
388 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

Unicast QoS Routing Algorithms for SDN:
A Comprehensive Survey and

Performance Evaluation
Jochen W. Guck, Amaury Van Bemten, Martin Reisslein, Fellow, IEEE,

and Wolfgang Kellerer, Senior Member, IEEE

Abstract—A variety of communication networks, such as
industrial communication systems, have to provide strict delay
guarantees to the carried flows. Fast and close to optimal quality
of service (QoS) routing algorithms, e.g., delay-constrained least-
cost (DCLC) routing algorithms, are required for routing flows
in such networks with strict delay requirements. The emerging
software-defined networking (SDN) paradigm centralizes the net-
work control in SDN controllers that can centrally execute QoS
routing algorithms. A wide range of QoS routing algorithms
have been proposed in the literature and examined in individ-
ual studies. However, a comprehensive evaluation framework and
quantitative comparison of QoS routing algorithms that can serve
as a basis for selecting and further advancing QoS routing in SDN
networks is missing in the literature. This makes it difficult to
select the most appropriate QoS routing algorithm for a particu-
lar use case, e.g., for SDN controlled industrial communications.
We close this gap in the literature by conducting a comprehen-
sive up-to-date survey of centralized QoS routing algorithms.
We introduce a novel four-dimensional (4D) evaluation frame-
work for QoS routing algorithms, whereby the 4D correspond
to the type of topology, two forms of scalability of a topology,
and the tightness of the delay constraint. We implemented 26
selected DCLC algorithms and compared their runtime and cost
inefficiency within the 4D evaluation framework. While the main
conclusion of this evaluation is that the best algorithm depends
on the specific sub-space of the 4D space that is targeted, we iden-
tify two algorithms, namely Lagrange relaxation-based aggregated
cost (LARAC) and search space reduction delay-cost-constrained
routing (SSR+DCCR), that perform very well in most of the 4D
evaluation space.

Index Terms—Delay-constrained least-cost (DCLC) routing,
performance evaluation framework, quality of service (QoS),
scalability, software-defined networking (SDN).

Manuscript received March 7, 2017; revised July 24, 2017; accepted
August 29, 2017. Date of publication September 7, 2017; date of current
version February 26, 2018. This work was supported in part by the European
Union’s Horizon 2020 Research and Innovation Programme under Grant
671648 (VirtuWind), in part by ERC Grant 647158 (FlexNets), in part by
the Alexander von Humboldt Foundation through a Friedrich Wilhelm Bessel
Research Award, and in part by the U.S. National Science Foundation under
Grant #1716121. (Corresponding author: Wolfgang Kellerer.)

J. W. Guck, A. Van Bemten, and W. Kellerer are with the
Lehrstuhl für Kommunikationsnetze, Technical University of Munich, 80290
Munich, Germany (e-mail: guck@tum.de; amaury.van-bemten@tum.de;
wolfgang.kellerer@tum.de).

M. Reisslein is with the School of Electrical, Computer, and Energy
Engineering, Arizona State University, Tempe, AZ 85287 USA (e-mail:
reisslein@asu.edu).

Digital Object Identifier 10.1109/COMST.2017.2749760

I. INTRODUCTION

A. Topic Area: Routing Algorithms for QoS Networking

ROUTING, i.e., determining a route (path) from a source
node to a destination node through a sequence of

intermediate switching nodes, is an elementary function of the
network layer in communication networks. Given the impor-
tance of routing for communication networks, a diverse array
of routing algorithms have been designed. Many routing algo-
rithms have been specifically designed for specific network
settings or applications, see Section I-C.

Providing quality of service (QoS) is an important require-
ment for a wide range of communication network settings and
applications. For instance, multimedia network applications
require QoS from the network service, as do many network
applications in industrial networks [1] and the smart grid [2]
as well as networked control systems [3]. The required QoS
is often in the form of delay bounds (constraints) for the
data packets traversing the network. Accordingly, extensive
research has developed routing algorithms that satisfy given
delay constraints while minimizing some cost metric, i.e., so-
called delay-constrained least-cost (DCLC) routing algorithms.
DCLC routing algorithms and similar routing algorithms that
support QoS networking are often referred to as QoS routing
algorithms.

Generally, the route determination (computation) is either
carried out in distributed nodes, e.g., the control mod-
ules in individual distributed Internet Protocol (IP) routers,
or by a centralized controller, e.g., a Software-Defined
Networking (SDN) controller [4]–[8]. Distributed routing
algorithms had been intensely researched for traditional IP
routing, e.g., [9]–[11], and more recently for ad hoc networks,
see [12]–[16]. In the mid 1990s, the development of QoS
paradigms for the Internet, see [17]–[22], led to a renewed
interest in examining routing and spurred the development of
a plethora of QoS routing algorithms, which mainly targeted
distributed computation. In sharp contrast, the emergence of
the Software-Defined Networking (SDN) paradigm [23], [24]
has shifted the research focus to centralized network control,
including centralized routing computations [25]–[30]. The pur-
pose of the present survey is to provide a baseline for the use
of existing QoS routing algorithms in centralized SDN based
network control as well as for the further development of QoS
routing algorithms that focus on centralized computation.

1553-877X c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:guck@tum.de
mailto:amaury.van-bemten@tum.de
mailto:wolfgang.kellerer@tum.de
mailto:reisslein@asu.edu
http://www.ieee.org/publications_standards/publications/rights/index.html

GUCK et al.: UNICAST QoS ROUTING ALGORITHMS FOR SDN: COMPREHENSIVE SURVEY AND PERFORMANCE EVALUATION 389

Fig. 1. Illustration of four dimensions of performance evaluation framework
for delay-constrained least-cost (DCLC) routing algorithms: type of topology,
scaling of the network (topology) in two dimensions, and delay constraint.

B. Contributions of This Survey

This article presents a comprehensive up-to-date survey
of unicast QoS routing algorithms accompanied by a large-
scale evaluation based on a consistent re-implementation of
all the studied algorithms. We classify the unicast QoS rout-
ing algorithms according to the underlying routing strategy
into several main categories, including priority queue based
algorithms, Bellman-Ford based algorithms, Lagrange relax-
ation based algorithms, as well as algorithms that follow the
least-cost and least-delay paths. In order to facilitate a com-
prehensive evaluation of QoS routing algorithms, we introduce
a four dimensional (4D) evaluation framework, as illustrated
in Fig. 1.

The first dimension corresponds to the type of topology.
The second and third dimensions correspond to the scaling of
a given type of topology into two dimensions that characterize
the “size” of the network. The fourth dimension corresponds
to the tightness of the delay constraint. The comprehensive
evaluation of the existing QoS routing algorithms with this
novel 4D evaluation framework provides valuable insights into
the behaviors of the algorithms. Our evaluation has yielded a
very large data set; we only present the most significant and
insightful evaluation data in this article. We have made the
entire evaluation data publicly available at [31], an interactive
Web interface that allows for convenient navigation through
the 4D evaluation space.

We have observed from our evaluations that it is not possi-
ble to elect an algorithm as “the best QoS routing algorithm”.
Indeed, we show that the performance of the algorithms
strongly depends on the considered specific sub-space of the
4D evaluation space. Nevertheless, we identify two algorithms
(out of a total of 26 compared algorithms) that achieve the
best cost-runtime trade-off for most cases. Furthermore, we
observe the general trend that algorithms based on a short-
est path (SP) algorithm have shorter runtimes than algorithms
based on a shortest path tree (SP tree) algorithm, which in turn
have shorter runtimes than algorithms relying on a k shortest
path (kSP) algorithm to reach a given optimality level.

C. Relationships to Prior Surveys

Given the key importance of routing for communication net-
works, routing algorithms have been extensively studied for
a wide range of network settings and applications. Several
prior survey articles have covered routing algorithms for sev-
eral different special network settings and applications. Our
focus in this survey is on routing algorithms that are suitable
for supporting quality of service (QoS) networking in SDN
networks. We proceed to contrast our present survey on QoS
routing algorithms from prior related surveys on routing algo-
rithms. Multicast routing algorithms for finding routes from
a source node to multiple destination nodes have been sur-
veyed in [32]–[34]; the closely related geocast routing to a
prescribed geographic area has been considered in [35]. In
contrast, we focus on unicast routing from a single source
node to a single destination node. Multipath routing has been
surveyed in [36]; we focus on routing algorithms for find-
ing a single path in this survey. Routing in wireless networks
has been covered by several prior surveys, e.g., [37]–[39].
Several prior surveys have focused on specialized forms of
wireless networks. Specifically, routing in wireless mesh net-
works has been surveyed in [40]–[42], while routing for
wireless sensor networks has been surveyed in [43]–[59]. Ad
hoc network routing has been surveyed in [60]–[63], while
routing for mobile ad hoc networks (MANETs) has been sur-
veyed in [64]–[74] and vehicular ad hoc network (VANET)
routing has been surveyed in [75]–[78]. Routing metrics for
cognitive radio networks have been covered in [79], while
routing in delay and disruption tolerant networks has been
surveyed in [80]–[82]. Routing and route optimization for
mobile nodes has been surveyed in [83] and [84]. Routing
algorithms that consider the specific physical layer charac-
teristics of optical (photonic) networks have been surveyed
in [85]–[90]. Our survey focuses on routing for wired static
networks without disruptions and does not specifically con-
sider physical layer photonics. A few surveys have considered
routing strategies for specific networking contexts, such as
locator/identifier split Internet routing [91], traffic engineering
and load balancing in the Internet [92], [93], content-based
publish/subscribe systems [94], and green routing protocols
with sleep scheduling [95]. In contrast, we consider general
QoS routing algorithms.

General QoS routing algorithms have been covered in a
few prior surveys that are less comprehensive than this survey.
General overviews of the area of QoS routing and its research
challenges has been provided in [96] and [97]. A handful of
surveys have covered the QoS routing algorithms that have
been developed up to around the years 2002-2003 [98]–[103].
Our survey is more up-to-date by covering QoS routing algo-
rithms that have been developed up to the present time.
A recent survey focused on multi-constrained QoS routing
algorithms has been provided in [104]. Our survey is com-
plementary to the survey [104] in that we broadly cover QoS
routing algorithms satisfying a single or multiple constraints.
Moreover, existing surveys have been limited to qualitative
comparisons of the different QoS routing algorithms. In con-
trast, we introduce a novel 4D evaluation framework for

390 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

comparing the quantitative performance levels of QoS routing
algorithms and provide extensive quantitative performance
comparison results. For completeness, we note that topology
aggregation mechanisms for QoS routing have been surveyed
in [105], while routing topology inference mechanisms have
been surveyed in [106].

D. Survey Structure

Section II provides tutorial background on QoS routing
algorithms, including brief reviews of elementary shortest-
path algorithms that are utilized as underlying mechanisms
in QoS routing algorithms. Section III provides a comprehen-
sive up-to-date survey of the existing QoS routing algorithms.
This survey section is organized into subsections dedicated to
elementary algorithms, as well as algorithms that are based
on a priority queue, on Bellman-Ford, on Lagrange relax-
ation, or on least-cost and/or least-delay paths in the network.
Section IV introduces the four dimensional (4D) evaluation
framework. Section V presents the results of the evaluation,
while Section VI gives interesting anecdotal insights gained
from our evaluations. Finally, Section VII summarizes the
main conclusions.

II. BACKGROUND

This section provides tutorial background on QoS routing
algorithms. First, Section II-A explains how QoS routing algo-
rithms operate as a component within the broader context of a
QoS networking framework. Then, Section II-B gives a brief
tutorial on the basic definitions and the terminologies related
to QoS routing algorithms and Section II-C outlines the goals
that good QoS routing algorithms should strive for. Finally,
Sections II-D and II-E give brief overviews of algorithms for
computing one shortest path (SP) and multiple (k) shortest
paths (kSP), which are elementary mechanisms for designing
QoS routing algorithms.

A. QoS Routing as a Component of QoS Networking
Framework

1) QoS Networking Framework Overview: Generally,
a comprehensive network QoS management framework,
e.g., [107]–[117], is required for providing QoS to network
applications. A network QoS management framework con-
sists of and coordinates among several components, including
admission control [118]–[121], real-time scheduling [122],
and QoS routing. That is, the QoS routing algorithm is
one of several components required for achieving QoS in
a communication network. A comprehensive survey of QoS
networking frameworks is beyond the scope of this arti-
cle. We only briefly note that, broadly speaking, there are
two types of approaches for network QoS management,
namely global offline QoS networking and greedy online QoS
networking.

Global offline QoS networking jointly considers the com-
plete set of network traffic flows and the various QoS network-
ing components, such as routing and scheduling, to holistically
determine the routes and schedules for all admissible flows.
Global offline QoS networking typically involves complex

optimization problems, such as integer or mixed integer linear
programs [123]–[127], or assumes that routing paths are given,
e.g., from a standard spanning tree protocol or unconstrained
shortest path routing, to then optimize the scheduling, see for
instance [128] and [129].

On the other hand, greedy online QoS networking consid-
ers a network with a given set of already ongoing network
traffic flows and attempts to add (embed) a new flow to
the network while maintaining the QoS requirements of the
already ongoing flows as well as the new flow. We consider
QoS routing algorithms for greedy online QoS networking
in this survey. The surveyed routing algorithms require that
the cost and QoS metric values (e.g., delay) are known for
each edge (link) in the network graph prior to the execu-
tion of the routing algorithm. The usage of the surveyed
routing algorithms in a practical network requires that the
data plane forwarding behavior is abstracted to the gran-
ularity of costs and QoS metric values per edge of the
network graph. Such abstraction can be achieved through
measurement based systems, e.g., [107], [108], and [111],
that probe the link behavior to estimate the edge costs and
QoS metric values. The abstraction can also be achieved
through model based systems, e.g., [130]–[133], that cal-
culate the edge costs and QoS metric values based on a
mathematical model of the underlying link scheduling and
traffic shaping. While such mathematical models exist for
some link scheduling and traffic shaping approaches, such as
priority scheduling [134], [135], other emerging approaches,
such as IEEE 802.1 Time Sensitive Networking [136]–[141]
and IETF Deterministic Networking [142], require the devel-
opment of new mathematical abstraction models. We con-
sider one example greedy online QoS networking framework
in the next section to explain the concrete functioning of
QoS routing in the context of QoS networking in more
detail.

2) Example Framework: Industrial QoS: In this section
we briefly explain the QoS networking framework [133] as
an example instance of a QoS networking framework. The
framework [133] is designed to provide strict delay QoS,
which is typically required for industrial communication sys-
tems [143]–[147], automotive networks [148], as well as some
types of smart grid communication [149], [150] and Internet
of Things communication [151]–[154]. Industrial communi-
cation systems carry critical messages, e.g., control signals
for large automated production facilities, which have to be
delivered with tight deterministic real-time quality of service
(QoS) [109], [155]–[157]. A wide gamut of proprietary indus-
trial communication technologies have emerged to provide this
strict QoS [143]. Nevertheless, these proprietary technologies
are typically costly and lack a uniformly accepted standardized
communication framework. To overcome these challenges,
the framework [133] has been based on Software-Defined
Networking (SDN) [158]–[165]. SDN enables packet switches
with a centralized control interface, e.g., OpenFlow [166],
to provide deterministic real-time QoS guarantees. In order
to satisfy the end-to-end deadline of each connection, the
framework [133] encompasses four modules running on a
centralized controller (see Fig. 2).

GUCK et al.: UNICAST QoS ROUTING ALGORITHMS FOR SDN: COMPREHENSIVE SURVEY AND PERFORMANCE EVALUATION 391

Fig. 2. Overview of the different function blocks of QoS networking frame-
work [133]. The network resource model provides, through detailed queue
modeling, deterministic delay bounds and implements access control that guar-
antees isolation of flows. The cost function indicates which edges should
preferentially be used to maximize the probability of future flows to be
accepted. The resource allocation adapts the allocation of resources to the
different queues in order to maximize the probability of future flows to be
accepted. QoS routing is then responsible for routing incoming requests on a
path satisfying the end-to-end delay requirement of the request.

• The cost function transforms the network state, character-
ized for instance by data rates, buffer consumption, and
already embedded flows, into a cost metric for each edge.
The cost metric should maximize the number of flows that
the network can serve.

• The resource allocation module adapts the allocation of
resources (e.g., data rates) to the different queues in
order to maximize the total number of flows that can be
accepted in the network.

• The network resource model implements access control
and worst-case delay computation based on the resources
allocated to the different queues in the network. The net-
work resource model tracks the consumption of resources
by the embedded (already accepted) flows. To achieve
a deterministic system behavior, the resource model is
based on a mathematical traffic model, thus avoiding mea-
surements of the actual network utilization. Since the
scheduling delay experienced by a flow at a node depends
on the queue at which it is buffered, worst-case delays
are computed per queue. More specifically, the maximum
(worst-case) delay per queue is bounded through deter-
ministic network calculus modeling [134], [135]. The
resource allocation pre-allocates worst-case delay budgets
to the priority queues, which are scheduled according to
the non-preemptive static priority policy. This ensures that
the models of the different priority queues at a given link
(hop) are independent [133]. Thus, admission decisions of
low-priority queues do not have to be recalculated every
time a flow is added to a high-priority queue.

• The QoS routing, e.g., delay-constrained least-cost
(DCLC) routing, finds the least-cost path satisfying the
end-to-end delay requirement of a connection request.
The network resource model in [133] provides delays per
queue, thus, routing has to be performed on a so-called
queue-link topology illustrated in Fig. 3, where a given

Fig. 3. Illustration of the queue-link topology concept [133]: A queue link
models the outgoing queue (buffer) for an actual physical link. For instance,
the bi-directional physical link between nodes 1 and 4 has two distinct QoS
queues (e.g., with different delay bounds) in each direction; correspondingly
there are two queue links from node 1 to node 4 and two queue links from
node 4 to node 1.

TABLE I
CONCEPTUAL COMPARISON OF QOS ROUTING PROBLEM TYPES

edge (link) of the physical topology is modeled by as
many queue links as it has distinct QoS queues. In such
a way, routing chooses both the links followed by a flow
and the queues at which the flow will be buffered.

B. Basic Definitions for QoS Routing Algorithms

Unicast QoS routing refers to the problem of routing a flow
from a single source to a single destination so as to fulfill the
QoS requirements of the flow. Depending on the QoS require-
ments, different problems can be defined. The most commonly
encountered problems are defined as follows and contrasted in
Table I.

• Shortest Path (SP): The route has to minimize a unique
end-to-end QoS metric.

• Constrained Shortest Path (CSP): The route has to min-
imize an end-to-end QoS metric while keeping another
metric below a prescribed bound.

• Multi-Constrained Shortest Path (MCSP): CSP problem
with multiple end-to-end metrics that are constrained by
individual bounds.

• Multi-Constrained Path (MCP): MCSP problem without
optimization metric, i.e., the route only has to keep end-
to-end QoS metrics below prescribed bounds.

These problems can be extended to k path versions that find
k distinct paths. We refer to these extended problems as kSP,
kCSP, kMCSP, and kMCP, respectively. It is also possible to
define multi-objective problems that optimize more than one
metric [104], [167]–[170]. These multi-objective problems are
beyond the scope of this article.

We refer to the metrics that have to be optimized (or min-
imized) by the routing algorithm as the costs. On the other

392 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

hand, we refer to the metrics that have to be kept below
prescribed bounds as the constraints. The maximum end-to-
end values below which these constraints have to be kept are
then referred to as the constraint bounds. Note that the term
metric can refer to either a cost or a constraint. Any metric is
always associated to all the individual edges of the network.
Depending on how an end-to-end QoS metric is computed
from the metric values for individual links, three different cat-
egories of end-to-end QoS metrics can be defined: additive,
multiplicative, and concave metrics. The end-to-end values of
these three metric categories are, respectively, the sum, the
product, and the minimum (or the maximum) of the metric
values for the individual links. Delay, packet loss probability,
and bandwidth are examples of additive, multiplicative and
concave metrics, respectively.

