
On Shortest Single/Multiple Path Computation
Problems in Fiber-Wireless (FiWi) Access Networks

Chenyang Zhou∗, Anisha Mazumder∗, Arunabha Sen∗, Martin Reisslein† and Andrea Richa∗
∗School of Computing, Informatics and Decision Systems Engineering†School of Electrical, Computer, and Energy Engineering

Arizona State University

Email: {czhou24, anisha.mazumder, asen, reisslein, aricha}@asu.edu

Abstract—Fiber-Wireless (FiWi) networks have received con-
siderable attention in the research community in the last few
years as they offer an attractive way of integrating optical and
wireless technology. As in every other type of networks, routing
plays a major role in FiWi networks. Accordingly, a number of
routing algorithms for FiWi networks have been proposed. Most
of the routing algorithms attempt to find the “shortest path”
from the source to the destination. A recent paper proposed
a novel path length metric, where the contribution of a link
towards path length computation depends not only on that link
but also every other link that constitutes the path from the
source to the destination. In this paper we address the problem
of computing the shortest path using this path length metric.
Moreover, we consider a variation of the metric and also provide
an algorithm to compute the shortest path using this variation.
As multipath routing provides a number of advantages over
single path routing, we consider disjoint path routing with the
new path length metric. We show that while the single path
computation problem can be solved in polynomial time in both
the cases, the disjoint path computation problem is NP-complete.
We provide optimal solution for the NP-complete problem using
integer linear programming and also provide two approximation
algorithms with a performance bound of 4 and 2 respectively.
The experimental evaluation of the approximation algorithms
produced a near optimal solution in a fraction of a second.

I. INTRODUCTION

Path computation problems are arguably one of the most

well studied family of problems in communication networks.

In most of these problems, one or more weight is associated

with a link representing, among other things, the cost, delay or

the reliability of that link. The objective most often is to find

a least weighted path (or “shortest path”) between a specified

source-destination node pair. In most of these problems, if a

link l is a part of a path P , then the contribution of the link

l on the “length” of the path P depends only on the weight

w(l) of the link l, and is oblivious of the weights of the links

traversed before or after traversing the link l on the path P .

However, in a recent paper on optical-wireless FiWi network

[5], the authors have proposed a path length metric, where the

contribution of the link l on the “length” of the path P depends

not only on its own weight w(l), but also on the weights

of all the links of the path P . As the authors of [5] do not

present any algorithm for computing the shortest path between

the source-destination node pair using this new metric, we

present a polynomial time algorithm for this problem in this

paper. This result is interesting because of the nature of new

metric proposed in [5], one key property on which the shortest

path algorithm due to Dijkstra is based, that is, subpath of a
shortest path is shortest, is no longer valid. We show that even

without this key property, not only it is possible to compute

the shortest path in polynomial time using the new metric, it

is also possible to compute the shortest path in polynomial

time, with a variation of the metric proposed in [5].

The rest of the paper is organized as follows. In section

III, we present the path length metric proposed for the FiWi

network in [5] and a variation of it. In section IV we provide

algorithms for computing the shortest path using these two

metrics. As multi-path routing offers significant advantage

over single path routing [6], [7], [8], [9], we also consider

the problem of computation of a pair of node disjoint paths

between a source-destination node pair using the metric pro-

posed in [5]. We show that while the single path computation

problem can be solved in polynomial time in all these cases,

the disjoint path computation problem is NP-complete. The

contributions of the paper are as follows;

• Polynomial time algorithm for single path routing (metric

1) in FiWi networks

• Polynomial time algorithm for single path routing (metric

2) in FiWi networks

• NP-completeness proof of disjoint path routing (metric

1) in FiWi networks

• Optimal solution for disjoint path routing (metric 1) in

FiWi networks using Integer Linear Programming

• One approximation algorithm for disjoint path routing in

FiWi networks with an approximation bound of 4 and

computation complexity O((n+m)log n)

• One approximation algorithm for disjoint path routing in

FiWi networks with an approximation bound of 2 and

computation complexity O(m(n+m)log n)

• Experimental evaluation results of the approximation

algorithm for disjoint path routing in FiWi networks

II. RELATED WORK

Fiber-Wirelss (FiWi) networks is a hybrid access network

resulting from the convergence of optical access networks

such as Passive Optical Networks (PONs) and wireless access

networks such as Wireless Mesh Networks (WMNs) capa-

ble of providing low cost, high bandwidth last mile access.

