024 for g = 256), Shin1 exceeds
Dec1. This performance advantage of the CD approach for

(a)

(b)

(c)

Fig. 9. IoT board comparison: encoding throughput (green bars) and decoding
throughput (blue bars), SE as solid bars and E as outlines, of our DAG-based
approach for 1, 2, and 4 (and 8 when available) threads for various generation
sizes g and symbol sizes m = 1024 and 16 384. (a) g = 16. (b) g = 64.
(c) g = 256.

single-thread computation appears to be due to a more efficient
implementation of the matrix multiplication which domi-
nates the computing dynamics for scenarios with moderately
large combinations of generation and symbol sizes. The CD
approach divides the data matrix X̄ into vertical partitions
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(see [46, Fig. 4]). Once a thread has started to work on a par-
tition, it can complete the processing of the partition without
any further overhead, which is efficient for multiplication pro-
cessing of large partitions that still benefit from caching. In
contrast, we divide the data into blocks of a prescribed size
(that is smaller than the data partitions in the CD approach
in the considered scenarios). A given thread then retrieves
tasks based on these blocks. The task retrieval introduces some
overhead, and this overhead is incurred multiple times on the
thread.

However, we observe from Fig. 8(d) that for the large
generation size (g = 256), the CD throughput drops when
increasing the symbol size from m = 4096 to m = 16 384.
This performance drop is due to missing cache efficiency [46].
In contrast, our DAG-based approach consistently achieves
throughput increases for increasing symbol size m. These
throughput increases indicate that our optimized block opera-
tions with subblocking (see Section IV-C2) are highly cache
efficient.

We further observe from Fig. 8 that our speed-ups from one
to four threads are generally higher than for the CD approach,
especially for large generation sizes g. The CD approach dupli-
cates the full coefficient matrix C̄ on each thread; thus each
thread has to work with the full coefficient matrix C̄. In
contrast, our DAG-based approach employs optimized block
operations throughout. Thus, each core works only on blocks
(subsets) of the full coefficient and coded symbol matrices,
achieving high degrees of parallelism.

Overall, we conclude from the comparison in Fig. 8 that
our DAG-based approach with optimized block operations
performs particularly well for small generation sizes g, which
are preferable for low-latency IoT communication [96]–[98].
On the other hand, the CD approach has favorable perfor-
mance for mid-level generation and symbol sizes on a single
thread. Also, we note that the CD approach is more read-
ily amenable to online or “on-the-fly” decoding when packets
trickle in, whereas our approach requires a complete gener-
ation for decoding. For multithread computation (as well as
for large generation and symbol sizes on a single thread)
our DAG approach gives higher decoding throughout than
the CD approach due to the cache efficiency of our opti-
mized block operations and the consistent parallelization of
the matrix operations.

E. Comparison of IoT Boards

In Fig. 9, we compare the SE and E encoding and decod-
ing throughputs of our DAG-based approach for different IoT
boards [49], [83], [93]. Note that the Cubieboard and the
ODROID XU3 board feature HMP and thus can utilize up
to eight threads, whereas the ODROID XU and Raspberry
Pi2 boards do not feature HMP and thus can utilize at most
four threads in parallel. We observe from Fig. 9(a) that our
DAG-based approach achieves execution (E) encoding and
decoding throughputs for g = 16 and m = 16 384 above 150
MiB/s when four cores are utilized on the Cubie, ODROID
XU, and ODROID XU3 boards. For generation sizes g = 64
and 256, we observe that the small symbol size m = 1024
does generally not benefit from the HMP feature. However,

Fig. 10. Consumed energy [Joules] for encoding or decoding of a generation
size g = 1024 with symbol size m = 16 384 [bytes] utilizing 1, 2, 4, or 8
threads on the ODROID XU3 board.

TABLE II
MATRIX INVERSION EXECUTION TIMES [MS] FOR DIFFERENT PRIORITY

SCHEDULING POLICIES FOR GENERATION SIZE g = 512 AND BLOCK SIZE

b = 64 FOR 1, 2, 4, AND 8 UTILIZED THREADS ON ODROID XU3

for the large symbol size m = 16 384, the HMP boards, i.e.,
Cubieboard and ODROID XU3, achieve higher throughputs
with eight threads than with four. For instance, for g = 256 and
m = 16 384, the ODROID XU3 achieves decoding through-
puts of 27.91 MiB/s with eight threads and 26.32 MiB/s
with four threads; the corresponding encoding throughputs are
30.59 MiB/s with eight threads and 27.4 MiB/s with four
threads. These throughput increases with eight threads indi-
cate that our DAG-based approach can effectively utilize the
heterogeneous big.LITTLE IoT node architectures to achieve
significant throughput enhancements.