Consider routing to be performed on a network graph
G = {V, E}, whereby V is the set of vertices (network nodes)
and E is the set of directed edges (with |E| denoting the num-
ber of edges in the network). The vector of costs of the edges
is denoted by c, c ∈ R

|E|
+ . Let d, d ∈ R

M+ , denote a vector
with M elements that represent the bounds for the constrained
metrics. Let D, D ∈ R

M×|E|
+ , denote a matrix of the con-

straint values for the individual edges. Let Psd, Psd ⊆ {0, 1}|E|,
denote the set of paths from source node s to destination node
d (whereby a value of 1 for an edge means that the edge
belongs to the path). For additive metrics, the SP, CSP, and
MCSP problems can be mathematically formulated as:

zopt = min
x∈Psd

cTx (1)

s.t. Dx ≤ d. (2)

The SP, CSP, and MCSP problems correspond to the cases
M = 0, M = 1, and M > 1, respectively.

An optimal algorithm is an algorithm that always finds the
optimal path with cost zopt. A heuristic is an algorithm that
finds a possibly sub-optimal path, i.e., a path with cost z′ ≥
zopt. The cost inefficiency (CI) of an algorithm, measured in %,
is defined as

CI = z′ − zopt

zopt
× 100. (3)

An optimal algorithm therefore always has a CI of 0%. An
algorithm is said to be complete if it always finds a feasible
solution if one exists. Completeness does not imply optimality.

QoS networking contexts (including the QoS networking
framework [133], see Section II-A2) typically require the QoS
routing algorithm to find a least-cost path satisfying an end-
to-end delay constraint. This corresponds to a CSP problem
with two additive metrics. This subset of CSP problems is also
commonly referred to as delay-constrained least-cost (DCLC)
routing problem. For this reason, we will often refer to the
optimized QoS metric as cost and to the constrained metric
as delay. The routing algorithm for QoS networking has to
be complete. Indeed, if a connection request can actually be
accommodated in the network, then the request should not be
rejected.

In this article, we survey existing unicast CSP routing algo-
rithms for additive metrics. Moreover, since MCSP algorithms

can be used for solving CSP problems, we also present MCSP
algorithms. While MCP algorithms can find feasible solutions
for CSP problems, MCP algorithms do not optimize the cost
metric and we therefore do not consider MCP algorithms in
this survey.

C. Goals of QoS Routing

We proceed to summarize the key goals of a good QoS
routing algorithm for centralized execution within the SDN
paradigm:

• The algorithm should be complete. Indeed, we do not
want to reject a connection request if it can actually be
accepted.

• Generally, the DCLC problem is NP-complete [171].
Therefore, there is a fundamental trade-off between cost
inefficiency and low runtime. Thus, a QoS routing algo-
rithm should achieve a short runtime as well as a low
cost inefficiency. Indeed, since routing is triggered upon
receipt of a connection request and cost minimization
leads to a network that can accept more flows, both short
runtime and low cost inefficiency are important for good
and fast request handling.

• The algorithm should be able to accommodate real values
for the metrics and should not be based on value space
reductions. Algorithms that only accommodate integer
values for the cost metric may incur quantization errors
and the evaluation of the impact of this quantization on
the cost inefficiency is outside the scope of this study.

• The algorithm should not be restricted to the hop count
as the only possible cost function. Furthermore, the
hop count should not be considered in addition to the
cost function for optimization. Indeed, we are primarily
interested in low resource usage, which is completely rep-
resented by the cost function. Further, in dense networks
there are typically many paths with the same hop count;
hence the hop count is typically not a useful additional
optimization criterion.

• The algorithm has exact up-to-date knowledge of the state
of the network, which can be readily acquired with the
SDN paradigm.

• The algorithm does not exploit any relationship between
the cost and delay metrics. This assumption ensures that
the algorithm can run with any arbitrary cost function.

• Cost and delay values may change during the runtime of
the real system. Thus, results of computations for prior
QoS routing runs, e.g., SP trees, cannot be stored and
re-used for future QoS routing runs.

• The constraint must be guaranteed by the algorithm. We
strive for strict requirements. Soft constraints that may
be violated with a small probability are an interesting
direction for future work.

• The connections are unicast connections. Multicast is
outside the scope of this survey.

D. Overview of Shortest Path (SP) Algorithms

DCLC algorithms often make use of underlying SP and kSP
algorithm mechanisms; therefore, we briefly review SP and

GUCK et al.: UNICAST QoS ROUTING ALGORITHMS FOR SDN: COMPREHENSIVE SURVEY AND PERFORMANCE EVALUATION 393

kSP algorithms in this section and in Section II-E. Shortest
path algorithms have been studied for a long time and the
best algorithms are now well-known [172]. The Dijkstra algo-
rithm [173] is a centralized algorithm that computes the SP
from a single source node to all other nodes (i.e., an SP tree)
in a graph with non-negative edge costs.

The Dijkstra algorithm is a priority queue based algorithm.
That is, it maintains a queue containing a set of partial paths,
i.e., paths starting from the source node and reaching an
intermediate destination node which is not the ultimate desti-
nation. At each iteration, it takes the least-cost path among the
paths in the queue and generates n new paths by extending this
partial path with the n outgoing edges of the node at which
the given path terminates. Among those paths, only paths with
lower cost than the current least-cost path in the queue towards
the same destination are added back to the queue. That is, the
Dijkstra algorithm relaxes based on the cost values. In other
words, the Dijkstra algorithm performs a breadth-first search
and maintains the current best path found to each destination
node. Nodes with least-cost distance from the source node are
expanded first, thereby ensuring that any node has to be visited
only once.

The Bellman-Ford algorithm (BF) [174]–[178] is a dis-
tributed algorithm that computes an SP tree in a graph,
including graphs with negative edge costs. The algorithm
maintains the current best path found to each node and runs
|V| − 1 (where |V| is the number of nodes in the network)
iterations updating, for each node, the current best path to
all neighbor nodes based on the current best path to the
presently considered node. Since the path to any node is at
most |V|−1 hops long, all SPs will eventually be found. Note
that, in the case of a centralized implementation, if an iteration
yields no update, the algorithm can be immediately termi-
nated, as subsequent iterations will not lead to any change.
Also, as proposed by Yen [179] for centralized implementa-
tions, if the cost of the current best path to a node has not
changed since the last iteration, then the outgoing edges of
this node can be skipped since they will not lead to any new
changes.

Both the Dijkstra and the Bellman-Ford algorithms can
be used for finding the SP to a single destination. In such
a case, the Dijkstra algorithm can be stopped as soon as
the destination node is reached. In contrast, the Bellman-
Ford algorithm cannot be stopped earlier than in the SP tree
case (when SPs to all network nodes are found). Both algo-
rithms can be adapted to compute the SP from any node to
a single destination. These versions are called the Reverse
Dijkstra and Reverse Bellman-Ford algorithms, respectively,
and are simply obtained by considering incoming edges rather
than outgoing edges when going from one node to the
next node(s).

Hart et al. [180] proposed an improvement to the Dijkstra
algorithm, the A* algorithm, for finding a single-destination
SP by introducing a so-called guess function. At each node,
this guess function provides a guess for the cost of the SP
from this node to the destination node. Paths out of the pri-
ority queue with least projected cost (i.e., sum of the current
cost to the last node of the path and of the guess value at this

node) are expanded first. To ensure the correctness and opti-
mality of the A* algorithm, the guess values have to be lower
than the real values. The closer the guess values are to the
real values, the faster the A* algorithm will reach the desti-
nation. At one extreme, the A* algorithm with an exact guess
function will directly traverse the SP to the destination. At the
other extreme, the A* algorithm with a guess function of zero
corresponds to the original Dijkstra algorithm. The overhead
introduced by computing the guess function and the benefit of
this guess function constitute the trade-off introduced by the
A* algorithm. A straightforward guess function corresponds
to the least-hop count multiplied by the cost of the least-cost
edge in the graph. Such a guess function has to be recom-
puted upon any topology change. In our evaluations, we do
not consider topology changes. Thus, the guess function can
be computed offline, ensuring that the A* algorithm is, in any
case, at least as fast as the Dijkstra algorithm.

The centralized Dijkstra algorithm performs generally better
for finding an SP tree than other algorithms [182]. Similarly,
the A* algorithm performs generally better than distributed
algorithms for finding an SP. Therefore, we only consider the
Dijkstra algorithm for finding an SP tree and the A* algo-
rithm for finding an SP as underlying algorithms for the QoS
routing algorithms in Table II. A detailed quantitative compar-
ison that includes the Bellman-Ford algorithm, its centralized
improvements [179] and [181], SP heuristics [183], and other
A* guess functions [184] are left for future research.

E. Overview of k Shortest Paths (kSP) Algorithms

A very well known kSP algorithm, which is also one of the
initial proposals for the kSP problem, is Yen’s algorithm [185].
Yen’s algorithm consists of two main parts. First, the SP is
found using a traditional SP algorithm. Then, subsequent SPs
are found based on the knowledge of this initial path. The
(k + 1)th SP is found by starting at intermediate nodes of
previously found paths, blocking the next edge in the path to
force the algorithm to find another path, and running an SP
algorithm from there. The LC path out of all these new paths
is the (k + 1)th SP.

Yen’s algorithm does not need to know the value of k when
starting. We refer to this type of kSP algorithms as iterative
kSP (ikSP) algorithms. In contrast, Chong’s algorithm [186]
requires k to be known in advance. The algorithm is then
identical to the Dijkstra (or A* in our case) algorithm, but
keeps, at each node, the current k best paths found. Once the
destination(s) has (have) been visited k times, the algorithm
can stop. We refer to kSP algorithms which have to know
the value of k in advance as static kSP (skSP) algorithms.
Note that any ikSP algorithm can also be used as a skSP
algorithm.

We will see that for dense topologies with many edges
(e.g., queue-link topologies with an edge for each outgoing
QoS queue, see Section II-A2), algorithms using an under-
lying ikSP algorithm have poor performance. Indeed, while
they could possibly perform well for sparse topologies, the
high number of edges in dense topologies increases the num-
ber of paths that have to be traversed to reach the desired

394 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

optimality. Consequently, we only consider Yen’s algorithm
as ikSP algorithm. The study of the possible performance
increase introduced by the usage of other ikSP algorithms,
e.g., [187]–[190], is left for future work. We are not aware of
skSP algorithms other than Chong’s, and will therefore only
consider Chong’s algorithm as an skSP algorithm.

III. SURVEY OF UNICAST (MULTI-)CONSTRAINED

SHORTEST PATH (CSP AND MCSP) ALGORITHMS

This section provides a comprehensive up-to-date survey of
unicast constrained shortest path (CSP) and multi-constrained
shortest path (MCSP) algorithms which can be employed
for QoS routing. We categorize these unicast QoS rout-
ing algorithms according to the underlying algorithm strat-
egy into five main categories: 1) elementary algorithms,
2) algorithms based on a priority queue, 3) algorithms
based on Bellman-Ford, 4) algorithms making use of the
Lagrange relaxation optimization technique, as well as 5) algo-
rithms making use of the knowledge of the least-cost (LC)
and least-delay (LD) paths in the network. These five
main categories of QoS routing algorithms are summarized
in Table II.

A. Elementary Algorithms

Joksch [191] provided the initial integer linear programming
(ILP) formulation of the CSP problem along with a proposal
to solve it optimally using dynamic programming based on
the delay constraint value. Unfortunately, this algorithm can
therefore only be used with integer delay metric values and is
hence not suitable for real-valued delays. On the other hand,
note that dynamic programming approaches based on the hop
count, e.g., the Bellman-Ford algorithm, which is by defi-
nition integer valued, can be readily used with real-valued
metrics.

Aneja et al. [192] presented an optimal solution for the
MCSP problem. Their algorithm performs pre-processing and
is based on an implicit enumeration of all possible paths and
is therefore computationally complex.

An elementary algorithm to find a feasible solution to the
DCLC problem is to return the least delay (LD) path, which
can be found with a single SP algorithm run. We will refer to
this algorithm as the least-delay path (LDP) algorithm. The
LDP algorithm does not consider the cost parameter; thus, the
cost inefficiency may be high.

A way to take the cost into account while still keeping the
algorithm simple has been proposed by Lee et al. [193] as the
Fallback (FB) algorithm. The FB algorithm first computes
the least-cost (LC) path using an SP algorithm and checks
if it is feasible. If yes, then it can be returned. If not, then
the LD path is computed and returned. The algorithm can be
extended for solving the MCSP problem by running the SP
algorithm successively with the different metrics (first with
the cost and then with the different constraints) as cost until
a feasible path is found. While the algorithm is complete for
the CSP problem, it is not anymore for the MCSP problem.
Indeed, for the CSP problem, running an SP algorithm with
the constraint as cost will ensure finding a path satisfying the

bound of this constraint (if one exists). On the other hand, for
the MCSP problem, minimizing one of the constraints does
not ensure that the other constraint bounds will be met.

Another simple idea utilizes LC paths as follows. Rather
than switching to the LD path if the LC path is not fea-
sible, search for the subsequent LC paths (using an ikSP
algorithm) until a feasible path is found. Such an algo-
rithm can also be applied for the MCSP problem and,
since it discovers paths in order of increasing cost, is opti-
mal in both cases. We will refer to this algorithm as the
kSP Multiple Constraints (kSPMC) algorithm. Obviously,
by continuing its search after finding the first feasible path,
this algorithm is also able to solve the kCSP and kMCSP
problems.

B. Algorithms Based on a Priority Queue

A widely considered algorithm for optimally solving the
CSP problem is due to Widyono [194], who proposed the
Constrained Bellman-Ford (CBF) algorithm. Despite its
name, the algorithm is not similar to the original Bellman-Ford
algorithm. CBF performs a breadth-first search. While keep-
ing track of the LC path to each visited node, CBF discovers
paths in increasing order of delay, stopping once the con-
straint is violated. As the algorithm is actually an extension of
the Dijkstra algorithm, it is also sometimes referred to as the
Constrained Dijkstra (CD) algorithm. Indeed, similar to the
Dijkstra algorithm, the CD algorithm is based on a priority
queue and relaxes based on the cost values. However, paths
are retrieved from the priority queue in increasing value of
delay, instead of cost. The discovery process can stop when
the delay of the paths to further discover is higher than the
deadline, since then no additional feasible paths can be found.
Since the relaxation is done based on the cost, the LC path with
delay lower than the deadline was found, i.e., the algorithm is
optimal.

Liu and Ramakrishnan [195] proposed the A*Prune algo-
rithm for solving the MCSP problem. As its name suggests,
the A*Prune algorithm is in principle similar to the A* algo-
rithm (see Section II-D). The A*Prune algorithm assumes that
a guess function is available for each metric (i.e., for the cost
and all the constraints), discovers paths (i.e., takes paths out of
its priority queue) by increasing value of projected cost (see
Section II-D), and prunes (i.e., removes from the set of paths
to further extend) those paths for which a projected constraint
value exceeds the corresponding end-to-end bound. Once the
destination node is reached, the MCSP has been found. Note
that, unlike the Dijkstra, A*, and CBF algorithms, the A*Prune
algorithm does not keep a single path per node. In other words,
its way of reducing the number of paths to further extend is
not based on the destination node of these paths but on their
projected constraint values. The A*Prune algorithm has the
additional feature of being able to solve the kMCSP problem.
Indeed, the extension of paths can be continued after the desti-
nation has been reached. Once the destination node is reached
for the kth time, the optimal kth MCSP has been found. The
A*Prune algorithm also solves the CSP and MCSP problems
optimally.

GUCK et al.: UNICAST QoS ROUTING ALGORITHMS FOR SDN: COMPREHENSIVE SURVEY AND PERFORMANCE EVALUATION 395

C. Algorithms Based on Bellman-Ford

Jia and Varaiya [196] combined the search strategy of the
Bellman-Ford algorithm with the delay-constrained unicast
routing (DCUR) algorithm (which is based on LC and LD
paths and will be reviewed in Section III-E) to define the delay-
constrained Bellman-Ford (DCBF) algorithm. DCBF first
computes a reverse LD tree. Then, it runs the Bellman-Ford
algorithm, but updates the best path at a node only if it has
a lower cost and if the sum of (i) the delay of the path built
so far, (ii) the delay of the next edge, and (iii) the delay of
the LD path from the terminal node of the next edge (i.e., the
node reached via the next edge) to the destination is lower
than the delay bound. We will refer to this test as the pro-
jected delay test. Jia and Varaiya also propose an extension to
this algorithm, kDCBF, keeping track of the kd best paths for
the reverse LD tree run and keeping the best kc paths at each
node for the forward Bellman-Ford run.

DCBF and kDCBF are complete, but not optimal. The rea-
son for the sub-optimality of DCBF and kDCBF is as follows.
DCBF may be sub-optimal if it “relaxes too much”. DCBF
relaxes a node when (i) the cost of the new path is lower, and
(ii) the new path satisfies the projected delay test. Two cases
are possible: Case 1: The cost of the new path is lower and its
delay is also lower than the current path at the node. The relax
operation is hence justified. Case 2: The cost of the new path
is lower and its delay is higher, but still satisfies the projected
delay test. Since the new path has a higher delay than the
older path, it can happen that DCBF then has to take a higher
cost path to satisfy the delay constraint until the destination.
Therefore, although at the current node, the path was cheaper,
because of its higher delay, DCBF then has to follow a higher
cost path to reach the destination in time. This is the DCBF
sub-optimality scenario, where DCBF is not optimal anymore
because the final path would have been cheaper by keeping
the original path (which was more expensive at one node).

Cheng and Ansari [197] proposed the dual extended
Bellman-Ford (DEB) algorithm, an algorithm for the CSP
problem similar to FB (see Section III-A). Instead of running
an SP algorithm for the LC and LD searches, DEB runs a so-
called extended Bellman-Ford (EB) algorithm which is able to
find, for every possible hop count h, the optimal h-hop con-
strained path. For both runs, the path considered is then the
best path among all those found. As FB, DEB is complete,
but not optimal.

D. Algorithms Based on the Lagrange Relaxation

1) Background on Lagrange Relaxation: In mathemati-
cal optimization, the Lagrange relaxation technique allows to
remove some constraints of the original problem and to intro-
duce them in the optimization objective [171], [198], [199].
For example, the Lagrange relaxation of problem (1)–(2) is

L(u) = min
x∈Psd

cTx + uT(Dx − d), (4)

where u ∈ R
M+ is called the Langrangian multiplier. The min-

imized function is called the Lagrange function of path x and
is also denoted as L(u, x). It can be shown that, if the original

Fig. 4. Illustration of Lagrange functions L(u, x) of paths in a network as a
function of Lagrange multiplier u. The LARAC algorithm [200]–[203] finds
the maximum of the lower boundary of this set of curves through a binary
search, always keeping track of a best feasible (negative slope) path and a best
infeasible (positive slope) path. The search starts with the LD and LC paths,
found by simple SP searches, and continues with further SP searches with a
modified cost function cu = c+ud, where u is obtained as the intersection of
the current best feasible and infeasible paths. From mathematical optimization
theory, this is an approximation of the optimal solution of the original DCLC
problem.

problem is feasible, then there is an optimal solution to

zL = max
u∈RM+

L(u), (5)

which is a feasible solution of the original problem.
Problem (5) is referred to as the Lagrangian dual of the orig-
inal problem (1)–(2), which is then referred to as the primal
problem. Because solving the dual problem does not neces-
sarily optimally solve the primal problem, we say that there
is a duality gap.