2014 IEEE 15th International Conference on High Performance Switching and Routing (HPSR)

978-1-4799-1633-7/14/$31.00 ©2014 IEEE 131

Because it provides an attractive way of integrating optical

and wireless technology, Fiber-Wireless (FiWi) networks have

received considerable attention in the research community in

the last few years [1], [2], [3], [4], [5], [8], [9]. The minimum

interference routing algorithm for the FiWi environment was

first proposed in [4]. In this algorithm the path length was

measured in terms of the number of hops in the wireless

part of the FiWi network. The rationale for this choice was

that the maximum throughput of the wireless part is typically

much smaller than the throughput of the optical part, and

hence minimization of the wireless hop count should lead to

maximizing the throughout of the FiWi network. However,

the authors of [5] noted that minimization of the wireless

hop count does not always lead to throughput maximization.

Accordingly, the path length metric proposed by them in

[5] pays considerable importance to the traffic intensity at a

generic FiWi network node. The results presented in this paper

are motivated by the path length metric proposed in [5].

III. PROBLEM FORMULATION

In the classical path problem, each edge e ∈ E of the graph

G = (V,E), has a weight w(e) associated with it and if there

is a path P from the node v0 to vk in the graph G = (V,E)

v0
w1→ v1

w2→ v2
w3→ v3 . . .

wk→ vk

then the path length or the distance between the nodes v0 and

vk is given by

w(Pv0,vk) = w1 + w2 + · · ·+ wk

However, in the path length metric proposed in [5] for

optical-wireless FiWi networks [1], [2], [3], the contribution

of ei to the path length computation depends not only on

the weight wi, but also on the weights of the other edges

that constitute the path. In the following section, we discuss

this metric and a variation of it. We also also formulate the

multipath computation problem using this metric.

The Optimized FiWi Routing Algorithm (OFRA) proposed

in [5] computes the “length” (or weight) of a path P from v0
to vk using the following metric

w′(Pv0,vk) = min
P

(∑
∀u∈P

(wu) + max
∀u∈P

(wu)

)

where wu represents the traffic intensity at a generic FiWi

network node u, which may be an optical node in the fiber

backhaul or a wireless node in wireless mesh front-end. In

order to compute shortest path using this metric, in our

formulation, instead of associating a traffic intensity “weight”

(wu) with nodes, we associate them with edges. This can easily

be achieved by replacing the node u with weight wu with two

nodes u1 and u2, connecting them with an edge (u1, u2) and

assigning the weight wu on this edge. In this scenario, if there

is a path P from the node v0 to vk in the graph G = (V,E)

v0
w1→ v1

w2→ v2
w3→ . . .

wk→ vk

then the path length between the nodes v0 and vk is given by

w+(Pv0,vk
) = w1 + w2 + . . .+ wk + max(w1, w2, . . . wk)

=
k∑

i=1

wi + maxki=1wi

In the second metric, the length a path Pv0,vk :
v0→v1→v2→ . . .→vk, between the nodes v0 and vk is given

by

w̄(Pv0,vk) =

k∑
i=1

wi + CNT (Pv0,vk) ∗ max(w1, w2, . . . wk)

=

k∑
i=1

wi + CNT (Pv0,vk) ∗ maxki=1wi

where CNT (Pv0,vk) is the count of the number of times

max (w1, w2, . . . wk) appears on the path Pv0,vk . We study the

shortest path computation problems in FiWi networks using

the above metrics and provide polynomial time algorithms for

solution in subsections IV-A and IV-B.

If wmax = max(w1, w2, . . . wk), we refer to the correspond-

ing edge (link) as emax. If there are multiple edges having

the weight of wmax, we arbitrarily choose any one of them as

emax. It may be noted that both the metrics have an interesting

property in that in both cases, the contribution of an edge e
on the path length computation depends not only on the edge

e but also on every other edge on the path. This is so, because

if the edge e happens to be emax, contribution of this edge

in computation of w+(Pv0,vk) and w̄(Pv0,vk) will be 2 ∗w(e)
and CNT (Pv0,vk

) ∗ w(e) respectively. If e is not emax, then

its contribution will be w(e) for both the metrics.