F. Energy Consumption

Fig. 10 shows the consumed energy for the scheduling and
execution (SE performance) of the encoding or decoding of
a generation of size g = 1024 with m = 16 384 [byte] sym-
bols. We plot results for utilizing 1, 2, 4, or 8 threads (cores)
of the ODROID XU3 board. We observe from Fig. 10 that
the consumed energy drops as the number of utilized threads
increases. In particular, Fig. 10 indicates that completing the
same encoding or decoding task with eight threads instead of a
single thread requires about 34% less energy When operating a
smartphone board, various static components, such as memory,
GPU, and bus systems, require a constant power supply. Thus,
using multiple threads so as to complete the task faster, reduces
the energy consumed during the task completion. Overall, the
energy consumption results in Fig. 10 indicate that our paral-
lelization approach is energy efficient, which is important for
many IoT settings [39], [41], [49], [83], [99]. Our paralleliza-
tion approach is able to reduce the consumed energy when
more threads are utilized.
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G. Evaluation of Priority Scheduling: Data Dependencies
and Locality

In this section, we examine the scheduling policies
described in Section V-C for the ODROID XU3 board. Table II
presents execution times for the matrix inversion for gen-
eration size g = 512 for block size b = 64 for different
numbers of utilized threads. We observe from Table II that
for the relatively large generation size of g = 512, data local-
ity scheduling achieved generally the shortest execution times.
However, the execution time reductions are quite small; for
instance, for four and eight threads, data locality scheduling
reduced the execution times only by 5% and 7%, respectively,
compared to first task scheduling. Also, data locality schedul-
ing gives typically very similar execution times as combined
priority scheduling and these two scheduling policies achieve
only very minor time reductions compared to task dependency
scheduling.

In additional evaluations that are not included due to space
constraints we observed that for very small block sizes b, the
first task scheduling gives the shortest execution times. For
instance, for block size b = 16 for generation size g = 512,
the other policies require roughly 10%–20% more time than
first task scheduling. For small block sizes, it does not pay off
to be very careful in selecting the next task, as each task is
processed quickly, plus scanning through the large number of
queued tasks requires significant effort. On the other hand, for
large blocks, the processing of a correspondingly large task
can take a relatively long time, plus there are only relatively
few large tasks to consider.

In summary, we have found that data locality scheduling
and combined priority scheduling achieve some performance
enhancements for scenarios with moderately large to large
block sizes b (and moderately few to few blocks in the
task queue). We note that we only examined the greedy,
one-sweep heuristic priority scheduling policies introduced in
Section V-C. The observed performance degradations with the
simple priority scheduling for small block sizes indicate that
policies for scheduling matrix block operations on IoT node
and smartphone cores must have very low complexity. Thus,
more complex scheduling policies, e.g., policies that consider
the tasks executing on all cores or consider multiple process-
ing steps into the future, are likely not suited for the relatively
small sized blocks that are processed on smartphones (relative
to the blocks processed on high performance computers).

VIII. CONCLUSION

We have investigated efficient RLNC for heterogeneous
multicore architectures, which are likely to be widely
employed in IoT communications and applications. Building
on dense linear algebra computing principles from numerical
computer science, we have developed efficient block-based
matrix inversion and multiplication strategies. We schedule
matrix block processing tasks with a DAG. The DAG schedul-
ing avoids artificial synchronization and only considers the
inherent data computing dependencies. Our extensive experi-
mental evaluations with heterogeneous big.LITTLE multicore

IoT node systems indicate that our approach yields excel-
lent speed-ups for various generation and symbol sizes;
high speed-ups are achieved even for small symbol sizes
which have proven problematic in earlier studies, e.g., [56],
[65], and [100], and are especially interesting for low-latency
IoT network applications [96]–[98]. Our evaluations also
indicate that our DAG-based scheduling of matrix block
operations on multiple parallel threads (cores) outperforms
the CD approach [45], [46], which is the fastest previously
known network coding approach for IoT nodes and smart-
phones. We have further demonstrated that using all cores
can significantly decrease the energy consumption, which
is important for battery powered IoT nodes and smart-
phones [39], [41], [49], [83]. Our approach is applicable to
heterogeneous multicore computing architectures in smart-
phones and other IoT nodes.

There are many directions for important future research
on efficient network coding computation for heterogeneous
multicore architectures. The present study has examined the
DAG scheduling of parallel block operations without artificial
synchronization, i.e., loose synchronization, on heterogeneous
multicore architectures with a shared memory architecture.
An interesting future research directions is to investigate the
loose synchronization approach for distributed memory archi-
tectures. Moreover, the RLNC techniques developed in this
paper for IoT nodes and smartphones without usage of GPUs,
could be extended in future research for other processors types,
e.g., for processors with abundant GPU availability, whereby
the GPUs could perform some of the tasks defined in this
paper. Finally, the data dependency scheduling approach is not
limited to RLNC and matrix problems, but could be investi-
gated in the context of many other problems that involve bulk
data processing with minimal branching in the processing flow.
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