2) Lagrange Relaxation Based Aggregate Cost (LARAC)
Without and With Gap Closing (GC): Solving the dual prob-
lem requires to solve the relaxed problem (4) several times.
The interesting aspect of this procedure is that, for the CSP
problem, the relaxed problem corresponds to an SP problem
with a modified cost function cu = c + ud. This concept is
illustrated in Fig. 4. Each line in Fig. 4 corresponds to the
Lagrange function of a path in the network. Lines with null
or negative slopes correspond to feasible paths while lines with
positive slopes correspond to infeasible paths. The intercept of
a line corresponds to the cost of the path. In our example, the
optimal path (with cost zopt) is highlighted in red. Since L(u)

is a piecewise-linear concave function [204], the u value max-
imizing L(u) can be found using a binary search and always
keeping track of a best feasible path and a best infeasible path,
starting with the LC and LD paths (shown in blue in Fig. 4). As
these two paths have slopes of different signs,1 they intersect
at a point u1. This point is then used as the Lagrange multiplier
for the next SP run. This run will find a new path. If the path
is primal feasible (resp. infeasible), it replaces the current best
feasible (resp. infeasible) path. The new pair of best feasible

1If this is not the case, either the problem is infeasible (both paths have
positive slopes) or the LC path is optimal and can be returned (both paths
have negative slopes).

396 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

and infeasible paths defines a new point u2. The procedure
then continues until the Lagrange multiplier does not change.
The stored best feasible path at this point is then returned. In
the example of Fig. 4, we can see that the found path (which
corresponds to z′ and u3) is sub-optimal (z′ > zopt).

Aneja and Nair [200] initially proposed this algorithm as
an optimal algorithm. They did not notice the duality gap.
Later, Handler and Zang [201] proposed to close the gap as
follows. At the end of the execution of the algorithm [200],
the Lagrange value zL of the found path is a lower bound on
the optimal cost zopt. Similarly, the cost z′ of this path is an
upper bound of the optimal cost zopt. The gap can then be
closed by running an ikSP algorithm with the last Lagrange
multiplier, i.e., u3 in our example. Figuratively speaking, the
intersections are not relevant for the gap closing; rather, the
gap closing traverses the vertical line at u3 from bottom to
top. For each path found by the ikSP algorithm, the upper and
lower bounds on the optimal cost are updated with, respec-
tively, the Lagrange value of the new path found and the cost
of the best path found so far. When the lower bound gets
greater than the upper bound, i.e., when the Lagrange value
of the new path is greater than the cost of the best path found
so far, it is ensured that no better path can be found. The best
feasible path found so far is then the optimal solution. In the
example of Fig. 4, the ikSP algorithm finds the optimal path
as the third SP for u3 and has to find the fifth SP (which is
actually the LD path) to notice that no better path exists.

Handler and Zang [201] also introduced a parameter δ to
stop the gap closing when the relative distance between the
lower and upper bounds is less than δ. As this relative distance
is an upper bound on the cost inefficiency (CI), the δ parameter
allows to ensure that the cost inefficiency of the algorithm is
always lower than δ. Blokh and Gutin [202] also proposed
the algorithm without gap closing. Finally, Jüttner et al. [203]
proposed again the same algorithm (without gap closing) and
gave it a name: Lagrange Relaxation based Aggregate Cost
(LARAC). They also introduced a maximal difference (MD)
parameter. The binary search is then stopped when the relative
distance between the cost of the current best feasible path and
the cost of the current best infeasible path is less than MD.
We will refer to the LARAC algorithm with gap closing as
LARACGC. As elaborated, LARACGC with δ = 0 is optimal
and LARAC is not. Since they find at least the LD path, both
are complete.

3) LARAC Variations and Extensions: Santos et al. [205]
proposed an algorithm similar to LARACGC. The difference is
that, after having computed the LC and LD paths, Santos et al.
directly close the gap without performing the binary search.
In particular, Santos et al. use a specific Lagrange multiplier
computed based on the knowledge of the delay bound as well
as the costs and delays of the LC and LD paths. From the
name of its authors, we will refer to this algorithm as SCRC.
The algorithm has the same stopping condition as LARACGC
and is therefore also optimal.

Jia and Varaiya [196] then proposed kLARAC, an extension
of LARAC that uses a kSP algorithm at each iteration, instead
of an SP algorithm. The set of k paths found for a given u
either contains only feasible paths, only infeasible paths, or

Fig. 5. Illustration of operation of LARAC algorithm in the delay (Dx)-cost
(cTx) space: At each iteration, LARAC runs an SP search in the direction
defined by the Lagrange multiplier. Here, the algorithm will first find the LC
and LD paths. Then, based on the Lagrange multiplier computed with these
two paths (which corresponds to the normal to the line connecting these two
paths), a will be found. Similarly, b will then be found. Then, a or b will
again be found, meaning that the Lagrange multiplier will not change. Hence,
the algorithm will stop and the best feasible path, i.e., a, will be returned.

a mix of both. As long as only feasible and infeasible sets
are found, the new Lagrange multiplier is computed as for
LARAC using the LC paths of the two sets. Once a mixed set
is found, the LC feasible path of the set is returned. Jia and
Varaiya show that the algorithm is always at least as good as
LARAC in terms of cost inefficiency. Since k is a parameter
of the algorithm, an skSP algorithm can be used. kLARAC is
not optimal.

The LARAC algorithm can also be visualized in the delay-
cost space, see Fig. 5, where a point corresponds to a given
path in the network. At each iteration, the Lagrange multiplier
defines the search direction of the SP run to be perpendicular
to the line connecting the current best feasible and infeasible
paths. This is shown by the small arrows perpendicular to the
solid lines in Fig. 5. An SP run in a given direction finds the
first point that the corresponding solid line would hit if pushed
in this direction starting from point (0, 0).

In the example of Fig. 5, LARAC will find the LD and
LC paths, then a, then b, and the algorithm will then stop
and return a. We see that the optimal path, shown in red,
is missed. Korkmaz and Krunz [206] argued that this is due
to the fact that the search direction is linear in the delay-
cost space (Fig. 6a). They hence proposed an algorithm called
Heuristic for Multi-Constrained Optimal Path (H_MCOP)
which tries to search simultaneously in the delay and cost
directions (Fig. 6c). To do so, the algorithm first finds the
LD paths from any node to the destination using a reverse
SP tree algorithm. Then, it runs an LC forward SP search but
updates the best path at a node only when the new path is
feasible or has a lower delay than the previously stored best
path. The feasibility of the new path is checked using the
LD paths stored from the reverse SP tree run. A new path is
then considered feasible if it passes the projected delay test.
The best path is hence sometimes updated based on the delay
and sometimes based on the cost, which is how the algorithm

GUCK et al.: UNICAST QoS ROUTING ALGORITHMS FOR SDN: COMPREHENSIVE SURVEY AND PERFORMANCE EVALUATION 397

Fig. 6. When running an SP (or kSP) algorithm with an aggregated cost, the type of aggregation of the initial metrics influences the search direction of the
SP algorithm. In the case of two metrics, linearly combining the metrics leads to the linear search direction shown in Fig. 6a. In some cases, including DCLC
routing, one may want to explore the delay-cost space simultaneously in both directions. To do so, the metrics can be combined in a non-linear fashion. For
example, if the aggregated cost is computed by combining each metric to the power of two, a search direction similar to Fig. 6b is obtained. By increasing the
power used to combine the metrics, one can reach the desired search direction shown in Fig. 6c. Unfortunately, once the metrics are not linearly aggregated,
the optimal sub-structure property does not hold anymore; thus, classical SP and kSP algorithms (e.g., Dijkstra, A* [180], and Yen [179]) are not optimal
anymore.

tries to simultaneously follow the search directions shown in
Fig. 6c. The algorithm is nevertheless not optimal because
this depends on how fast the delay and cost directions are
respectively explored.

As its name suggests, the H_MCOP algorithm is also valid
for the MCSP problem. While the explanation of the algo-
rithm for the MCSP problem is more complicated (and is not
included because we focus on the CSP problem in this article),
the algorithm still tries to scan the multi-dimensional cost-
constraints space simultaneously in all directions. However,
to do so, an additional parameter λ has to be introduced
and is defined as the power value used to combine the
original constraints into an aggregated cost. λ = 1 corre-
sponds to a linear search direction (Fig. 6a) and increasing λ

towards infinity leads to the search direction shown in Fig. 6c.
Besides, in the MCSP case, the algorithm is not complete
anymore [206], [207]. Korkmaz and Krunz [206] then also
proposed to use Chong’s skSP algorithm for the forward run
in order to continue searching in both directions until k paths
have been found, thereby possible finding better paths. We
will refer to this algorithm as kH_MCOP. Clearly, this does
not solve the incompleteness problem of the algorithm in the
MCSP case [206] and the algorithm is still not optimal.

H_MCOP can be used to solve the MCP problem by observ-
ing the directions of all the constraints simultaneously and
returning the first path found [206], [207]. It is then referred to
as H_MCP and is incomplete [206]. Feng et al. [208] proposed
NR_DCLC, a CSP algorithm using H_MCP as underlying
MCP algorithm, although NR_DCLC works with any other
MCP algorithm. The LC and LD paths are first computed
to check for infeasibility or for LC as elementary solution.
Then, the cost of the LD path is set as first cost bound and
the delay bound is the one of the original DCLC problem.
Then, H_MCP finds an MCP path within these constraints.
The cost of the path found is then used as new cost bound.
This process is repeated until H_MCP does not find any path.
To prevent H_MCP from returning the path found at the pre-
vious iteration, the cost bound for the next iteration is always

set to a value a little bit smaller than the actual cost of the
found path. Because NR_DCLC finds at least the LD path, it
is complete. Since the underlying H_MCP algorithm is incom-
plete, it can be that NR_DCLC stops before having explored
the entire cost-delay space and therefore NR_DCLC is not
optimal.

Feng et al. [207] then proposed a variation of NR_DCLC.
Instead of running H_MCP with the cost of the LD path
as bound, H_MCP is run with the cost of the path found
by H_MCOP as bound. As this algorithm improves on
the solution found by H_MCOP, the authors refer to it as
Modified_H_MCOP (MH_MCOP). The authors also intro-
duce a parameter to limit the number of MCP iterations.
We will refer to this parameter as H. For the same reasons
as for NR_DCLC, MH_MCOP is complete, but not optimal.
MH_MCOP can additionally solve the MCSP problem but, as
it is based on H_MCOP, is not complete for it. On the other
hand, NR_DCLC cannot solve the MCSP problem. Indeed, its
initial LD search can only accommodate one constraint.

Feng et al. [207] additionally proposed an optimal algo-
rithm, E_MCOP, similar to SCRC. E_MCOP first runs
E_MCP, a complete MCP algorithm. E_MCP first runs an
SP search for each constraint. If one of them cannot be met,
it terminates. Otherwise, it runs an ikSP algorithm with the
sum of the individual constraints, individually divided by the
difference between their bound and their least value, as an
aggregated cost. E_MCP returns the first feasible path found
or stops once a path with an aggregated cost higher than the
cost obtained by considering that each constraint reaches its
bound is found. If E_MCP found no path, E_MCOP concludes
that there is no solution. Otherwise, E_MCOP considers the
found path as the current solution, uses its cost to define a cost
border and runs an SP search for the cost to find its least value.
From these two values, E_MCOP restarts an E_MCP search
with the cost added to the aggregated cost (also divided by dif-
ference between its bound and its least value). The algorithm
returns the current solution once the ikSP algorithm finds no
path or when it finds a path with an aggregated cost higher

398 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

than the cost obtained by considering that each metric reaches
its bound. When a path is found by the ikSP algorithm, it
replaces the current solution if it is feasible and has a lower
cost. This algorithm is optimal for both the CSP and MCSP
cases [207].

Guo and Matta [209] elaborated on the idea of using an
underlying MCP algorithm in their delay-cost-constrained
routing (DCCR) algorithm. DCCR behaves similarly to
NR_DCLC, but runs the MCP algorithm only once. For this to
be effective, they use an MCP algorithm that takes the costs
of paths into account. This MCP algorithm can hence also
be viewed as a DCLC algorithm which needs a cost bound.
The algorithm runs an SP search where the cost of a path is
defined as

delay of the path

1 − original cost of the path
cost bound

, (6)

which also tries to emulate the simultaneous scan of the
delay-cost space in both directions. Nevertheless, with such
a function, the cost of a path is not anymore the sum of
the cost of its constituting edges and classical SP algorithms
cannot solve the problem optimally. Therefore, Chong’s algo-
rithm is used to increase the probability of keeping track of
good solutions. DCCR is complete, but not optimal. Instead
of using the cost of the LD path as cost bound, Guo and
Matta propose to use the cost of the path found by LARAC.
This algorithm is then referred to as search space reduction
DCCR (SSR+DCCR). Since the algorithm improves the solu-
tion returned by LARAC, it is closing the duality gap, similarly
to LARACGC, but only partially. In order to provide a cost
bound, LARAC does not have to run until the end. Therefore,
Guo and Matta define a parameter, which we will refer to as
L, that limits the number of iterations (i.e., the number of SP
runs, excluding the LC and LD searches) of the LARAC run.
SSR+DCCR is also complete, but not optimal.

Agrawal et al. [210] proposed E-LARAC, an extension of
LARAC that additionally considers a constraint on the max-
imum number of hops by using a modified Bellman-Ford
subroutine. Because the number of hops is not a constraint
in many QoS networking scenarios, we do not consider
E-LARAC in our evaluation.

The Lagrange relaxation has also been used by
Ribeiro and Minoux [211] for solving the double-sided
constrained SP problem, i.e., the problem of finding an SP
whose delay (or any other metric) is lower than an upper
bound but also greater than a lower bound. We do not
consider this double-sided problem in our evaluation.

E. Algorithms Following the LC and LD Paths

Instead of computing a delay-constrained path from SP
searches with modified costs, Salama et al. [212] and
Reeves and Salama [213] proposed to solve the DCLC prob-
lem from the knowledge of the LC and LD trees towards the
destination. The algorithm builds the path node by node. At
each node, the algorithm chooses between the edge belonging
to the LC path towards the destination and the edge belonging
to the LD path towards the destination. The LC edge is chosen
if it satisfies the projected delay test; otherwise, the LD edge is

Fig. 7. Least-cost (LC) and least-delay (LD) paths from any node to a given
destination in an example graph with links denoted by cost/delay. DCUR,
DCR, and IAK are algorithms combining these paths in order to find a delay-
constrained least-cost path (DCLC). In this example, with a deadline of 10,
DCUR, which alternates between using the LC and LD edges, finds the path s-
2-3-6-d with cost 9 and delay 10. DCR, which follows LD edges and switches
once to the LC edges, finds the path s-3-6-d with cost 8 and delay 8. Finally,
IAK, which follows LC edges and switches once to the LD edges, finds the
path s-2-3-4-d with cost 11 and delay 8.

chosen. It can happen that a loop is created. In such a situation,
the algorithm backtracks to a node that chose the LC edge and
then chooses the LD edge instead. Salama et al. show that this
backtracking ensures the removal of the loop. This algorithm
is called delay-constrained unicast routing (DCUR). Since
DCUR can always find the LD path (by backtracking), it is
complete. However, DCUR is not optimal.

Fig. 7 shows an example graph with the corresponding LC
(red) and LD (yellow) trees towards the destination node d.
Starting from the source node s, DCUR chooses, at each
node, between the red and yellow outgoing edges of the node
depending on the result of the projected delay test. In this
example, with the delay constraint set to 10, DCUR would
choose LC-LD-LC-LC (no loop occurs), thereby finding the
path s-2-3-6-d with cost 9 and delay 10. Indeed, when at node
2, DCUR cannot follow the LC edge. If it did, it would reach
node 5 with a delay of 7. Since the LD path from node 5
to the destination has a delay of 5, it would not be possible
anymore to reach the destination with a delay lower or equal
to 10. Note that this is sub-optimal as the optimal path (that,
e.g., CBF would find) in this example is s-3-6-d with cost 8
and delay 8.

Sun and Langendörfer [214] then proposed a solution, called
distributed delay constrained routing (DCR), to avoid the
creation of loops and hence to prevent the algorithm from
having to backtrack, thereby reducing runtime. DCR follows
the LD path until the sum of (i) the delay of the path so
far and (ii) the delay of the LC path from the current node
to the destination is lower than or equal to the delay bound.
Starting from this point, the algorithm then follows the LC
path until the end, since it is ensured that it will satisfy the
delay constraint. Since the LD path is only followed from the
source node, it can be computed by a simple SP run. DCR is
also complete, but not optimal.

In the example of Fig. 7, still with the delay constraint
of 10, DCR follows the LD edge until node 3 as the sum

GUCK et al.: UNICAST QoS ROUTING ALGORITHMS FOR SDN: COMPREHENSIVE SURVEY AND PERFORMANCE EVALUATION 399

of the delay of the path so far (no path and hence delay of
0) and the delay of the LC path from the current node (s)
to the destination (path s-2-5-6-d with delay 15) is greater
than the delay bound (0 + 15 > 10). Indeed, following the
LC edges already from node s would lead to an infeasible
path. Then, starting from node 3, DCR switches to the LC
path as the sum of the delay of the path so far (path s-3
with delay 3) and the delay of the LC path from the current
node (3) to the destination (path 3-6-d with delay 5) is lower
than the delay bound (3 + 5 < 10). Indeed, DCR is now
sure that following the LC edges until the destination will
lead to a feasible solution. Hence, DCR finds the path s-3-
6-d, which is actually the optimal path. This example shows
that, while DCR is simpler than DCUR, it can still provide,
in some circumstances, a path closer to optimality.

Ishida et al. [215] then proposed the opposite strategy, i.e.,
to first follow the LC path and to switch to the LD path as
soon as following the LC path would lead to a node from
which the delay constraint cannot be satisfied anymore. For
the same reason as for DCR, the LC path can be computed
by a simple SP run. Based on Ishida et al. [215], we refer to
this algorithm as IAK. IAK is also complete, but not optimal.

In the example of Fig. 7, still with the delay constraint of
10, IAK follows the LC edge until node 2 as this edge has a
delay of 4 and the LD path from node 2 to the destination has
a delay of 4, thereby ensuring that the delay constraint can
still be met. From node 2, for the same reason as for DCUR,
IAK cannot follow the LC edge anymore. Indeed, it would
not be possible anymore to reach the destination with a delay
lower than or equal to 10. Hence, IAK switches to the LD
edges and finds the path s-2-3-4-d with cost 11 and delay 8.

DCUR, DCR, and IAK have been proposed with a dis-
tributed implementation in mind and allow only a limited
range of choices at each node. Two algorithms have been pro-
posed with the objective of enlarging the set of paths that can
be found. First, Sriram et al. [216] proposed that each node
maintains a list of ordered preferred output links. When path
construction reaches a node, it selects its preferred output link
for which the delay of the new path satisfies the delay con-
straint and that does not introduce a loop. A node may not
have a preferred output link that satisfies these constraints;
then path construction is backtracked to the previous node,
which then selects its next preferred output link. If all pre-
ferred output links have been exhausted, then path construction
is also backtracked to the previous node. Once the destination
is reached, the algorithm terminates. Based on Sriram et al.
[216] we will refer to this algorithm as SMS. The list of pre-
ferred links is computed according to a heuristic function. In
order to reduce runtime, the algorithm allows to limit the size
of the list of preferred links at each node to a given parame-
ter p. Nevertheless, depending on the heuristic function, this
makes the algorithm incomplete. The algorithm is complete
only if p is, at each node, greater or equal to the degree2

of the node, thereby ensuring that all links are considered. If

2In a graph, the degree of a node corresponds to the number of edges
connected to this node. In our scenario, we define the degree of a node as the
number of outgoing edges the node has.