As multipath routing provides an opportunity for higher

throughput, lower delay, and better load balancing and re-

silience, its use have been proposed in fiber networks [6],

wireless networks [7] and recently in integrated fiber-wireless

networks [8], [9]. Accordingly, we study the problem of

computing a pair of edge disjoint paths between a source-

destination node pair s and d, such that the length of the
longer path (path length computation using the first metric)
is shortest among all edge disjoint path pairs between the
nodes s and d. In subsection IV-C we prove that this problem

is NP-complete, in subsection IV-D, we provide an optimal

solution for the problem using integer linear programming,

in subsections IV-E and IV-F we provide two approximation

algorithms for the problem with a performance bound of 4

and 2 respectively, and in subsection IV-F we provide results

of experimental evaluation of the approximation algorithms.

IV. PATH PROBLEMS IN FIWI NETWORKS

In this section, we present (i) two different algorithms for

shortest path computation using two different metrics, (ii)

NP-completeness proof for the disjoint path problem, (iii)

two approximation algorithms for the disjoint path problem,

and (iv) experimental evaluation results of the approximation

algorithms.

132

It may be noted that, in both metrics w+(Pv0,vk) and

w̄(Pv0,vk), we call an edge e ∈ Pv0,vk
crucial, if w(e) =

maxk
i=1w(e

′), ∀e′ ∈ Pv0,vk .

A. Shortest Path Computation using Metric 1

It may be recalled that the path length metric used in this

case is the following: w+(Pv0,vk) =
∑k

i=1 wi + maxki=1wi. If

the path length metric was given as w(Pv0,vk) =
∑k

i=1 wi,

algorithms due to Dijkstra and Bellman-Ford could have been

used to compute the shortest path between a source-destination

node pair. One important property of the path length metric

that is exploited by Dijkstra’s algorithm is that “subpath of a

shortest path is shortest”. However, the new path length metric∑k
i=1 wi+maxki=1wi does not have this property. We illustrate

this with the example below.

Consider two paths P1 and P2 from the node v0 to v3 in the

graph G = (V,E), where P1 : v0
w1→ v1

w2→ v2
w3→ v3 and P2 :

v0
w4→ v4

w5→ v2
w3→ v3. If w1 = 0.25, w2 = 5, w3 = 4.75, w4 =

2, w5 = 4, the length of the path P1, w+(P1) = w1+w2+w3+
max(w1, w2, w3) = 0.25+ 5+ 4.75+ max(0.25, 5, 4.75) = 15
and the length of the path P2, w+(P2) = w4 + w5 + w6 +
max(w4, w5.w6) = 2 + 4 + 4.75 + max(2, 4, 4.75) = 15.5.

Although P1 is shortest path in this scenario, the length of

its subpath v0
w1→ v1

w2→ v2 is 0.25 + 5 + max (0.25, 5) =

10.25, which is greater than the length of a subpath of P2

v0
w4→ v4

w5→ v2 2 + 4 + max (2, 4) = 10, demonstrating that

the assertion that “subpath of a shortest path is shortest” no

longer holds in this path length metric.

As the assertion “subpath of a shortest path is shortest” no

longer holds in this path length metric, we cannot use the

standard shortest path algorithm due to Dijkstra in this case.

However, we show that we can still compute the shortest path

between a source-destination node pair in polynomial time by

repeated application of the Dijkstra’s algorithm. The algorithm

is described next.

For a given graph G = (V,E), w.l.o.g, we assume |V | = n
and |E| = m. Define Ge as subgraph of G by deleting edges

whose weight is greater than w(e).
Also, as Dijkstra’s algorithm does, we need to maintain

distance vector. We define distv be distance (length of shortest

path) from s to v, Πv be predecessor of v and maxedgev be

weight of the crucial edge from s to v via the shortest path,

ansv be optimal solution (length) from s to v.

Different Ge can be treated as different layers of the

G. For any path P , we define the function e∗(P) as the

crucial edge along P . It is easy to observe that if Pd is the

optimal path from s to node d then w(Pd) =
∑

e∈P w(e)
and w+(Pd) = w(Pd) + w(e∗(Pd)). It may be noted that

henceforth, we shorten Ps,d to Pd, because we consider that

the source is fixed while the destination d is variable.

Lemma 1. w(Pd) is minimum in Ge∗(Pd).

Proof: It is obvious that Pd still exists in Ge∗(Pd), since

edges on Pd are not abandoned. Suppose Pd is not shortest,

then there must be another path Pd′ s.t. w(P ′
d) < w(Pd).

Noting that the crucial edge on P ′
d, namely e′, is no longer than

Algorithm 1 Modified Dijkstra’s Algorithm

1: Initialize ansv = ∞ for for all v ∈ V
2: sort all edges according to w(e) in ascending order

3: for i = 1 to m do
4: Initialize distv = ∞,Πv = nil, maxedgev = 0 for

all v ∈ V
5: dists = 0
6: Q = the set of all nodes in graph

7: while Q is not empty do
8: u = Extract-Min(Q)

9: for each neighbor v of u do
10: if eu,v ∈ E(Gei) then
11: t = MAX {maxedgeu , w(eu,v)}
12: if distu + w(eu,v) < distv then
13: distv = distu + w(eu,v)
14: maxedgev = t

15: Πv = u
16: else if distu+w(eu,v) == distv then
17: if maxedgev > t then
18: maxedgev = t
19: Πv = u
20: end if
21: end if
22: end if
23: end for
24: end while
25: for each node v do
26: ansv = min{ansv, distv +maxedgev}
27: end for
28: end for

e∗(Pd) since they both belong to Ge∗(Pd). Hence w+(P ′
d) =

w(P ′
d)+w(e′) < w(Pd)+w(e∗(Pd)) = w+(Pd), contradicting

Pd is optimal.

Lemma 2. Modified Dijkstra’s Algorithm (MDA) computes
shortest path while keeping the crucial edge as short as
possible in every iteration.

Proof: Line 4 to 24 works similar to the standard Dijk-

stra’s algorithm does. Besides, when updating distance, MDA

also updates the crucial edge to guarantee that it lies on the

path and when there is a tie, MDA will choose the edge with

the smaller weight.

Theorem 1. Modified Dijkstra’s Algorithm computes optimal
solution for every node v in O(m(n+m)logn) time.

Proof: Lemma 1 indicates for any node v ∈ V , optimal

solution can be obtained by enumerating all possible crucial

edges e∗(Pv) and computing shortest path on Ge∗(Pv). By sort-

ing all edges in nondecreasing order, every subgraph Ge∗(Pv)

is considered and it is shown in lemma 2, MDA correctly

computes shortest path for every node v in every Ge∗(Pv).

Then optimal solution is obtained by examining all shortest

path using the w() metric plus the corresponding crucial edge.

Dijkstra’s algorithm runs O((n + m)logn) time when using

133

binary heap, hence MDA runs in O(m(n+m)logn) time when

considering all layers.

B. Shortest Path Computation using Metric 2

Given a path P , let e∗(P) be the crucial edge along the

P and CNT (P) be the number of occurrence of such edge.

Now our objective becomes to find a path Q, such that w̄(P) =∑
e∈Q w(e) + CNT (Q) ∗ w(e∗(Q)) is minimum.

The layering technique can also be used in this problem.

However, shortest path under a ceratin layer may not become

a valid candidate for optimal solution. Here, we introduce a

dynamic programming algorithm that can solve the problem

optimally in O(n2m2) time.

Input is a weighted graph G = (V,E), |V | = n, |E| = m
with a specified source node s. In this paper, we only

consider nonnegative edge weight. As shown before, we use

Ge to represent the residue graph by deleting edges longer

than e in G. Different from MDA1, in order to consider

the number of crucial edges, distv is replaced by an array

dist0v, dist
1
v,dist

n
v . One can think distcv be the shortest

distance from s to v by going through exactly c crucial edges

and possibly some shorter edges. Similarly, we replace Πv by

Πc
v, 0 ≤ c ≤ n. Each Πc

v records predecessor of v for the

path corresponding to distcv . Lastly, ansv is used as optimal

solution from s to v.