�(G) denotes the maximum degree of the nodes in graph G,
the algorithm is complete if

p ≥ �(G). (7)

Sriram et al. [216] define three heuristic functions: (1) residual
delay maximizing (RDM), ordering links by their cost divided
by the delay constraint minus the projected delay of the link
(and ensuring that the edges belonging to the LC and LD paths
towards the destination are included in the list), (2) cost delay
product (CDP), ordering links by their cost times their pro-
jected delay, and (3) partition-based ordering (PBO), ordering
links by cost value. RDM requires one SP tree run (LD), CDP
two, and PBO none.

If the heuristic function is not efficient, the algorithm could
explore an excessive number of paths before reaching the des-
tination. This is especially true for dense topologies with many
possible paths. To avoid this, Liu et al. [217] proposed SF-
DCLC, an algorithm similar to SMS. At each node, instead of
computing a list of links and trying them one after the other,
the algorithm chooses one output link based on a selection
function (SF) which is proven to avoid loops and to lead to a
solution if one exists. The links are assigned a weight equal
to their cost plus (i) the cost of the LC path to the destination
if the LC path to the destination passes the projected delay
test, or, if not, (ii) the cost of the LD path. Links for which
the LD path is infeasible are not considered. The least-weight
link is then chosen. SF-DCLC is complete, but not optimal.

F. Other Approaches

For completeness, we briefly review in this section other
QoS routing approaches that we do not include in our evalua-
tion for the various reasons noted for the following algorithms.
In order to the reduce the runtime of optimal algorithms, sev-
eral fully polynomial ε-approximation algorithms have been
proposed, e.g., [218]–[224]. The ε-approximation algorithms
ensure to find a path whose cost is at most (1 + ε) times
higher than the cost of the optimal path. Unfortunately, ε-
approximation algorithms consider only integral costs and/or
delays and are therefore not suitable for QoS routing with
real-valued costs and/or delays.

Several algorithms have been proposed to accommodate
imprecise state information, e.g., [12] and [225]–[229]. In
centralized network architectures, such as SDN, is it reason-
able to assume that the state is well-known and we hence
do not consider the class of algorithms for imprecise state
information. Also, note that algorithms considering impre-
cise information cannot provide strict (hard) QoS guarantees,
rather these algorithms can only provide soft QoS guar-
antees. Similarly, algorithms based on probing techniques,
e.g., [12], [226] and [229]–[231], or relaxing the constraint,
e.g., [232], can also only provide soft QoS guarantees. Our
focus is on QoS routing algorithms that can provide strict QoS
guarantees and we do therefore not consider the algorithms for
imprecise state information, probing, or relaxed constraints in
detail in this survey.

Algorithms based on genetic algorithm (GA) [233], [234]
and on artificial bee colony optimization techniques [235] have

400 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

Fig. 8. The four topologies considered in the evaluation are based on three
different base topologies which can be scaled in two different directions.

also been proposed. Such randomized algorithms have typi-
cally a fairly high runtime and are therefore not well suited
for online routing decisions. Our focus is on QoS routing algo-
rithms that are suitable for online routing decisions and we do
therefore not cover these randomized algorithms in detail.

Pornavalai et al. [236], [237] simplify the bandwidth-jitter-
delay constrained problem into an SP problem with maximum
number of hops (i.e., a problem that can be solved in polyno-
mial time) by using relationships between bandwidth, delay,
jitter, and buffer capacity in weighted fair queuing (WFQ)
set-ups. Our focus is on QoS routing algorithms that accom-
modate independent optimization and constraint metrics and
we do therefore not consider [236], [237] in detail.

IV. FOUR-DIMENSIONAL (4D) EVALUATION FRAMEWORK

Generally, the performance of an algorithm depends on the
specific scenario in which it is executed. In order to evalu-
ate the behaviors of the different algorithms across a wide
set of scenarios, we introduce an evaluation framework that
evaluates QoS routing algorithms along four critical dimen-
sions. First, we define four topologies which we describe in
Section IV-A. A topology describes both the underlying struc-
ture of the network and the nodes that communicate with each
other in the network. Second and third, we scale these topolo-
gies in two directions. Fourth, we distinguish requests based on
the level of strictness of the delay constraint, see Section IV-B.
Section IV-C presents the evaluation procedure and the metrics
used, while Section IV-D identifies the evaluated algorithms.

A. Topology and Scaling

As first dimension of our evaluation framework, we define
four topologies (shown in Fig. 8) based on three different
base topologies. Although our survey is generic and all the
algorithms can be applied to any CSP problem, we focus on
industrial topologies where we expect centralized QoS routing
to be extensively employed [133]. Nevertheless, the topolo-
gies we define are also common in and representative of data
center, metro, grid, and enterprise networks. On the contrary,
wide-area (star topology) networks are not covered, as strict
centralized QoS routing in such environments is unlikely. All
topologies can be scaled according to two scale parameters m

and n that represent the size of the topology layout, as illus-
trated in Fig. 8 and defined in detail in the following for the
four different topologies. The second and third dimensions of
our evaluation framework correspond to varying the two scale
parameters m and n from 4 to 13, thereby defining 100 dif-
ferent scalability levels. The four topologies are referred to as
One Ring Bottleneck (ORB), Two Ring Bottleneck (TRB), Two
Ring Random (TRR) and Grid Random (GR).

• ORB: The ORB topology consists of a base ring of
m + 1 switches. A so-called programmable logic con-
troller (PLC) is connected to one switch of this ring. A
branch composed of a series of n remote input/output
nodes (I/Os), e.g., sensors, is connected to each of the
other m switches of the ring. Thus, there are a total of
mn I/Os. Remote I/Os have an internal switch allow-
ing traffic to flow along the branches. Thus, remote
I/Os act as traffic sources as well as traffic forwarders,
which is common in sensor networks and industrial
networks [51], [144], [145], [147]. Traffic is only con-
sidered from the remote I/Os to the PLC.

• TRB: The TRB topology extends the ORB topology with
an additional ring consisting of m + 1 switches. The
m + 1 switches connect the loose (bottom) ends of the
m branches of remote I/Os (of the ORB topology) to
the PLC. Traffic is still considered only from the remote
I/Os to the PLC.

• TRR: The TRR topology is the same as the TRB topology,
but traffic is now considered between any pair of remote
I/Os. As the remote I/Os, the PLC is able to forward
traffic not destined for it.

• GR: The GR topology is a grid of width m and height
n. In the GR topology, traffic is considered between any
pair of nodes.

We do not consider random topologies generated based on
models, such as the Waxman model [238]. Instead, striving for
a fair and reproducible evaluation, we only use deterministic
topologies.

Each directed link is considered to have four output priority
queues and routing is then performed on the correspond-
ing queue-link topologies. For each physical link, the costs
of the four queue-link edges with priority levels p, p =
1 (high priority), 2, 3, 4 (low priority), are set to the values
1 + 1/p so as to favor the usage of low priority queues. The
delay values are obtained with Schmitt’s formula [135]. Thus,
the costs and delays of the four queue-link edges are respec-
tively set to 2 and 0.48 ms, 1.5 and 1.26 ms, 1.33 and 2.83 ms,
as well as 1.25 and 7.55 ms.

Clearly, the number of queues as well as the cost and delay
settings influence the performance of the algorithms and could
be defined as additional comparison dimensions. However, in
order to keep the evaluation tractable, we keep them static.

B. Delay Constraint Tightness

The delay constraint of routing requests can range from
loose values for which the LC path is feasible to tight val-
ues for which no feasible path exist. Within this range, we
define seven subranges of equal size, which we refer to as

GUCK et al.: UNICAST QoS ROUTING ALGORITHMS FOR SDN: COMPREHENSIVE SURVEY AND PERFORMANCE EVALUATION 401

delay levels. The fourth dimension of our evaluation frame-
work corresponds to varying the delay constraint of routing
requests between these different delay levels.

C. Evaluation Procedure and Metrics

Each algorithm is evaluated along the four dimensions of
our evaluation framework. For each particular topology and
combination of the scale parameters m and n, we sequentially
simulate 20,000 routing requests. The first 1000 requests are
used as warm-up for the Java HotSpot optimizer and their
results are not considered. For each request, the source and
destination are generated uniformly randomly from the pos-
sible set of combinations defined by the topology and scale
parameters. The delay constraint is distributed uniformly ran-
domly among the seven delay levels [and then uniformly
randomly within the selected delay level (delay constraint sub-
range)] so as to prevent the Java HotSpot optimizer from
optimizing for a specific delay level. (If all test runs for a
specific delay level are run successively, the Java HotSpot opti-
mizer could exploit the consideration of a particular delay level
in successive runs.)

For a given algorithm under test (AUT) and request, we run
three algorithms. First, we run CBF in order to obtain the cost
zopt of the optimal solution. Second, we run the AUT to deter-
mine the AUT cost z′. The cost inefficiency (CI) of the AUT is
then evaluated in % compared to the cost of the optimal path
according to Eqn. (3). Third, we run an LD search using A*
(which is then equivalent to an LDP search). We define the
runtime of the AUT divided by the runtime of the LD search
as the runtime ratio of the AUT. This normalization allows to
filter out runtime variations due to the varying runtime behav-
iors of the testing machines (caused by operating system tasks
or Java garbage collector execution). Indeed, both algorithms
are run one after the other, i.e., within a short time window
during which the runtime behavior of the testing machine can
be assumed to be constant.

D. Algorithm Selection

Table II summarizes the algorithms that we have identi-
fied as suitable for the considered unicast QoS routing in
Section III. We implemented all these 26 algorithms in Java 83

and, for each of them, ran our evaluation procedure. The spe-
cific parameter settings for parameterized algorithms will be
given in Section V. We will identify parameterized algorithms
by the name of the original algorithm to which we append
the dash-separated parameter values in the same order as in
Table II. For example, LARACGC with δ = 25% will be
referred to as LARACGC-25. We omit the λ parameter of
H_MCOP and kH_MCOP since it has no influence in the CSP
case.

3We acknowledge that the results may be subject to our specific imple-
mentations; however, we tried to be fair and optimize all implementations as
much as we could.

V. EVALUATION RESULTS

Section V-A presents the evaluation results for the fourth
dimension, i.e., the behavior of the algorithms for the dif-
ferent delay levels. Section V-B then focuses on the first
three dimensions. Due to the high number of algorithms
and the highly detailed results on how they behave and per-
form, it is not possible to present and discuss all results for
all algorithms in detail in this article. Therefore, we only
present the most interesting algorithms and discuss the most
important conclusions. We have made the entire set of raw
results and graphs for all the algorithms publicly available at
http://www.lkn.ei.tum.de/lora [31].

We found that kSPMC, A*Prune, LARACGC, SCRC,
E_MCOP, and the three SMS variations were not able to com-
plete the evaluation in a reasonable amount of time compared
to CBF. This leads to our first observation that algorithms
using an ikSP algorithm to reach optimality have a very
long runtime. Indeed, the considered queue-link topologies are
dense with high numbers of possible paths. Thus, the number
of paths to discover until reaching optimality is also high,
yielding intractable runtimes for kSPMC, LARACGC, SCRC,
and E_MCOP. A*Prune and SMS are not based on an ikSP
algorithm but their structure is such that, if their initial search
direction is not the correct one, they have to explore a high
number of paths to reach the destination. The negative impact
of this approach is accentuated by the high density of the
considered queue-link topologies.

A. Fingerprints: Influence of the Delay
Constraint Tightness

We analyze the fourth dimension using so-called fingerprint
graphs (Fig. 9). The fingerprint graph for a given combination
of topological and scale parameters m and n, shows the dis-
tribution of the runtime ratio (left, in red) and CI (right, in
yellow) of an algorithm for the seven different delay levels
(loose levels on the left and tight levels on the right). Since
we have four different topologies with 100 different scalabil-
ity levels (combinations of m and n values), each algorithm
has 400 fingerprint graphs. Nevertheless, we observed that the
shapes of all fingerprint graphs for a given algorithm are sim-
ilar; Fig. 9 shows fingerprints for the grid (GR) topology with
scale parameters m = n = 10. Since the shapes of these
graphs characterize the different algorithms we refer to these
graphs as fingerprints: they nearly uniquely identify an algo-
rithm based on its behavior and are (nearly) always the same
for a given algorithm. Only the absolute values vary depend-
ing on the topology and its scaling. These variations will be
discussed in Section V-B.

1) Elementary Algorithms: Since the elementary LDP
algorithm (see Section III-A) does not take cost into account,
its CI is the benchmark for the worst acceptable CI (Fig. 9a).
As expected, the CI of LDP gets better for tighter constraints
since the LD path becomes closer to the optimal solution. In
terms of runtime, as LDP is compared with itself, the LDP
fingerprint shows that the accuracy of our runtime metric is
reasonable (the 0.5 and 99.5 percentiles are close to one and
the median is approximately one). In additional evaluations,
which we cannot include due to space constraints, we

http://www.lkn.ei.tum.de/lora

402 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

TABLE II
COMPREHENSIVE LIST OF CONSTRAINED SHORTEST PATH (CSP) AND MULTI-CONSTRAINED SHORTEST PATH (MCSP) ALGORITHMS, WHICH CAN BE

EMPLOYED FOR DELAY-CONSTRAINED LEAST-COST (DCLC) QOS ROUTING. THE ALGORITHMS ARE CATEGORIZED ACCORDING TO THE

UNDERLYING ALGORITHMIC STRATEGY INTO ALGORITHMS BASED ON PRIORITY QUEUES, BELLMAN-FORD, LAGRANGE RELAXATION,
AS WELL AS LEAST-COST (LC) AND LEAST-DELAY (LD) PATHS. FOR EACH ALGORITHM, WE INDICATE THE TYPE(S), I.E., CSP OR MCSP

OR k PATH VERSIONS THEREOF, AS WELL AS OTHER KEY CHARACTERISTICS, INCLUDING OPTIMALITY PROPERTY AND THE ACCEPTED

PARAMETERS. WE INDICATE THE NUMBER OF UNDERLYING ALGORITHM RUNS, E.G., ITERATIVE KSP (IKSP) AND STATIC KSP (SKSP)
ALGORITHMS (SEE SECTION II-B FOR DEFINITIONS). WHEN THE EXACT NUMBER OF RUNS DEPENDS ON THE SPECIFIC SCENARIO,

THE POSSIBLE NUMBERS OF RUNS ARE INDICATED THROUGH A COMMA-SEPARATED LIST OR A RANGE (WITH THE

ARROW (→) SYMBOL) WITHIN PARENTHESES. UNBOUNDED NUMBERS OF RUNS ARE INDICATED WITH THE

GREATER OR EQUAL (≥) SIGN. WE NOTE THAT AN ALGORITHM USING A SKSP ALGORITHM

CAN BE IMPLEMENTED WITH AN IKSP ALGORITHM

observed that FB exhibited, as expected, exactly the same CI
behavior as LDP; except when the LC path is feasible, then
the LC path returned by FB (after one SP run) is optimal.
When the LC path is infeasible, then FB returns the LD path
(which is rarely optimal) at a total cost of two SP runs.

2) Priority Queue Based Algorithms: The benchmark for
the highest acceptable runtime ratio is given by CBF, an
optimal algorithm based on a priority queue (Section III-B)
(Fig. 9b). CBF was the fastest optimal algorithm. Since CBF
terminates when the paths it expands have delays higher than
the constraint, it terminates earlier for tighter constraints and
its runtime therefore improves as the delay constraint gets
tighter. The CI of CBF is always zero since CBF is optimal.

3) Algorithms Based on Bellman-Ford: The Bellman-Ford
based DCBF algorithm (Fig. 9c) has a CI fingerprint with
slightly decreasing runtimes and increasing CI for increasingly
tight delay constraints. For tight delay constraints, the delay
test during the Bellman-Ford run fails more often and hence
allows Bellman-Ford to terminate earlier (as it stops when no
relaxation occurs in an iteration) and DCBF therefore gets
faster as the delay constraint gets tighter. In additional evalu-
ations we have observed that kDCBF (not included in Fig. 9)
has similar shapes, however which much lower CIs and longer
runtimes. For example, kDCBF-2, divides the CI by a fac-
tor of approximately two, but increases runtime by a similar
factor.

GUCK et al.: UNICAST QoS ROUTING ALGORITHMS FOR SDN: COMPREHENSIVE SURVEY AND PERFORMANCE EVALUATION 403

Fig. 9. Fingerprints for selected QoS routing algorithms. These graphs show, for the grid (GR) topology with m = n = 10, i.e., 10 × 10 switching nodes, the
runtime ratio (runtime of algorithm normalized by runtime of LD search, plotted in red on left) and cost inefficiency (in yellow on right) of the algorithms
for the seven different delay levels tf (delay constraint subranges, whereby loose delay constraints are on the left and tight delay constraints are on the right).
tPld and tPlc denote the delays of the LD and LC paths, respectively. Since the rightmost delay level corresponds to an infeasible problem (delay constraint
tf lower than the delay tPld of the LD path), no cost inefficiency value is shown and the runtime then corresponds to the time required to detect that the
problem is infeasible. While the cost inefficiency scale is the same for all the algorithms, the runtime scales have to differ because of the high variability
between the algorithms. The lower and upper whiskers of the boxplots, respectively, correspond to the 0.5% and 99.5% percentiles.

404 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

4) Algorithms Based on Lagrange Relaxation: Similar to
FB, LARAC (Fig. 9d) can find the optimal solution with one
LC search when the LC path is feasible. Fig. 9d (for the
left-most, i.e., loosest delay constraint level tf) shows that this
run is roughly two times faster than an LD search. This is
due to the fact that the delay and cost values have ranges of
different absolute sizes and the guess function of A* is better
for the costs because the costs have a smaller range size than
the delay values, i.e., have a range size closer to the one of the
least-hop count used for the guess (which is zero). When the
problem is infeasible, LARAC notices the infeasibility with an
additional LD search. For intermediate delay levels, LARAC
requires a few additional SP runs, hence leading to slightly
higher runtimes. Nevertheless, these additional runs are worth
it as we can observe that the CI of LARAC stays then much
lower than 10% in most cases.

While LARACGC did not complete the evaluation within
a reasonable amount of time, LARACGC with δ = 25%
(Fig. 9e) did. As LARAC has a CI higher than 25% only for
the tightest feasible delay level, LARACGC-25 only behaves
differently than LARAC for this tightest feasible delay con-
straint. As expected, LARACGC-25 then brings the CI to less
than 25% but at a high runtime cost even for such a small
gap closing (as the CI of LARAC is at most 30%). This indi-
cates that the gap closing is expensive in terms of runtime and
probably not worth it. The high runtime is likely due to dense
queue-link topology structures of our evaluation networks and
confirms that algorithms based on an ikSP algorithm are not
efficient for dense network topologies.

We observe from Fig. 9f that kLARAC with k = 3 has
the same shape as LARAC, however with longer runtime
and lower CI. This is expected, since kLARAC runs an skSP
at each iteration, allowing to find lower cost paths but with
longer runtime. We nevertheless observe that this cost reduc-
tion comes with a much less pronounced runtime increase than
for LARACGC.

The fingerprint of H_MCOP (Fig. 9g) shows the differ-
ence in runtimes between SP searches and SP tree searches.
Indeed, for detecting an infeasible problem, H_MCOP first
computes a reverse SP tree. As can be seen, this has a
much longer runtime than the single LD search of LDP.
More precisely, the H_MCOP median runtime is only slightly
longer, but the 99.5% percentile of the runtime is much
higher than for LDP. This shows that comparing the run-
time of algorithms in terms of “Dijkstra runs” indepen-
dently of whether these are SP or SP tree runs, as done
in some papers, is not a valid metric. For all other cases,
H_MCOP requires an additional forward SP search. The
H_MCOP runtime for these delay levels is hence always sim-
ilar and slightly higher (by 0.5 since it is an LC search)
than for the infeasible delay level. In terms of CI, H_MCOP
interestingly presents a fingerprint of different shape than
LARAC, LARAGC-25, and kLARAC-3. While the different
LARAC versions have a U-shaped CI fingerprint, H_MCOP
reaches higher CIs for problems with tighter constraints
but improves again for the tightest feasible delay level. In
terms of absolute values, the CIs of H_MCOP are usu-
ally slightly worse than for the different LARAC versions,

except when the delay constraint is loose, where H_MCOP
and LARAC perform similarly. When using Chong’s algo-
rithm with k = 10 (Fig. 9h), we see that the runtime is
only slightly increased while the CI is substantially improved.
Indeed, kH_MCOP-10 reaches optimality in nearly 50% of the
cases.

In additional evaluations we found that NR_DCLC (which
is not shown in Fig. 9) has a similar, but slightly better, CI
fingerprint compared to H_MCOP; which is expected since
NR_DCLC uses H_MCP (i.e., H_MCOP) as underlying algo-
rithm. On the other hand, the NR_DCLC runtime is much
longer, except in the cases where the LC path is feasible or
where the problem is infeasible, in which cases NR_DCLC
uses SP runs to detect these situations. Within the feasible
delay levels, the runtime of NR_DCLC gets shorter as the
delay constraint gets tighter. Indeed, NR_DCLC starts with
an LD search and then improves on this path. When the
delay constraint gets tighter, the LD path is closer to the
optimal solution and NR_DCLC hence has less work to do.
Additional evaluations have shown that MH_MCOP (which
is not shown in Fig. 9) improves the CI of H_MCOP by a
factor of around two at the expense of a twofold runtime
increase. The H parameter can then be used to tweak the
CI/runtime trade-off. While the CI fingerprint of MH_MCOP
is similar to the one of H_MCOP, the MH_MCOP run-
time fingerprint exhibits a Gaussian bell curve shape. This
is due to the fact that MH_MCOP improves on the solution
of H_MCOP. Hence, the amount of work it has to perform
depends on the CI of H_MCOP, which is similar to a Gaussian
bell curve.

In additional evaluations we also found that DCCR-3
(which is not shown in Fig. 9) has a high CI (between 20%
and 45% in most cases). On the other hand, SSR+DCCR
(Fig. 9i and Fig. 9j) is interesting. Since SSR+DCCR improves
the LARAC solution or one of the intermediate LARAC
results, SSR+DCCR has a similar CI fingerprint as LARAC.
Interestingly, SSR+DCCR especially improves the solution of
LARAC when the delay constraint is tight but still feasible. We
observe that SSR+DCCR is, similar to LARACGC, closing the
gap of LARAC. Nevertheless, SSR+DCCR appears more pow-
erful than LARACGC for our dense network scenarios since
SSR+DCCR runtimes stay relatively low compared to those
of LARACGC-25. As expected, SSR+DCCR-2-5 reduces the
runtime compared to SSR+DCCR-4-10; whereas the CI is
not strongly affected. Hence, the tuning of the SSR+DCCR
parameters requires additional evaluations and is left for future
research.

5) Algorithms Based on the LC and LD Paths: The stud-
ies on this type of algorithms usually assume that the LD
and LC trees can be computed once and then reused for each
request, thereby leading to a low request provisioning time.
However, in our scenario, we assume that the delay and cost
of the edges can change inbetween requests and we therefore
have to recompute the tree for each request. DCUR, DCR, and
IAK always follow edges belonging to the LC and LD paths
towards other nodes. For our specific queue-link cost and delay
settings, which are identical for each physical edge, we have
observed that all these algorithms either follow the LC path

GUCK et al.: UNICAST QoS ROUTING ALGORITHMS FOR SDN: COMPREHENSIVE SURVEY AND PERFORMANCE EVALUATION 405

Fig. 10. Heatmaps showing the behaviors of selected QoS routing algorithms for different topologies and scalability levels. For a given algorithm, the four
upper heatmaps show the cost inefficiency (CI) for the four different topologies, and the four lower heatmaps show the runtime ratio. A given heatmap shows
the CI or runtime ratio as a function of the scale parameters n = 4, 5, . . . , 13, and m = 4, 5, . . . , 13, i.e., for a total of 100 different scalability levels. Each
cell corresponds to the average results of 20,000 requests (with randomly drawn delay constraints from across the seven considered delay constraint levels
and corresponding subranges) simulated for this specific n and m combination. To prevent outliers from biasing the results, only values between the 1% and
99% percentiles are considered for computing the average. Unfortunately, because of the high variability between the algorithms, the scales are different for
each algorithm.

406 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

Fig. 10. Continued.

and then switch to the LD path until the end, or vice versa.
This results in the same cost and these four algorithms hence
present exactly the same CI behavior. Although this shows that
further study is required with different queue-link cost and

delay settings to specifically research the subtle differences
in the DCUR, DCR, and IAK dynamics, it also highlights
that features of algorithms do not always bring some ben-
efit. Indeed, while DCR and IAK only switch once between

GUCK et al.: UNICAST QoS ROUTING ALGORITHMS FOR SDN: COMPREHENSIVE SURVEY AND PERFORMANCE EVALUATION 407

following the LC and LD paths towards the destination, DCUR
can switch any number of times. Since DCUR executes several
SP tree runs, it is slower than IAK and DCR which only run
one SP search and one SP tree search. However, these extra
computations appear to be useless in our scenario. Because the
SP tree search is the most expensive search and because DCR
runs an LC SP tree search which enjoys a better guess function
than an LD SP tree search, DCR is on average slightly faster
than IAK. We show therefore only DCR in Fig. 9k. The fin-
gerprint of DCR again shows the difference between SP and
SP tree runs. While DCR detects an infeasible problem fast
with an LD SP search, the following LC SP search for the
other cases is much more time consuming, at least in the
worst-case.

The runtime ratio of SF-DCLC (Fig. 9l) corresponds to two
SP tree searches, except for the infeasible problem where one
is enough. As SF-DCLC has more options at each hop, it
achieves a better CI fingerprint than DCUR (which is the same
as DCR, as noted above), but still with a similar shape. More
precisely, on average, the DCUR CI is approximately twice
the SF-DCLC CI. Interestingly, we observe that SF-DCLC
and H_MCOP have very similar CI fingerprints, although they
are very different in terms of implementation. Examining the
output of the algorithms closely, we noticed that, for identi-
cal requests, they always returned paths with identical costs.
In particular, we observed that SF-DCLC and H_MCOP both
prefer one path over the other either based on the cost or on
the delay metric depending on whether these paths are feasi-
ble or not. Even though SF-DCLC proceeds node by node and
H_MCOP within an SP search, both algorithms find typically
the same paths (i.e., they nearly always find identical paths
and in the rare cases where the paths are different, the paths
have identical costs), at least for our specific delay and cost
distributions.

6) Summary: In general, it is interesting to note that most
algorithms exhibit a higher variability of the CIs when the
delay constraint is tight (but still feasible). This can be
explained by the fact that there are relatively few possible
paths. Hence, if the best one is not chosen, the cost can quickly
increase. Interestingly, Chong’s algorithm [186] appears to be
a good tool to resolve this issue, as has been demonstrated by
kH_MCOP, and SSR+DCCR. In additional evaluations (not
included in Fig. 9), we found that DCCR and kDCBF also
show this behavior.

B. Heatmaps: Impact of Network Topology and Scale

In order to observe the behaviors of the algorithms for
the different topologies and scalability levels, we collapse the
fourth dimension (delay constraint tightness) of our evaluation
framework by retaining only the average runtime ratio and
CI over all delay constraint levels.4 This yields the heatmaps
shown in Fig. 10. Specifically, each cell of each sub-figure
in Fig. 10 corresponds to a fingerprint plot, whereby the fin-
gerprint plots for the grid (GR) topology with n = m = 10

4For both the runtime ratio and the CI, only values between the 1% and
99% percentiles were considered for the computation of the average.

Fig. 11. Box plots of the average cost inefficiencies (as computed from the
heatmaps of Fig. 10) of the different algorithms shown in Fig. 10 over the
different topologies and scalability levels.

Fig. 12. Box plots of the average runtime ratios (as computed from the
heatmaps of Fig. 10) of the different algorithms shown in Fig. 10 over the
different topologies and scalability levels.

have been shown in Fig. 9, the other fingerprints are avail-
able at [31]. While observing the scalability of the different
algorithms with these heatmaps, the reader should pay atten-
tion that the scalability of the algorithms is compared to an
LD search. That is, if an algorithm presents the same runtime
ratio for all the scalability levels of a topology, that does not
mean that its runtime is always the same but rather that the
considered algorithm has similar scaling behavior as an LD
search.

Due to the vastly different cost inefficiencies (CIs) and run-
time ratios of the different algorithms, Fig. 10 has different
scales for the different algorithms. In order to facilitate com-
parisons, Figs. 11 and 12 show boxplots of the values of
the heatmaps of the different algorithms from Fig. 10 on a
common scale.

408 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

1) Elementary Algorithms (LDP as Runtime Benchmark):
The lower four plots for the LDP runtime, see Fig. 10a, con-
firm that our runtime metric has, on average, an inaccuracy
of less than 6%. These inaccuracies are mainly due to mea-
surements errors and side-effects from the operating system
and Java. This indicates that our LDP based runtime metric
provides a valid runtime reference benchmark across the three
evaluation dimensions of topologies and scale parameters m
and n.

2) Priority Queue Based Algorithms: The heatmaps of CBF
(Fig. 10b) illustrate the limitation of CBR: the CBF runtime
grows exponentially with the size of the network, which is
consistent with the observations in [194].

3) Algorithms Based on Bellman-Ford: The DCBF CI
(Fig. 10c) is only slightly affected by the size of the topology.
Interestingly, the DCBF CI is much better, i.e., lower by a
factor of two, in the GR topology compared to the other three
considered topologies. These DCBF results can be intuitively
explained with the DCBF sub-optimality behavior of “relaxing
too much”, see Section III-C. The DCBF sub-optimality sce-
nario occurs more frequently when paths have to share nodes,
because only one path is kept at each node. The grid topology
has a lot of diversity (dense graph), thus DCBF sub-optimality
arises only rarely. In the other topologies, paths frequently
share nodes (because of the branches in the topologies), which
leads to frequent DCBF sub-optimality scenarios and therefore
to a higher CI.

In additional evaluations that are not included in Fig. 10,
we observed that DEB has a high CI (between 12% and 35%
on average). The high DEB CI is due to the fact that DEB
tries to reduce the CI by checking paths of different hop
counts. Nevertheless, in our queue-link topologies, we have
many paths of identical length and the CI can be dramatically
changed simply by choosing different queues at each hop and
hence without changing the path length.

4) Algorithms Based on Lagrange Relaxation: As already
observed for the fingerprints, we observe that the runtime
increase of LARACGC-25 (Fig. 10e) compared to LARAC
(Fig. 10d) is not worth the slight CI reduction achieved with
LARACGC-25. The runtime increase we observe here is not
substantial since it only happens for one of the seven delay
levels (as observed in the fingerprints, see Section V-A).
Interestingly, while LARAC and LARACGC-25 behave bet-
ter, in terms of CI, for the GR topology, kLARAC-3 (Fig. 10f)
behaves better for the TRB topology. Fig. 10d, Fig. 10e, and
Fig. 10f indicate an interesting property of LARAC algo-
rithms: in terms of runtime, they scale better than an LD
search, but only in the m scale direction; the n scale dimension
affects them as it affects an LD search. In additional evalua-
tions we observed that different MD parameters for LARAC
do not affect the LARAC scalability behavior, but only change
the absolute values [31].

The H_MCOP runtime (Fig. 10g) scales worse than an LD
search in both directions (m and n) for the ORB and TRB
topologies. On the other hand, the H_MCOP runtime exhibits
much better scaling behavior for the two other topologies
(TRR and GR). While H_MCOP reaches low CI for small
topologies, we observe that the H_MCOP CI grows quickly for

Fig. 13. Absolute runtime [ms] of an LD search (each cell is an average over
the different delay levels, analogous to Fig. 10) for the different topologies
and scalability levels. The runtime was measured on an Intel Core i7-3770 @
3.40GHz.

larger topologies. Fig. 10h shows that using Chong et al. [186]
with H_MCOP does not change its scalability. Indeed, while
kH_MCOP-10 is then able to reach optimality for small
topologies, its CI grows quickly as the topology sizes increase.
Nevertheless, this dramatic CI reduction only leads to a slight
increase in runtime (by roughly 1 unit). In additional eval-
uations, MH_MCOP exhibited an identical scaling behavior,
though still improving the CI by a factor of around two at the
expense of approximately doubling the runtime.

SSR+DCCR (Fig. 10i and 10j), scales similarly to the
underlying LARAC algorithm.

5) Algorithms Based on the LC and LD Paths: DCR
(Fig. 10k) and SF-DCLC (Fig. 10l) present a similar scaling
behavior, in terms of runtime, as H_MCOP. Thus, the simi-
lar H_MCOP, DCR, and SF-DCLC runtime scaling behaviors
appear to indicate the scaling behavior of an SP tree search
compared to an SP search. DCR, and hence DCUR, and IAK,
exhibit the interesting behavior that their CI improves as the
topology scales up. This is unfortunately not true for the run-
times of DCR, DCUR, and IAK. These are the only algorithms
showing this behavior. SF-DCLC and H_MCOP show the
exact same cost (CI) behavior, hence confirming our obser-
vation that they actually always return equal cost paths (see
Section V-A5).

6) General Impact of Topology: We conclude the discus-
sion of the heatmaps in Fig. 10 by briefly summarizing the
general impact of the type of topology. We observe from
Fig. 10 that most algorithms have a better CI for the GR topol-
ogy than the other three topologies, except DCR (and DCUR
and IAK) whose CI behavior is opposite to all the others. This
observation appears to indicate that switching between LC and
LD paths brings improvements for large topologies.

Another common observation is that all algorithms have
generally shorter runtime for the TRR topology than the TRB
topology. The only difference between the TRB and TRR
topologies is the set of communicating nodes. Nevertheless,
we observe that this small difference has a major impact on
the runtime of most algorithms (though similar in that they
get faster in TRR).

C. Absolute Runtime in Practice

While the runtime ratio facilitates the relative comparison
of the algorithms in different setups, the absolute runtime
is also a relevant metric for networking practice. Fig. 13
shows heatmaps of the absolute runtimes (averaged over the
delay constraints considered for Fig. 10) of an LD search for

GUCK et al.: UNICAST QoS ROUTING ALGORITHMS FOR SDN: COMPREHENSIVE SURVEY AND PERFORMANCE EVALUATION 409

the different topologies and scalability levels. The runtime
measurements were performed on an Intel Core i7-3770 @
3.40 GHz. Fig. 13 indicates that the runtimes for LD search
scale worse in the TRR and GR topologies than in the ORB
and TRB topologies. As the LD search runtimes are mainly on
the order of milliseconds, most algorithms of Figs. 9 and 10
have average absolute runtimes on the order of tens of mil-
liseconds. On the other hand, CBF can reach average runtimes
of up to 500 ms, which justifies the need for faster algorithms.

D. Which Algorithm Is Best?

After analyzing the behaviors of all the algorithms, we are
in a position to address the question: which algorithm is the
best? From our observations, the answer is: it depends. Indeed,
none of the algorithms is better than all others in terms of both
runtime and CI for all topologies, scalability levels, and delay
levels.

The first “it depends” consideration is in regard to the
relative importance of cost and runtime. While kLARAC,
kH_MCOP, and all optimal algorithms are good solutions if
the cost is the most important criterion, algorithms, such as
LDP, FB, or H_MCOP, should be preferred if a very short
runtime is critical. LARAC and SSR+DCCR are algorithms
that achieve relatively good performance for both the cost and
runtime performance metrics.

Secondly, the selection of the best QoS routing algorithm
depends on the specific region in the 4D evaluation space
where the algorithm is supposed to operate. Indeed, we have
seen that for small topologies and/or tight delay constraints,
CBF remains a very good candidate. As the topology grows,
algorithms with better scalability are needed. In terms of cost,
DCR, DCUR, and IAK are the only algorithms with decreasing
CI for large topologies and these algorithms are therefore good
choices for very large topologies. In terms of runtime, only
the different LARAC and SSR+DCCR variations scale better
than an LD search and are therefore also good candidates for
large topologies. Therefore, the only way of selecting the best
QoS routing algorithm for a given scenario is to consider the
evaluation for the specific planned usage scenario.

Nevertheless, we can identify LARAC and SSR+DCCR as
being among the best QoS routing algorithms at any point
of the 4D evaluation space. That is, for any topology, and
topology scale, and delay level, LARAC and SSR+DCCR are
among the best performing algorithms. Indeed, on average, for
the simulated topologies and network scales, both LARAC and
SSR+DCCR keep their runtime ratio lower than four and their
CI lower than 4%. While LARAC and SSR+DCCR scale well
in terms of runtime, their CI grows only slightly for large
topologies. Moreover, their behavior on the fourth dimension,
i.e., for the different delay levels, is quite stable. Last but not
least, both LARAC and SSR+DCCR accept several parameters
that allow to tailor them to specific usage scenarios.

VI. LESSONS LEARNED

Besides the results that directly followed from the evalu-
ations, this work allowed us to discover and learn anecdotal
facts that are interesting to mention.

We sometimes observed particularly good runtime behaviors
when not expected. It turned out that the optimizations done by
Java can have a strong impact on the runtime. For example,
when running an algorithm twice in a row, the second run
can be up to two times faster than the first run because of
the Java HotSpot optimizer. We also noticed that introducing
a sequence number for ordering equal elements in priority
queues (instead of having their order undefined) reduced the
runtime of the algorithms by a factor of up to two. We note
that this sequence number does not influence our comparison
since all algorithms benefited from this enhancement. While
we could not find the exact cause of this sequence number
effect, we suspect that the sequence numbering facilitates Java
optimizations.

We noticed that the pseudo-code of CBF [194], which is
the optimal algorithm referenced by many studies in the field,
includes an unnecessary iteration. Indeed, the commonly refer-
enced CBF pseudo-code stores a list of paths at the destination
and terminates when the last expanded path has a delay higher
than the deadline. If this last path (which is, by definition,
infeasible) actually reaches the destination and has a lower
cost than the current best path at the destination (which hap-
pens rarely, typically once in 1000 runs), it will be stored in
the list of paths at the destination. The algorithm then solves
this issue of having an infeasible path in the list by saying
“to find a constrained path, take the first path in the list that
meets the constraint” [194]. It is actually possible to avoid to
check if the paths in the list are feasible by terminating the
algorithm before expanding the first path with a delay higher
than the deadline. In such a way, one iteration is avoided and
it is unnecessary to do a feasibility check on the final list.
We considered CBF without the unnecessary iteration in our
evaluation study.

Interestingly, one of the best algorithms, LARAC, is actu-
ally the oldest (initially proposed in 1978) of all the compared
algorithms. This shows that, even in modern research, old
approaches should not be ignored during literature research.
Curiously, the LARAC algorithm has been proposed four
times in (nearly) identical forms. The authors of the orig-
inal LARAC proposal [200] later proposed another algo-
rithm which is based on an implicit enumeration of all
possible paths [192]. This later proposed approach [192]
is computationally much more demanding than their origi-
nal proposal [200], especially for dense topologies, such as
queue-link structures. They actually made this second pro-
posal when they noticed that their initial proposal was not
optimal (because of the duality gap). We have seen that their
initial proposal is quite close to optimality. This illustrates
that hunting for optimality does not always result in better
algorithms and that consistent extensive benchmark evalua-
tions are required to assess the performance of QoS routing
algorithms.

VII. CONCLUSION

Many communication networks and applications have strin-
gent Quality of Service (QoS) requirements, including indus-
trial communication networks and multimedia applications.