Lemma 3. If Pv is the best path from s to v, i.e., w̄(Pv) is
minimum among all s-v path, then Pv is computed in Ge∗(Pv)

and dist
CNT (Pv)
v = w(Pv).

Proof: By definition, Pv exists in Ge∗(Pv) and

CNT (Pv) ≥ 1 since any path should go through at least one

crucial edge. Noting w̄(Pv) = w(Pv)+CNT (Pv)∗w(e∗(Pv)),
on one hand if we treat CNT (Pv) as a fixed number, then we

need to keep w(Pv) as small as possible. Inspired by idea

of bellman-ford algorithm, we can achieve it by enumerating

|Pv|, i.e., number of edges on Pv . On the other hand, we need

to keep tracking number of crucial edges as well. Hence, distcv
is adopted to maintain such information, superscript c reflects

exact number of crucial edges. From line 12 to line 25, distcv
is updated either when it comes from a neighbor who has

already witnessed c crucial edges or it comes from a neighbor

with c − 1 crucial edges and the edge between is crucial. In

either case, node v gets a path, say P ′, with exact c crucial

edges on it and w(P) is minimum. At last, Pv can be selected

by enumerating number of crucial edges and that is what line

30 to 32 does.

Lemma 4. Maxedge Shortest Path Algorithm(MSPA) runs in
O(n2m) time for each Ge.

Proof: We can apply similar analysis of bellman-ford

algorithm. However, we need to update distcv array, it takes

extra O(n) time for every node v in every iteration when

enumerating |Pv|. Hence, total running time is O(n2m).

Theorem 2. MSPA computes optimal path for every v ∈ V
in O(n2m2) time.

Algorithm 2 Maxedge Shortest Path Algorithm

1: Initialize ansv = ∞ for for all v ∈ V
2: sort all edges according to w(e) in ascending order, say

e1, e2, ..., em after sorting

3: for i = 1 to m do
4: Initialize distcv = ∞,Πc

v = nil for all v ∈ V and all

0 ≤ c ≤ n
5: dist0s = 0
6: for j = 1 to n− 1 do
7: for k = 0 to j do
8: for every node v ∈ V do
9: if distkv = ∞ then

10: continue

11: end if
12: for every neighbor u of v do
13: if w(eu,v) > w(ei) then
14: continue

15: else if w(eu,v) == w(e∗) then
16: if distkv + w(eu,v) <

distk+1
u then

17: distk+1
u = distkv +

w(eu,v)
18: Πk+1

u = v
19: end if
20: else
21: if distkv + w(eu,v) < distku

then
22: distku = distkv +

w(eu,v)
23: Πk

u = v
24: end if
25: end if
26: end for
27: end for
28: end for
29: end for
30: for i = 1 to n− 1 do
31: ansv = min{ansv, distiv + i ∗ w(ei)}
32: end for
33: end for

Proof: By Lemma 3, if Pv is obtained when computing

Ge∗Pv . Then, by considering all possible Ge∗ , we could get

Pv in one of these layering. It takes O(m) to generate all Ge∗ ,

by Lemma 4, MSPA runs in v ∈ V in O(n2m2) time.

C. Computational Complexity of Disjoint Path Problem

In this section, we study edge disjoint path in optical

wireless network. By reduction from well known Min-Max
2-Path Problem, i.e., min-max 2 edge disjoint path problem

under normal length measurement, we show it is also

NP-complete if we try to minimize the longer path when w+

length is applied. Then we give an ILP formulation to solve

this problem optimally. At last, we provide two approximation

algorithm, one with approximation ratio 4, running time

134

O((m + n)logn), the other one with approximation ratio 2

while running time is O(m(m+ n)logn).

Min-Max 2 Disjoint Path Problem (MinMax2PP)
Instance: An undirected graph G = (V,E) with a positive

weight w(e) associated with each edge e ∈ E, a source node

s ∈ V , a destination node t ∈ V , and a positive number X .

Question: Does there exist a pair of edge disjoint paths P1

and P2 from s to d in G such that w(P1) ≤ w(P2) ≤ X?

The MinMax2PP problem is shown to be NP-complete in

[10]. With a small modification, we show NP-completeness

still holds if w+ length measurement is adopted.