410 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

For instance, industrial communication networks carry criti-
cal messages which have strict end-to-end delay requirements.
Similarly, many multimedia applications require timely packet
arrivals in order to continue media playback. QoS routing
algorithms that support the finding of paths that meet delay
constraints while minimizing a cost metric, i.e., so-called
delay-constrained least-cost (DCLC) routing algorithms, can
greatly help networks in meeting QoS requirements. Due to
the distributed control in Internet Protocol (IP) networking,
routing research for communication networks has generally
focused on distributed computation in the past. The central-
ized control in Software-Defined Networking (SDN) presents
a fundamental paradigm shift in the control of communication
networks—including the control of routing—towards central-
ized control mechanisms. In order to facilitate the selection and
further development of QoS routing algorithms for SDN based
networks, this article provided a comprehensive up-to-date sur-
vey of QoS routing algorithms, including their quantitative per-
formance characteristics, from the perspective of centralized
computation.

More specifically, this survey article first presented a com-
prehensive review of the state-of-the-art in unicast QoS DCLC
routing algorithms and identified algorithms suitable for a wide
range of centralized network scenarios, including demanding
dense and large network topologies. We introduced a novel
four-dimensional (4D) evaluation framework for QoS routing
algorithms, which includes the type of topology (including
the sets of communicating nodes), the scale (size) of the net-
work, and the tightness of the delay constraint. We evaluated
all identified unicast QoS routing algorithms with centralized
computations within this 4D evaluation framework.

We observed that the performance of the different algo-
rithms is highly dependent on the specific scenario and that
there is no one universal best QoS routing algorithm for
all scenarios. Indeed, all algorithms have different behaviors
depending on the considered region of the 4D evaluation space.
Therefore, the selection of the best algorithm depends on the
considered evaluation space region. Hence, in order to select
the most appropriate algorithm for a given scenario, a spe-
cific evaluation is required. Nevertheless, we observed some
general trends. First, algorithms using an iterative k shortest
path (ikSP) algorithm to reach optimality or a given optimal-
ity level, have a very long runtime. Algorithms making use of
shortest path tree (SP tree) computations have much shorter
runtimes, but are outperformed by algorithms that use only the
results of single-source single-destination shortest path (SP)
runs. That is, evaluating the runtime of an algorithm in terms of
number of Dijkstra SP tree runs is not a valid runtime metric,
as the runtime of an SP tree Dijkstra run can be much longer
than the runtime of an SP Dijkstra run. Second, we identify
two algorithms, LARAC and SSR+DCCR, that achieved rela-
tively good performance in most of the 4D evaluation space.
Moreover, these two algorithms accept parameters that allow
to tweak their behavior to a specific usage scenario.

Although we included the most critical dimensions in our
evaluation framework, other dimensions can be considered in
future work. For instance, a varying number of multiple con-
straints could be an additional evaluation dimension. Another

future work direction could be to survey and evaluate multicast
and multipath QoS routing algorithms. Furthermore, future
work could examine the surveyed QoS routing algorithms in
the context of frameworks that seek to reduce the complexity
of SDN routing, e.g., [239]–[242].

ACKNOWLEDGMENT

The authors would like to thank Péter Babarczi,
Andreas Blenk, Mu He, Qian Liu, Petra Stojsavljevic,
Lionel Van Bemten, and Samuele Zoppi for their useful
feedback and comments.

REFERENCES

[1] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of indus-
trial communication: Automation networks in the era of the Internet
of Things and industry 4.0,” IEEE Ind. Electron. Mag., vol. 11, no. 1,
pp. 17–27, Mar. 2017.

[2] V. C. Gungor et al., “A survey on smart grid potential applications
and communication requirements,” IEEE Trans. Ind. Informat., vol. 9,
no. 1, pp. 28–42, Feb. 2013.

[3] B. W. Carabelli, R. Blind, F. Dürr, and K. Rothermel, “State-dependent
priority scheduling for networked control systems,” in Proc. Amer.
Control Conf. (ACC), Seattle, WA, USA, May 2017, pp. 1003–1010.

[4] A. Blenk, A. Basta, J. Zerwas, M. Reisslein, and W. Kellerer, “Control
plane latency with SDN network hypervisors: The cost of virtualiza-
tion,” IEEE Trans. Netw. Service Manag., vol. 13, no. 3, pp. 366–380,
Sep. 2016.

[5] M. Karakus and A. Durresi, “A survey: Control plane scalability
issues and approaches in software-defined networking (SDN),” Comput.
Netw., vol. 112, pp. 279–293, Jan. 2017.

[6] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach Featuring the Internet, 7th ed. Boston, MA, USA: Pearson,
2017.

[7] D. B. Rawat and S. R. Reddy, “Software defined networking architec-
ture, security and energy efficiency: A survey,” IEEE Commun. Surveys
Tuts., vol. 19, no. 1, pp. 325–346, 1st Quart., 2017.

[8] S. Sezer et al., “Are we ready for SDN? Implementation challenges
for software-defined networks,” IEEE Commun. Mag., vol. 51, no. 7,
pp. 36–43, Jul. 2013.

[9] J. Jaffe and F. Moss, “A responsive distributed routing algorithm
for computer networks,” IEEE Trans. Commun., vol. 30, no. 7,
pp. 1758–1762, Jul. 1982.

[10] R. Gallager, “A minimum delay routing algorithm using distributed
computation,” IEEE Trans. Commun., vol. 25, no. 1, pp. 73–85,
Jan. 1977.

[11] J. McQuillan, I. Richer, and E. Rosen, “The new routing algorithm for
the ARPANET,” IEEE Trans. Commun., vol. 28, no. 5, pp. 711–719,
May 1980.

[12] S. Chen and K. Nahrstedt, “Distributed quality-of-service routing in
ad hoc networks,” IEEE J. Sel. Areas Commun., vol. 17, no. 8,
pp. 1488–1505, Aug. 1999.

[13] M. S. Corson and A. Ephremides, “A distributed routing algorithm for
mobile wireless networks,” Wireless Netw., vol. 1, no. 1, pp. 61–81,
Mar. 1995.

[14] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc
wireless networks,” in Mobile Computing. Boston, MA, USA: Kluwer
Acad., 1996, pp. 153–181.

[15] V. D. Park and M. S. Corson, “A highly adaptive distributed routing
algorithm for mobile wireless networks,” in Proc. IEEE INFOCOM,
vol. 3. Kobe, Japan, 1997, pp. 1405–1413.

[16] R. Sivakumar, P. Sinha, and V. Bharghavan, “CEDAR: A core-
extraction distributed ad hoc routing algorithm,” IEEE J. Sel. Areas
Commun., vol. 17, no. 8, pp. 1454–1465, Aug. 1999.

[17] R. Braden, D. Clark, and S. Shenker, “Integrated services in
the Internet architecture: An overview,” Internet Eng. Task Force,
Fremont, CA, USA, RFC 1633, Jun. 1994. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc1633.txt

[18] D. D. Clark, S. Shenker, and L. Zhang, “Supporting real-time appli-
cations in an integrated services packet network: Architecture and
mechanism,” ACM SIGCOMM Comput. Commun. Rev., vol. 22, no. 4,
pp. 14–26, Oct. 1992.

http://www.rfc-editor.org/rfc/rfc1633.txt

GUCK et al.: UNICAST QoS ROUTING ALGORITHMS FOR SDN: COMPREHENSIVE SURVEY AND PERFORMANCE EVALUATION 411

[19] M. A. El-Gendy, A. Bose, and K. G. Shin, “Evolution of the Internet
QoS and support for soft real-time applications,” Proc. IEEE, vol. 91,
no. 7, pp. 1086–1104, Jul. 2003.

[20] J. Wroclawski, “The use of RSVP with IETF integrated services,”
Internet Eng. Task Force, Fremont, CA, USA, RFC 2210, Sep. 1997.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc2210.txt

[21] X. Xiao and L. M. Ni, “Internet QoS: A big picture,” IEEE Netw.,
vol. 13, no. 2, pp. 8–18, Mar./Apr. 1999.

[22] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting
multimedia applications,” IEEE J. Sel. Areas Commun., vol. 14, no. 7,
pp. 1228–1234, Sep. 1996.

[23] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: An intel-
lectual history of programmable networks,” ACM SIGCOMM Comput.
Commun. Rev., vol. 44, no. 2, pp. 87–98, Apr. 2014.

[24] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and
W. Kellerer, “Interfaces, attributes, and use cases: A compass
for SDN,” IEEE Commun. Mag., vol. 52, no. 6, pp. 210–217,
Jun. 2014.

[25] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering
in software defined networks,” in Proc. IEEE INFOCOM, Turin, Italy,
2013, pp. 2211–2219.

[26] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap
for traffic engineering in SDN-OpenFlow networks,” Comput. Netw.,
vol. 71, pp. 1–30, Oct. 2014.

[27] I. Bueno, J. I. Aznar, E. Escalona, J. Ferrer, and J. A. Garcia-Espin, “An
OpenNaaS based SDN framework for dynamic QoS control,” in Proc.
IEEE SDN Future Netw. Services (SDN4FNS), Trento, Italy, 2013,
pp. 1–7.

[28] V. Kotronis, X. Dimitropoulos, and B. Ager, “Outsourcing the rout-
ing control logic: Better Internet routing based on SDN principles,” in
Proc. ACM Workshop Hot Topics Netw., Redmond, WA, USA, 2012,
pp. 55–60.

[29] C. E. Rothenberg et al., “Revisiting routing control platforms with
the eyes and muscles of software-defined networking,” in Proc. ACM
Workshop Hot Topics Softw. Defined Netw., Helsinki, Finland, 2012,
pp. 13–18.

[30] H. Zhang and J. Yan, “Performance of SDN routing in compari-
son with legacy routing protocols,” in Proc. IEEE Int. Conf. Cyber
Enabled Distrib. Comput. Knowl. Disc. (CyberC), Xi’an, China, 2015,
pp. 491–494.

[31] The League of Routing Algorithms. Accessed: Sep. 15, 2017. [Online].
Available: http://www.lkn.ei.tum.de/lora

[32] M. Ramalho, “Intra-and inter-domain multicast routing protocols:
A survey and taxonomy,” IEEE Commun. Surveys Tuts., vol. 3, no. 1,
pp. 2–25, 1st Quart., 2000.

[33] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas,
“A survey of application-layer multicast protocols,” IEEE Commun.
Surveys Tuts., vol. 9, no. 3, pp. 58–74, 3rd Quart., 2007.

[34] B. Wang and J. C. Hou, “Multicast routing and its QoS extension:
Problems, algorithms, and protocols,” IEEE Netw., vol. 14, no. 1,
pp. 22–36, Jan./Feb. 2000.

[35] C. Maihofer, “A survey of geocast routing protocols,” IEEE Commun.
Surveys Tuts., vol. 6, no. 2, pp. 32–42, 2nd Quart., 2004.

[36] S. K. Singh, T. Das, and A. Jukan, “A survey on Internet multipath
routing and provisioning,” IEEE Commun. Surveys Tuts., vol. 17, no. 4,
pp. 2157–2175, 4th Quart., 2015.

[37] N. Chakchouk, “A survey on opportunistic routing in wireless com-
munication networks,” IEEE Commun. Surveys Tuts., vol. 17, no. 4,
pp. 2214–2241, 4th Quart., 2015.

[38] D. Chen and P. K. Varshney, “A survey of void handling techniques
for geographic routing in wireless networks,” IEEE Commun. Surveys
Tuts., vol. 9, no. 1, pp. 50–67, 1st Quart., 2007.

[39] F. Mansourkiaie and M. H. Ahmed, “Cooperative routing in wireless
networks: A comprehensive survey,” IEEE Commun. Surveys Tuts.,
vol. 17, no. 2, pp. 604–626, 2nd Quart., 2015.

[40] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks:
A survey,” Comput. Netw., vol. 47, no. 4, pp. 445–487, Mar. 2005.

[41] J. Tang, G. Xue, and W. Zhang, “Interference-aware topology control
and QoS routing in multi-channel wireless mesh networks,” in Proc.
ACM Int. Symp. Mobile Ad Hoc Netw. Comput., Urbana, IL, USA,
2005, pp. 68–77.

[42] Y. Tsado et al., “Improving the reliability of optimised link state routing
in a smart grid neighbour area network based wireless mesh network
using multiple metrics,” Energies, vol. 10, no. 3, pp. 1–23, 2017.

[43] J. Agarkhed, P. Y. Dattatraya, and S. R. Patil, “Performance evaluation
of QoS-aware routing protocols in wireless sensor networks,” in Proc.
Int. Conf. Comput. Intell. Informat., 2017, pp. 559–569.

[44] K. Akkaya and M. Younis, “A survey on routing protocols for wireless
sensor networks,” Ad Hoc Netw., vol. 3, no. 3, pp. 325–349, May 2005.

[45] M. Z. Hasan, F. Al-Turjman, and H. Al-Rizzo, “Optimized
multi-constrained quality-of-service multipath routing approach for
multimedia sensor networks,” IEEE Sensors J., vol. 17, no. 7,
pp. 2298–2309, Apr. 2017.

[46] J. Ben-Othman and B. Yahya, “Energy efficient and QoS based routing
protocol for wireless sensor networks,” J. Parallel Distrib. Comput.,
vol. 70, no. 8, pp. 849–857, Aug. 2010.

[47] S. Ehsan and B. Hamdaoui, “A survey on energy-efficient routing tech-
niques with QoS assurances for wireless multimedia sensor networks,”
IEEE Commun. Surveys Tuts., vol. 14, no. 2, pp. 265–278, 2nd Quart.,
2012.

[48] S. M. Ghoreyshi, A. Shahrabi, and T. Boutaleb, “Void-handling tech-
niques for routing protocols in underwater sensor networks: Survey and
challenges,” IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 800–827,
2nd Quart., 2017.

[49] D. Goyal and M. R. Tripathy, “Routing protocols in wireless sensor
networks: A survey,” in Proc. IEEE Int. Conf. Adv. Comput. Commun.
Technol., Rohtak, India, 2012, pp. 474–480.

[50] M. Z. Hasan, H. Al-Rizzo, and F. Al-Turjman, “A survey on multipath
routing protocols for QoS assurances in real-time wireless multime-
dia sensor networks,” IEEE Commun. Surveys Tuts., vol. 19, no. 3,
pp. 1424–1456, 3rd Quart., 2017.

[51] A. A. Kumar S., K. Ovsthus, and L. M. Kristensen, “An industrial
perspective on wireless sensor networks—A survey of requirements,
protocols, and challenges,” IEEE Commun. Surveys Tuts., vol. 16, no. 3,
pp. 1391–1412, 3rd Quart., 2014.

[52] N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados, “Energy-
efficient routing protocols in wireless sensor networks: A survey,” IEEE
Commun. Surveys Tuts., vol. 15, no. 2, pp. 551–591, 2nd Quart., 2013.

[53] M. Radi, B. Dezfouli, K. A. Bakar, and M. Lee, “Multipath routing
in wireless sensor networks: Survey and research challenges,” Sensors,
vol. 12, no. 1, pp. 650–685, 2012.

[54] M. Saleem, G. A. Di Caro, and M. Farooq, “Swarm intelligence
based routing protocol for wireless sensor networks: Survey and future
directions,” Inf. Sci., vol. 181, no. 20, pp. 4597–4624, Oct. 2011.

[55] R. Sumathi and M. G. Srinivas, “A survey of QoS based routing proto-
cols for wireless sensor networks,” J. Inf. Process. Syst., vol. 8, no. 4,
pp. 589–602, 2012.

[56] C. Tunca, S. Isik, M. Y. Donmez, and C. Ersoy, “Distributed mobile
sink routing for wireless sensor networks: A survey,” IEEE Commun.
Surveys Tuts., vol. 16, no. 2, pp. 877–897, 2nd Quart., 2014.

[57] R. A. Uthra and S. V. K. Raja, “QoS routing in wireless sensor
networks—A survey,” ACM Comput. Surveys, vol. 45, no. 1, pp. 1–12,
Nov. 2012.

[58] Q. Wang and J. Jiang, “Comparative examination on architecture
and protocol of industrial wireless sensor network standards,” IEEE
Commun. Surveys Tuts., vol. 18, no. 3, pp. 2197–2219, 3rd Quart.,
2016.

[59] T. Watteyne, A. Molinaro, M. G. Richichi, and M. Dohler, “From
MANET to IETF ROLL standardization: A paradigm shift in WSN
routing protocols,” IEEE Commun. Surveys Tuts., vol. 13, no. 4,
pp. 688–707, 4th Quart., 2011.

[60] A. Boukerche et al., “Routing protocols in ad hoc networks: A survey,”
Comput. Netw., vol. 55, no. 13, pp. 3032–3080, Sep. 2011.

[61] F. Cadger, K. Curran, J. Santos, and S. Moffett, “A survey of geographi-
cal routing in wireless ad-hoc networks,” IEEE Commun. Surveys Tuts.,
vol. 15, no. 2, pp. 621–653, 2nd Quart., 2013.

[62] H. Cheng and J. Cao, “A design framework and taxonomy for hybrid
routing protocols in mobile ad hoc networks,” IEEE Commun. Surveys
Tuts., vol. 10, no. 3, pp. 62–73, 3rd Quart., 2008.

[63] J. Zuo, C. Dong, S. X. Ng, L.-L. Yang, and L. Hanzo, “Cross-
layer aided energy-efficient routing design for ad hoc networks,” IEEE
Commun. Surveys Tuts., vol. 17, no. 3, pp. 1214–1238, 3rd Quart.,
2015.

[64] L. Abusalah, A. Khokhar, and M. Guizani, “A survey of secure mobile
ad hoc routing protocols,” IEEE Commun. Surveys Tuts., vol. 10, no. 4,
pp. 78–93, 4th Quart., 2008.

[65] P. G. Argyroudis and D. O’Mahony, “Secure routing for mobile ad
hoc networks,” IEEE Commun. Surveys Tuts., vol. 7, no. 3, pp. 2–21,
3rd Quart., 2005.

[66] T. R. Andel and A. Yasinsac, “Surveying security analysis techniques
in MANET routing protocols,” IEEE Commun. Surveys Tuts., vol. 9,
no. 4, pp. 70–84, 4th Quart., 2007.

http://www.rfc-editor.org/rfc/rfc2210.txt
http://www.lkn.ei.tum.de/lora

412 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

[67] L. Chen and W. B. Heinzelman, “A survey of routing protocols that
support QoS in mobile ad hoc networks,” IEEE Netw., vol. 21, no. 6,
pp. 30–38, Nov./Dec. 2007.

[68] L. Hanzo and R. Tafazolli, “A survey of QoS routing solutions for
mobile ad hoc networks,” IEEE Commun. Surveys Tuts., vol. 9, no. 2,
pp. 50–70, 2nd Quart., 2007.

[69] L. Junhai, Y. Danxia, X. Liu, and F. Mingyu, “A survey of multicast
routing protocols for mobile ad-hoc networks,” IEEE Commun. Surveys
Tuts., vol. 11, no. 1, pp. 78–91, 1st Quart., 2009.

[70] D. N. Kanellopoulos, “QoS routing for multimedia communication over
wireless mobile ad hoc networks: A survey,” Int. J. Multimedia Data
Eng. Manag., vol. 8, no. 1, pp. 42–71, 2017.

[71] G. V. Kumar, Y. V. Reddyr, and M. Nagendra, “Current research work
on routing protocols for MANET: A literature survey,” Int. J. Comput.
Sci. Eng., vol. 2, no. 3, pp. 706–713, 2010.

[72] C. Liu and J. Kaiser, “A survey of mobile ad hoc network routing pro-
tocols,” Universität Ulm, Ulm, Germany, Tech. Rep., 2005. [Online].
Available: http://dx.doi.org/10.18725/OPARU-331

[73] G. A. Walikar and R. C. Biradar, “A survey on hybrid routing mech-
anisms in mobile ad hoc networks,” J. Netw. Comput. Appl., vol. 77,
pp. 48–63, Jan. 2017.

[74] Z. Zhang, “Routing in intermittently connected mobile ad hoc networks
and delay tolerant networks: Overview and challenges,” IEEE Commun.
Surveys Tuts., vol. 8, no. 1, pp. 24–37, 1st Quart., 2006.

[75] S. Bitam, A. Mellouk, and S. Zeadally, “Bio-inspired routing algo-
rithms survey for vehicular ad hoc networks,” IEEE Commun. Surveys
Tuts., vol. 17, no. 2, pp. 843–867, 2nd Quart., 2015.

[76] C. Cooper, D. Franklin, M. Ros, F. Safaei, and M. Abolhasan, “A com-
parative survey of VANET clustering techniques,” IEEE Commun.
Surveys Tuts., vol. 19, no. 1, pp. 657–681, 1st Quart., 2017.

[77] Y.-W. Lin, Y.-S. Chen, and S.-L. Lee, “Routing protocols in vehicular
ad hoc networks: A survey and future perspectives,” J. Inf. Sci. Eng.,
vol. 26, no. 3, pp. 913–932, 2010.

[78] A. Mchergui, T. Moulahi, B. Alaya, and S. Nasri, “A survey and
comparative study of QoS aware broadcasting techniques in VANET,”
Telecommun. Syst., vol. 66, no. 2, pp. 253–281, Oct. 2017.

[79] M. Youssef, M. Ibrahim, M. Abdelatif, L. Chen, and A. V. Vasilakos,
“Routing metrics of cognitive radio networks: A survey,” IEEE
Commun. Surveys Tuts., vol. 16, no. 1, pp. 92–109, 1st Quart., 2014.

[80] Y. Cao and Z. Sun, “Routing in delay/disruption tolerant networks:
A taxonomy, survey and challenges,” IEEE Commun. Surveys Tuts.,
vol. 15, no. 2, pp. 654–677, 2nd Quart., 2013.

[81] K. Wei, X. Liang, and K. Xu, “A survey of social-aware routing
protocols in delay tolerant networks: Applications, taxonomy and
design-related issues,” IEEE Commun. Surveys Tuts., vol. 16, no. 1,
pp. 556–578, 1st Quart., 2014.

[82] Y. Zhu, B. Xu, X. Shi, and Y. Wang, “A survey of social-based
routing in delay tolerant networks: Positive and negative social
effects,” IEEE Commun. Surveys Tuts., vol. 15, no. 1, pp. 387–401,
1st Quart., 2013.

[83] S. Batabyal and P. Bhaumik, “Mobility models, traces and impact
of mobility on opportunistic routing algorithms: A survey,” IEEE
Commun. Surveys Tuts., vol. 17, no. 3, pp. 1679–1707, 3rd Quart.,
2015.

[84] A. Z. M. Shahriar, M. Atiquzzaman, and W. Ivancic, “Route opti-
mization in network mobility: Solutions, classification, comparison, and
future research directions,” IEEE Commun. Surveys Tuts., vol. 12, no. 1,
pp. 24–38, 1st Quart., 2010.

[85] S. Azodolmolky et al., “A survey on physical layer impairments aware
routing and wavelength assignment algorithms in optical networks,”
Comput. Netw., vol. 53, no. 7, pp. 926–944, May 2009.

[86] N. Charbonneau and V. M. Vokkarane, “A survey of advance
reservation routing and wavelength assignment in wavelength-routed
WDM networks,” IEEE Commun. Surveys Tuts., vol. 14, no. 4,
pp. 1037–1064, 4th Quart., 2012.

[87] B. C. Chatterjee, N. Sarma, and E. Oki, “Routing and spectrum allo-
cation in elastic optical networks: A tutorial,” IEEE Commun. Surveys
Tuts., vol. 17, no. 3, pp. 1776–1800, 3rd Quart., 2015.

[88] P.-H. Ho, “State-of-the-art progress in developing survivable routing
schemes in mesh WDM networks,” IEEE Commun. Surveys Tuts.,
vol. 6, no. 4, pp. 2–16, 4th Quart., 2004.

[89] A. G. Rahbar, “Review of dynamic impairment-aware routing and
wavelength assignment techniques in all-optical wavelength-routed net-
works,” IEEE Commun. Surveys Tuts., vol. 14, no. 4, pp. 1065–1089,
4th Quart., 2012.

[90] C. V. Saradhi and S. Subramaniam, “Physical layer impairment aware
routing (PLIAR) in WDM optical networks: Issues and challenges,”
IEEE Commun. Surveys Tuts., vol. 11, no. 4, pp. 109–130, 4th Quart.,
2009.

[91] M. Hoefling, M. Menth, and M. Hartmann, “A survey of mapping
systems for locator/identifier split Internet routing,” IEEE Commun.
Surveys Tuts., vol. 15, no. 4, pp. 1842–1858, 4th Quart., 2013.

[92] D. Nace and M. Pioro, “Max-min fairness and its applications to rout-
ing and load-balancing in communication networks: A tutorial,” IEEE
Commun. Surveys Tuts., vol. 10, no. 4, pp. 5–17, 4th Quart., 2008.

[93] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview of
routing optimization for Internet traffic engineering,” IEEE Commun.
Surveys Tuts., vol. 10, no. 1, pp. 36–56, 1st Quart., 2008.

[94] J. L. Martins and S. Duarte, “Routing algorithms for content-based pub-
lish/subscribe systems,” IEEE Commun. Surveys Tuts., vol. 12, no. 1,
pp. 39–58, 1st Quart., 2010.

[95] F. Dabaghi, Z. Movahedi, and R. Langar, “A survey on green routing
protocols using sleep-scheduling in wired networks,” J. Netw. Comput.
Appl., vol. 77, pp. 106–122, Jan. 2017.

[96] X. Masip-Bruin et al., “Research challenges in QoS routing,” Comput.
Commun., vol. 29, no. 5, pp. 563–581, Mar. 2006.

[97] S. Upadhyaya and G. Dhingra, “Exploring issues for QoS based routing
algorithms,” Int. J. Comput. Sci. Eng., vol. 2, no. 5, pp. 1792–1795,
2010.

[98] S. Chen and K. Nahrstedt, “An overview of quality of service rout-
ing for next-generation high-speed networks: Problems and solutions,”
IEEE Netw., vol. 12, no. 6, pp. 64–79, Nov./Dec. 1998.

[99] M. Curado and E. Monteiro, “A survey of QoS routing algorithms,” in
Proc. Int. Conf. Inf. Technol. (ICIT), 2004, pp. 1–4.

[100] F. Kuipers, P. Van Mieghem, T. Korkmaz, and M. Krunz, “An overview
of constraint-based path selection algorithms for QoS routing,” IEEE
Commun. Mag., vol. 40, no. 12, pp. 50–55, Dec. 2002.

[101] J. L. Marzo, E. Calle, C. Scoglio, and T. Anjah, “QoS online rout-
ing and MPLS multilevel protection: A survey,” IEEE Commun. Mag.,
vol. 41, no. 10, pp. 126–132, Oct. 2003.

[102] P. Paul and S. V. Raghavan, “Survey of QoS routing,” in Proc. Int. Conf.
Comput. Commun. (ICCC), Mumbai, India, Aug. 2002, pp. 50–75.

[103] O. Younis and S. Fahmy, “Constraint-based routing in the Internet:
Basic principles and recent research,” IEEE Commun. Surveys Tuts.,
vol. 5, no. 1, pp. 2–13, 3rd Quart., 2003.

[104] R. G. Garroppo, S. Giordano, and L. Tavanti, “A survey on
multi-constrained optimal path computation: Exact and approximate
algorithms,” Comput. Netw., vol. 54, no. 17, pp. 3081–3107, Dec. 2010.

[105] S. Uludag, K.-S. Lui, K. Nahrstedt, and G. Brewster, “Analysis of topol-
ogy aggregation techniques for QoS routing,” ACM Comput. Surveys,
vol. 39, no. 3, pp. 1–31, 2007.

[106] X. Zhang and C. Phillips, “A survey on selective routing topology infer-
ence through active probing,” IEEE Commun. Surveys Tuts., vol. 14,
no. 4, pp. 1129–1141, 4th Quart., 2012.

[107] D. Adami, L. Donatini, S. Giordano, and M. Pagano, “A network con-
trol application enabling software-defined quality of service,” in Proc.
IEEE Int. Conf. Commun. (ICC), London, U.K., 2015, pp. 6074–6079.

[108] M. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “PolicyCop:
An autonomic QoS policy enforcement framework for software defined
networks,” in Proc. IEEE SDN Future Netw. Services, Trento, Italy,
2013, pp. 1–7.

[109] B. Briscoe et al., “Reducing Internet latency: A survey of tech-
niques and their merits,” IEEE Commun. Surveys Tuts., vol. 18, no. 3,
pp. 2149–2196, 3rd Quart., 2016.

[110] C. Caba, A. Mimidis, and J. Soler, “Model-driven policy frame-
work for data centers (short paper),” in Proc. IEEE Int. Conf. Cloud
Netw. (Cloudnet), Pisa, Italy, 2016, pp. 126–129.

[111] Á. L. V. Caraguay, J. A. P. Fernández, and L. J. G. Villalba,
“Framework for optimized multimedia routing over software defined
networks,” Comput. Netw., vol. 92, pp. 369–379, Dec. 2015.

[112] A. Ishimori, F. Farias, E. Cerqueira, and A. Abelém, “Control of
multiple packet schedulers for improving QoS on OpenFlow/SDN net-
working,” in Proc. IEEE Eur. Workshop Softw. Defined Netw., Berlin,
Germany, 2013, pp. 81–86.

[113] A. Mendiola et al., “An architecture for dynamic QoS management at
layer 2 for DOCSIS access networks using OpenFlow,” Comput. Netw.,
vol. 94, pp. 112–128, Jan. 2016.

[114] K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li, “QoS-aware middle-
ware for ubiquitous and heterogeneous environments,” IEEE Commun.
Mag., vol. 39, no. 11, pp. 140–148, Nov. 2001.

http://dx.doi.org/10.18725/OPARU-331

GUCK et al.: UNICAST QoS ROUTING ALGORITHMS FOR SDN: COMPREHENSIVE SURVEY AND PERFORMANCE EVALUATION 413

[115] M. Reisslein, K. W. Ross, and S. Rajagopal, “A framework for guar-
anteeing statistical QoS,” IEEE/ACM Trans. Netw., vol. 10, no. 1,
pp. 27–42, Feb. 2002.

[116] P. Sharma et al., “Enhancing network management frameworks with
SDN-like control,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw.
Manag. (IM), Ghent, Belgium, 2013, pp. 688–691.

[117] S. Sharma et al., “Implementing quality of service for the soft-
ware defined networking enabled future Internet,” in Proc. IEEE Eur.
Workshop Softw. Defined Netw., London, U.K., Sep. 2014, pp. 49–54.

[118] E. W. Knightly and N. B. Shroff, “Admission control for statistical
QoS: Theory and practice,” IEEE Netw., vol. 13, no. 2, pp. 20–29,
Mar./Apr. 1999.

[119] J. Liebeherr, D. E. Wrege, and D. Ferrari, “Exact admission control
for networks with a bounded delay service,” IEEE/ACM Trans. Netw.,
vol. 4, no. 6, pp. 885–901, Dec. 1996.

[120] M. Reisslein and K. W. Ross, “Call admission for prerecorded sources
with packet loss,” IEEE J. Sel. Areas Commun., vol. 15, no. 6,
pp. 1167–1180, Aug. 1997.

[121] Z.-L. Zhang, Z. Liu, J. Kurose, and D. Towsley, “Call admission control
schemes under generalized processor sharing scheduling,” Telecommun.
Syst., vol. 7, nos. 1–3, pp. 125–152, Jun. 1997.

[122] L. Sha et al., “Real time scheduling theory: A historical perspective,”
Real Time Syst., vol. 28, nos. 2–3, pp. 101–155, Nov. 2004.

[123] J. W. Guck and W. Kellerer, “Achieving end-to-end real-time quality
of service with software defined networking,” in Proc. IEEE Int. Conf.
Cloud Netw. (CloudNet), Luxembourg, Luxembourg, 2014, pp. 70–76.

[124] R. Kumar et al., “Dependable end-to-end delay constraints for real-time
systems using SDNs,” arXiv preprint arXiv:1703.01641, 2017.

[125] S. M. Laursen, P. Pop, and W. Steiner, “Routing optimization of
AVB streams in TSN networks,” ACM SIGBED Rev., vol. 13, no. 4,
pp. 43–48, Sep. 2016.

[126] N. G. Nayak, F. Dürr, and K. Rothermel, “Time-sensitive software-
defined network (TSSDN) for real-time applications,” in Proc. ACM
Int. Conf. Real Time Netw. Syst., Brest, France, 2016, pp. 193–202.

[127] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner, “Design
optimisation of cyber-physical distributed systems using IEEE time-
sensitive networks,” IET Cyber Phys. Syst. Theory Appl., vol. 1, no. 1,
pp. 86–94, Dec. 2016.

[128] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner, “Scheduling
real-time communication in IEEE 802.1Qbv time sensitive networks,”
in Proc. ACM Int. Conf. Real Time Netw. Syst., Brest, France, 2016,
pp. 183–192.

[129] F. Dürr and N. G. Nayak, “No-wait packet scheduling for IEEE time-
sensitive networks (TSN),” in Proc. ACM Int. Conf. Real Time Netw.
Syst., Brest, France, 2016, pp. 203–212.

[130] Q. Duan, “Network-as-a-service in software-defined networks for end-
to-end QoS provisioning,” in Proc. IEEE Wireless Opt. Commun.
Conf. (WOCC), Newark, NJ, USA, 2014, pp. 1–5.

[131] S. Tomovic, N. Prasad, and I. Radusinovic, “SDN control frame-
work for QoS provisioning,” in Proc. IEEE Telecommun. Forum
Telfor (TELFOR), Belgrade, Serbia, 2014, pp. 111–114.

[132] A. L. King, S. Chen, and I. Lee, “The middleware assurance substrate:
Enabling strong real-time guarantees in open systems with OpenFlow,”
in Proc. IEEE Int. Symp. Object/Compon./Service Orient. Real Time
Distrib. Comput. (ISORC), Reno, NV, USA, 2014, pp. 133–140.

[133] J. W. Guck, M. Reisslein, and W. Kellerer, “Function split between
delay-constrained routing and resource allocation for centrally managed
QoS in industrial networks,” IEEE Trans. Ind. Informat., vol. 12, no. 6,
pp. 2050–2061, Dec. 2016.

[134] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet (LNCS 2050). Berlin,
Germany: Springer, 2001.

[135] J. Schmitt, P. Hurley, M. Hollick, and R. Steinmetz, “Per-flow guar-
antees under class-based priority queueing,” in Proc. IEEE Glob.
Telecommun. Conf. (GLOBECOM), vol. 7. San Francisco, CA, USA,
2003, pp. 4169–4174.

[136] IEEE Standard for Local and Metropolitan Area Networks—Bridges
and Bridged Networks—Amendment 25: Enhancements for Scheduled
Traffic, IEEE Standard 802.1Qbv-2015, pp. 1–57, Mar. 2016.

[137] IEEE Standard for Local and Metropolitan Area Networks—Bridges
and Bridged Networks—Amendment 26: Frame Preemption, IEEE
Standard 802.1Qbu-2016, pp. 1–52, Aug. 2016.

[138] IEEE Standard for Local and Metropolitan Area Networks—Bridges
and Bridged Networks—Amendment 24: Path Control and Reservation,
IEEE Standard 802.1Qca-2015, pp. 1–120, Mar. 2016.

[139] C. Gunther, “Communications standards news: What’s new in the world
of IEEE 802.1 TSN,” IEEE Commun. Mag., vol. 54, no. 9, pp. 12–15,
Sep. 2016.

[140] P. Heise, F. Geyer, and R. Obermaisser, “TSimNet: An industrial
time sensitive networking simulation framework based on OMNeT++,”
in Proc. IEEE/IFIP Int. Conf. New Tech. Mobility Security (NTMS),
Larnaca, Cyprus, 2016, pp. 1–5.

[141] Z. Zhou, Y. Yan, S. Ruepp, and M. Berger, “Analysis and implementa-
tion of packet preemption for time sensitive networks,” in Proc. IEEE
Int. Conf. High Perform. Switch. Routing (HPSR), Campinas, Brazil,
2017, pp. 1–6.

[142] N. Finn, P. Thubert, B. Varga, and J. Farkas, “Deterministic network-
ing architecture, draft-ietf-detnet-architecture-02,” IETF Internet-Draft,
pp. 1–43, Jun. 2017.

[143] J.-D. Decotignie, “Ethernet-based real-time and industrial communica-
tions,” Proc. IEEE, vol. 93, no. 6, pp. 1102–1117, Jun. 2005.

[144] B. Galloway and G. P. Hancke, “Introduction to industrial control net-
works,” IEEE Commun. Surveys Tuts., vol. 15, no. 2, pp. 860–880,
2nd Quart., 2013.

[145] P. Gaj, J. Jasperneite, and M. Felser, “Computer communication
within industrial distributed environment—A survey,” IEEE Trans. Ind.
Informat., vol. 9, no. 1, pp. 182–189, Feb. 2013.

[146] J.-Q. Li et al., “Industrial Internet: A survey on the enabling tech-
nologies, applications, and challenges,” IEEE Commun. Surveys Tuts.,
vol. 19, no. 3, pp. 1504–1526, 3rd Quart., 2017.

[147] L. Seno, F. Tramarin, and S. Vitturi, “Performance of industrial com-
munication systems: Real application contexts,” IEEE Ind. Electron.
Mag., vol. 6, no. 2, pp. 27–37, Jun. 2012.

[148] D. Thiele and R. Ernst, “Formal analysis based evaluation of software
defined networking for time-sensitive Ethernet,” in Proc. IEEE Design
Autom. Test Europe Conf. Exhibit. (DATE), Dresden, Germany, 2016,
pp. 31–36.

[149] A. A. Khan, M. H. Rehmani, and M. Reisslein, “Cognitive radio for
smart grids: Survey of architectures, spectrum sensing mechanisms, and
networking protocols,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 860–898, 1st Quart., 2016.

[150] Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A survey on smart grid com-
munication infrastructures: Motivations, requirements and challenges,”
IEEE Commun. Surveys Tuts., vol. 15, no. 1, pp. 5–20, 1st Quart., 2013.

[151] P. G. Benardos and G. C. Vosniakos, “Internet of Things and industrial
applications for precision machining,” Solid State Phenomena, vol. 261,
pp. 440–447, Aug. 2017.

[152] J. Lin et al., “A survey on Internet of Things: Architecture, enabling
technologies, security and privacy, and applications,” IEEE Internet
Things J., to be published.

[153] I. Yaqoob et al., “Internet of Things architecture: Recent advances, tax-
onomy, requirements, and open challenges,” IEEE Wireless Commun.,
vol. 24, no. 3, pp. 10–16, Jun. 2017.

[154] M. R. Palattella et al., “Standardized protocol stack for the Internet
of (important) Things,” IEEE Commun. Surveys Tuts., vol. 15, no. 3,
pp. 1389–1406, 3rd Quart., 2013.

[155] C. Bachhuber, E. Steinbach, M. Freundl, and M. Reisslein, “On the
minimization of glass-to-glass and glass-to-algorithm delay in video
communication,” IEEE Trans. Multimedia, to be published.

[156] J. Luo, J. Jin, and F. Shan, “Standardization of low-latency TCP with
explicit congestion notification: A survey,” IEEE Internet Comput.,
vol. 21, no. 1, pp. 48–55, Jan./Feb. 2017.

[157] T. Skeie, S. Johannessen, and O. Holmeide, “Timeliness of real-time IP
communication in switched industrial Ethernet networks,” IEEE Trans.
Ind. Informat., vol. 2, no. 1, pp. 25–39, Feb. 2006.

[158] R. Alvizu et al., “Comprehensive survey on T-SDN: Software-defined
networking for transport networks,” IEEE Commun. Surveys Tuts., to
be published.

[159] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on net-
work virtualization hypervisors for software defined networking,” IEEE
Commun. Surveys Tuts., vol. 18, no. 1, pp. 655–685, 1st Quart., 2016.

[160] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and
OpenFlow: From concept to implementation,” IEEE Commun. Surveys
Tuts., vol. 16, no. 4, pp. 2181–2206, 4th Quart., 2014.

[161] T. Kohler, F. Dürr, and K. Rothermel, “ZeroSDN: A highly flexible
and modular architecture for full-range network control distribution,”
in Proc. ACM/IEEE Symp. Architect. Netw. Commun. Syst. (ANCS),
Beijing, China, May 2017, pp. 25–37.

[162] D. Kreutz et al., “Software-defined networking: A comprehensive
survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

414 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

[163] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present,
and future of programmable networks,” IEEE Commun. Surveys Tuts.,
vol. 16, no. 3, pp. 1617–1634, 3rd Quart., 2014.

[164] A. S. Thyagaturu, A. Mercian, M. P. McGarry, M. Reisslein, and
W. Kellerer, “Software defined optical networks (SDONs): A com-
prehensive survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 4,
pp. 2738–2786, 4th Quart., 2016.

[165] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on
software-defined networking,” IEEE Commun. Surveys Tuts., vol. 17,
no. 1, pp. 27–51, 1st Quart., 2014.

[166] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using
OpenFlow: A survey,” IEEE Commun. Surveys Tuts., vol. 16, no. 1,
pp. 493–512, 1st Quart., 2014.

[167] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,
vol. 16. Chichester, U.K.: Wiley, 2001.

[168] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization
using genetic algorithms: A tutorial,” Rel. Eng. Syst. Safety, vol. 91,
no. 9, pp. 992–1007, Sep. 2006.

[169] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization
methods for engineering,” Struct. Multidiscipl. Optim., vol. 26, no. 6,
pp. 369–395, Apr. 2004.

[170] H.-S. Yang, M. Maier, M. Reisslein, and W. M. Carlyle, “A genetic
algorithm-based methodology for optimizing multiservice convergence
in a metro WDM network,” IEEE/OSA J. Lightw. Technol., vol. 21,
no. 5, pp. 1114–1133, May 2003.

[171] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows:
Theory, Algorithms, and Applications. Upper Saddle River, NJ, USA:
Prentice-Hall, 1993.

[172] A. Schrijver, “On the history of the shortest path problem,” Documenta
Math., vol. 2012, pp. 155–167, 2012.

[173] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, Dec. 1959.

[174] R. Bellman, “On a routing problem,” Quart. Appl. Math., vol. 16, no. 1,
pp. 87–90, Apr. 1958.

[175] D. Cavendish and M. Gerla, “Internet QoS routing using the
Bellman–Ford algorithm,” in High Performance Networking.
New York, NY, USA: Springer, 1998, pp. 627–646.

[176] L. R. Ford, Jr., Network Flow Theory, document 422842, DTIC, Fort
Belvoir, VA, USA, 1956.

[177] E. F. Moore, The Shortest Path Through a Maze. New York, NY, USA:
Bell Telephone Syst., 1959.

[178] A. Shimbel, “Structure in communication nets,” in Proc. Symp. Inf.
Netw., New York, NY, USA, 1954, pp. 199–203.

[179] J. Y. Yen, “An algorithm for finding shortest routes from all source
nodes to a given destination in general networks,” Quart. Appl. Math.,
vol. 27, no. 4, pp. 526–530, Jan. 1970.

[180] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Trans. Syst. Sci.
Cybern., vol. SSC-4, no. 2, pp. 100–107, Jul. 1968.

[181] M. J. Bannister and D. Eppstein, “Randomized speedup of the
Bellman–Ford algorithm,” in Proc. SIAM Meeting Anal. Algorithmics
Combinatorics, Kyoto, Japan, 2012, pp. 41–47.

[182] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest paths algo-
rithms: Theory and experimental evaluation,” Math. Program., vol. 73,
no. 2, pp. 129–174, May 1996.

[183] L. Fu, D. Sun, and L. R. Rilett, “Heuristic shortest path algorithms
for transportation applications: State of the art,” Comput. Oper. Res.,
vol. 33, no. 11, pp. 3324–3343, Nov. 2006.

[184] E. Chow, “A graph search heuristic for shortest distance paths,”
Lawrence Livermore Nat. Lab., Livermore, CA, USA, Tech. Rep.
UCRL-JRNL-202894, 2005.

[185] J. Y. Yen, “Finding the k shortest loopless paths in a network,” Manag.
Sci., vol. 17, no. 11, pp. 712–716, Jul. 1971.

[186] E. I. Chong, S. Maddila, and S. Morley, “On finding single-source
single-destination k shortest paths,” J. Comput. Inf. Special Issue ICCI,
vol. 95, pp. 40–47, Jul. 1995.

[187] C. C. Skiscim and B. L. Golden, “Solving k-shortest and constrained
shortest path problems efficiently,” Ann. Oper. Res., vol. 20, nos. 1–4,
pp. 249–282, Aug. 1989.

[188] D. Eppstein, “Finding the k shortest paths,” SIAM J. Comput., vol. 28,
no. 2, pp. 652–673, 1998.

[189] V. M. Jiménez and A. Marzal, “A lazy version of Eppstein’s k short-
est paths algorithm,” in Proc. Int. Workshop Exp. Efficient Algorithms,
Ascona, Switzerland, 2003, pp. 179–191.

[190] H. Aljazzar and S. Leue, “K*: A directed on-the-fly algorithm for
finding the k shortest paths,” Dept. Comput. Inf. Sci., Univ. at Konstanz,
Konstanz, Germany, Tech. Rep. soft-08-03, 2008.

[191] H. C. Joksch, “The shortest route problem with constraints,” J. Math.
Anal. Appl., vol. 14, no. 2, pp. 191–197, May 1966.

[192] Y. P. Aneja, V. Aggarwal, and K. P. K. Nair, “Shortest chain subject
to side constraints,” Networks, vol. 13, no. 2, pp. 295–302, 1983.

[193] W. C. Lee, M. G. Hluchyi, and P. A. Humblet, “Routing subject to
quality of service constraints in integrated communication networks,”
IEEE Netw., vol. 9, no. 4, pp. 46–55, Jul./Aug. 1995.

[194] R. Widyono, “The design and evaluation of routing algorithms for real-
time channels,” Int. Comput. Sci. Inst. Berkeley, Berkeley, CA, USA,
Tech. Rep. TR-94-024, 1994.

[195] G. Liu and K. G. Ramakrishnan, “A*Prune: An algorithm for find-
ing k shortest paths subject to multiple constraints,” in Proc. IEEE
INFOCOM, vol. 2. Anchorage, AK, USA, 2001, pp. 743–749.

[196] Z. Jia and P. Varaiya, “Heuristic methods for delay-constrained least-
cost routing problem using k-shortest-path algorithms,” in Proc. IEEE
INFOCOM, 2001, pp. 1–9.

[197] G. Cheng and N. Ansari, “A new heuristics for finding the delay
constrained least cost path,” in Proc. IEEE Glob. Telecommun.
Conf. (GLOBECOM), vol. 7. San Francisco, CA, USA, 2003,
pp. 3711–3715.

[198] D. P. Bertsekas, Nonlinear Programming. Belmont, MA, USA: Athena
Sci., 1999.

[199] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[200] Y. P. Aneja and K. P. K. Nair, “The constrained shortest path problem,”
Naval Res. Logistics Quart., vol. 25, no. 3, pp. 549–555, Sep. 1978.

[201] G. Y. Handler and I. Zang, “A dual algorithm for the constrained
shortest path problem,” Networks, vol. 10, no. 4, pp. 293–309, 1980.

[202] D. Blokh and G. Gutin, “An approximate algorithm for combinatorial
optimization problems with two parameters,” Aust. J. Combinatorics,
vol. 14, pp. 157–164, Sep. 1996.

[203] A. Jüttner, B. Szviatovski, I. Mécs, and Z. Rajkó, “Lagrange relaxation
based method for the QoS routing problem,” in Proc. IEEE INFOCOM,
vol. 2. Anchorage, AK, USA, 2001, pp. 859–868.

[204] L. Wolsey and G. Nemhauser, Integer and Combinatorial Optimization
(Wiley Series in Discrete Mathematics and Optimization). Hoboken,
NJ, USA: Wiley, 1999.

[205] L. Santos, J. Coutinho-Rodrigues, and J. R. Current, “An improved
solution algorithm for the constrained shortest path problem,” Transp.
Res. B Methodol., vol. 41, no. 7, pp. 756–771, Aug. 2007.

[206] T. Korkmaz and M. Krunz, “Multi-constrained optimal path selec-
tion,” in Proc. IEEE INFOCOM, vol. 2. Anchorage, AK, USA, 2001,
pp. 834–843.

[207] G. Feng, K. Makki, N. Pissinou, and C. Douligeris, “Heuristic and
exact algorithms for QoS routing with multiple constraints,” IEICE
Trans. Commun., vol. E85-B, no. 12, pp. 2838–2850, Dec. 2002.

[208] G. Feng, C. Douligeris, K. Makki, and N. Pissinou, “Performance eval-
uation of delay-constrained least-cost QoS routing algorithms based
on linear and nonlinear Lagrange relaxation,” in Proc. IEEE Int. Conf.
Commun. (ICC), vol. 4. New York, NY, USA, 2002, pp. 2273–2278.

[209] L. Guo and I. Matta, “Search space reduction in QoS routing,” Comput.
Netw., vol. 41, no. 1, pp. 73–88, Jan. 2003.

[210] H. Agrawal, M. Grah, and M. Gregory, “Optimization of QoS routing,”
in Proc. IEEE/ACIS Int. Conf. Comput. Inf. Sci. (ICIS), Melbourne,
VIC, Australia, 2007, pp. 598–603.

[211] C. C. Ribeiro and M. Minoux, “A heuristic approach to hard con-
strained shortest path problems,” Discr. Appl. Math., vol. 10, no. 2,
pp. 125–137, Feb. 1985.

[212] H. F. Salama, D. S. Reeves, and Y. Viniotis, “A distributed algorithm for
delay-constrained unicast routing,” in Proc. IEEE INFOCOM, vol. 1.
Kobe, Japan, 1997, pp. 84–91.

[213] D. S. Reeves and H. F. Salama, “A distributed algorithm for delay-
constrained unicast routing,” IEEE/ACM Trans. Netw., vol. 8, no. 2,
pp. 239–250, Apr. 2000.

[214] Q. Sun and H. Langendörfer, “A new distributed routing algorithm for
supporting delay-sensitive applications,” Comput. Commun., vol. 21,
no. 6, pp. 572–578, May 1998.

[215] K. Ishida, K. Amano, and N. Kannari, “A delay-constrained least-
cost path routing protocol and the synthesis method,” in Proc. IEEE
Int. Conf. Real Time Comput. Syst. Appl., Hiroshima, Japan, 1998,
pp. 58–65.

[216] R. Sriram, G. Manimaran, and C. S. R. Murthy, “Preferred link based
delay-constrained least-cost routing in wide area networks,” Comput.
Commun., vol. 21, no. 18, pp. 1655–1669, Dec. 1998.

GUCK et al.: UNICAST QoS ROUTING ALGORITHMS FOR SDN: COMPREHENSIVE SURVEY AND PERFORMANCE EVALUATION 415

[217] W. Liu, W. Lou, and Y. Fang, “An efficient quality of service rout-
ing algorithm for delay-sensitive applications,” Comput. Netw., vol. 47,
no. 1, pp. 87–104, Jan. 2005.

[218] A. Warburton, “Approximation of Pareto optima in multiple-objective,
shortest-path problems,” Oper. Res., vol. 35, no. 1, pp. 70–79,
Jan./Feb. 1987.

[219] R. Hassin, “Approximation schemes for the restricted shortest path
problem,” Math. Oper. Res., vol. 17, no. 1, pp. 36–42, Feb. 1992.

[220] D. Raz and Y. Shavitt, “Optimal partition of QoS requirements with
discrete cost functions,” in Proc. IEEE INFOCOM, vol. 2. Tel Aviv,
Israel, 2000, pp. 613–622.

[221] D. H. Lorenz and D. Raz, “A simple efficient approximation scheme
for the restricted shortest path problem,” Oper. Res. Lett., vol. 28, no. 5,
pp. 213–219, Jun. 2001.

[222] F. Ergun, R. Sinha, and L. Zhang, “An improved FPTAS for restricted
shortest path,” Inf. Process. Lett., vol. 83, no. 5, pp. 287–291,
Sep. 2002.

[223] D. H. Lorenz, A. Orda, D. Raz, and Y. Shavitt, “Efficient QoS partition
and routing of unicast and multicast,” IEEE/ACM Trans. Netw., vol. 14,
no. 6, pp. 1336–1347, Dec. 2006.

[224] G. Xue, W. Zhang, J. Tang, and K. Thulasiraman, “Polynomial
time approximation algorithms for multi-constrained QoS routing,”
IEEE/ACM Trans. Netw., vol. 16, no. 3, pp. 656–669, Jun. 2008.

[225] G. Apostolopoulos, R. Guerin, S. Kamat, and S. Tripathi, “Improving
QoS routing performance under inaccurate link state information,” in
Proc. Int. Teletraffic Congr., 1999, pp. 7–11.

[226] S. Chen and K. Nahrstedt, “Distributed QoS routing with imprecise
state information,” in Proc. IEEE Int. Conf. Comput. Commun. Netw.,
Lafayette, LA, USA, 1998, pp. 614–621.

[227] R. A. Guérin and A. Orda, “QoS routing in networks with inaccurate
information: Theory and algorithms,” IEEE/ACM Trans. Netw., vol. 7,
no. 3, pp. 350–364, Jun. 1999.

[228] D. H. Lorenz and A. Orda, “QoS routing in networks with uncer-
tain parameters,” IEEE/ACM Trans. Netw., vol. 6, no. 6, pp. 768–778,
Dec. 1998.

[229] L. Xiao, J. Wang, and M. Nahrstedt, “The enhanced ticket-based rout-
ing algorithm,” in Proc. IEEE Int. Conf. Commun. (ICC), vol. 4.
New York, NY, USA, 2002, pp. 2222–2226.

[230] K. G. Shin and C.-C. Chou, “A distributed route-selection scheme
for establishing real-time channels,” in High Performance Networking.
Dordecht. The Netherlands: Springer, 1995, pp. 319–330.

[231] S. Chen and K. Nahrstedt, “Distributed quality-of-service routing in
high-speed networks based on selective probing,” in Proc. IEEE Conf.
Local Comput. Netw. (LCN), Lowell, MA, USA, 1998, pp. 80–89.

[232] A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis, “Efficient
computation of delay-sensitive routes from one source to all destina-
tions,” in Proc. IEEE INFOCOM, vol. 2. Anchorage, AK, USA, 2001,
pp. 854–858.

[233] F. Xiang, L. Junzhou, W. Jieyi, and G. Guanqun, “QoS routing
based on genetic algorithm,” Comput. Commun., vol. 22, nos. 15–16,
pp. 1392–1399, Sep. 1999.

[234] W. Zhengying, S. Bingxin, and Z. Erdun, “Bandwidth-delay-
constrained least-cost multicast routing based on heuristic genetic algo-
rithm,” Comput. Commun., vol. 24, nos. 7–8, pp. 685–692, Apr. 2001.

[235] D. Karaboga and B. Basturk, “Artificial bee colony (ABC) optimization
algorithm for solving constrained optimization problems,” in Proc. Int.
Fuzzy Syst. Assoc. World Congr., 2007, pp. 789–798.

[236] C. Pornavalai, G. Chakraborty, and N. Shiratori, “QoS based routing
algorithm in integrated services packet networks,” J. High Speed Netw.,
vol. 7, no. 2, pp. 99–112, 1998.

[237] C. Pornavalai, G. Chakraborty, and N. Shiratori, “Routing with
multiple QoS requirements for supporting multimedia applications,”
Telecommun. Syst., vol. 9, nos. 3–4, pp. 357–373, Sep. 1998.

[238] B. M. Waxman, “Routing of multipoint connections,” IEEE J. Sel.
Areas Commun., vol. SAC-6, no. 9, pp. 1617–1622, Dec. 1988.

[239] M. Caria, A. Jukan, and M. Hoffmann, “SDN partitioning: A central-
ized control plane for distributed routing protocols,” IEEE Trans. Netw.
Service Manag., vol. 13, no. 3, pp. 381–393, Sep. 2016.

[240] S. Krile, M. Rakús, and F. Schindler, “Centralized routing algorithm
based on flow permutations,” in Proc. IEEE Int. Conf. Telecommun.
Signal Process. (TSP), Vienna, Austria, 2016, pp. 68–73.

[241] S. H. Park et al., “RAON: Recursive abstraction of OpenFlow net-
works,” in Proc. IEEE Eur. Workshop Softw. Defined Netw. (EWSDN),
London, U.K., 2014, pp. 115–116.

[242] S. Vrijders et al., “Reducing the complexity of virtual machine net-
working,” IEEE Commun. Mag., vol. 54, no. 4, pp. 152–158, Apr. 2016.

Jochen W. Guck received the Dipl.-Ing. degree in
Ingenieurinformatik from the University of Applied
Sciences Wuerzburg-Schweinfurt, Schweinfurt,
Germany, in 2009 and the M.Sc. degree in electrical
engineering from the Technical University of
Munich, Munich, Germany, in 2011. In 2012, he
joined the Chair of Communication Networks with
the Technical University of Munich as a member
of the research and teaching staff. His research
interests include real-time communication, industrial
communication, software-defined networking, and
routing algorithms.

Amaury Van Bemten was born in Liège, Belgium,
in 1993. He received the B.Sc. degree in engi-
neering and the M.Sc. degree in computer sci-
ence and engineering from the University of Liège,
Belgium, in 2013 and 2015, respectively. He is cur-
rently pursuing the Ph.D. degree with the Technical
University of Munich, where he joined the Chair of
Communication Networks in 2015 and as a mem-
ber of the research and teaching staff. His current
research focuses on routing algorithms and the appli-
cation of software-defined networking for resilient

real-time communications in industrial environments.

Martin Reisslein (S’96–A’97–M’98–SM’03–F’14)
received the Ph.D. degree in systems engineer-
ing from the University of Pennsylvania in 1998.
He is a Professor with the School of Electrical,
Computer, and Energy Engineering, Arizona State
University, Tempe. He currently serves as an
Associate Editor for the IEEE TRANSACTIONS ON

MOBILE COMPUTING, the IEEE TRANSACTIONS

ON EDUCATION, and IEEE ACCESS as well as
Computer Networks and Optical Switching and
Networking. He is an Associate Editor-in-Chief of

the IEEE COMMUNICATIONS SURVEYS & TUTORIALS and chairs the
steering committee of the IEEE TRANSACTIONS ON MULTIMEDIA.

Wolfgang Kellerer (M’96–SM’11) received the
Dr.-Ing. (Ph.D.) degree and the Dipl.-Ing. degree
from the Technical University of Munich, Munich,
Germany, in 1995 and 2002, respectively, where
he is a Full Professor, heading the Chair of
Communication Networks with the Department of
Electrical and Computer Engineering. He was with
NTT DOCOMO’s European Research Laboratories
for over ten years. His research resulted in over 200
publications and 29 granted patents in the areas of
mobile networking and service platforms. He cur-

rently serves as an Associate Editor for the IEEE TRANSACTIONS ON

NETWORK AND SERVICE MANAGEMENT and on the Editorial Board of the
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS. He is a member of
ACM and the VDE ITG.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