Min-Max 2 Disjoint Path Problem in Optical Wireless
Networks (MinMax2OWFN)
Instance: An undirected graph G = (V,E) with a positive

weight w(e) associated with each edge e ∈ E, a source node

s ∈ V , a destination node t ∈ V , and a positive number X .

Question: Does there exist a pair of edge disjoint paths P ′
1

and P ′
2 from s to t in G such that w+(P ′

1) ≤ w+(P ′
2) ≤ X ′?

Theorem 3. The MinMax2OWFN is NP-complete

Proof: Evidently, MinMax2OWFN is in NP class, given

two edge joint path P ′
1 and P ′

2, we can check if w+(P ′
1) ≤

w+(P ′
2) ≤ X ′ in polynomial time.

We then transfer from MinMax2PP to MinMax2OWFN.

Let graph G = (V,E) with source node s , destination t and

an integer X be an instance of MinMax2PP, we construct an

instance G’ of MinMax2OWFN in following way.

1) Create an identical graph G′ with same nodes and edges

in G.

2) Add one node s0 to G′.
3) Create two parallel edges e01, e02 between s0 and s,

w(e01) = w(e02) = maxe∈G(E) w(e)
4) Choose s0 to the source node in G′ and t to be the

destination.

5) Set X ′ = X + 2w(e01)

It is easy to see, the construction takes polynomial time.

Now we need to show a instance of MinMax2OWFN have

two edge disjoint paths from s0 to t with length at most X ′ if

and only if the corresponding instance have two edge disjoint

paths from s to t with length at most X .

Suppose there are two edge disjoint paths P ′
1 and P ′

2 from

s0 to t in G′, such that w+(P ′
1) ≤ w+(P ′

2) ≤ X ′. By the

way we construct G′, P ′
1 and P ′

2 must go through e01 and

e02. W.l.o.g. we say e01 ∈ P ′
1 and e02 ∈ P ′

2. Since w(e01) =
w(e02) = maxe∈E(G′){w(e)}, therefore e01 and e02 are the

crucial edge on P ′
1 and P ′

2 respectively. Hence, P ′
1 − e01 and

P ′
2−e02 are two edge disjoint path in G, with length no greater

than X ′ − 2w(e01) = X .

Conversely, now suppose P1 and P2 are two edge joint paths

in G satisfying w(P1) ≤ w(P2) ≤ X . We follow the same

argument above, P1+ e01 and P2+ e02 are two desired paths,

with length not exceeding X + 2w(e01) = X ′.

D. Optimal Solution for the Disjoint Path Problem

Here, we give an ILP formulation for MinMax2OWFN.

ILP for MinMax2OWFN

min MP

s.t.

∑
(i,j)∈E

fi,j,1 −
∑

(j,i)∈E

fj,i,1 =

⎧⎪⎨
⎪⎩

1 i = s

− 1 i = t

0 otherwise

∑
(i,j)∈E

fi,j,2 −
∑

(j,i)∈E

fj,i,2 =

⎧⎪⎨
⎪⎩

1 i = s

− 1 i = t

0 otherwise

fi,j,1 + fi,j,2 ≤ 1 ∀(i, j) ∈ E

w1 ≥ fi,j,1 ∗ w(i, j) ∀(i, j) ∈ E

w2 ≥ fi,j,2 ∗ w(i, j) ∀(i, j) ∈ E

MP ≥ w1 +
∑

(i,j)∈E

fi,j,1 ∗ w(i, j)

MP ≥ w2 +
∑

(i,j)∈E

fi,j,2 ∗ w(i, j)

fi,j,1 = {0, 1}, fi,j,2 = {0, 1} ∀(i, j) ∈ E

The following is a brief description of this ILP formulation.

The first two equation represent flow constraint as normal

shortest path problem does. fi,j,1 = 1 indicates path P1 goes

through edge (i, j), and 0 otherwise. So it is with fi,j,2 and

path P2. Constraint 3 ensures two edges are disjoint, since

fi,j,1 and fi,j,2 cannot both be 1 at the same time. w1, w2 act

as the weights of the crucial edges on P1 and P2 respectively.

Finally, we define MP to be the maximum of w+(P1) and

w+(P2) and therefore try to minimize it.

E. Approximation Algorithm for the Disjoint Path Problem,
with approximation factor 4

Next we propose a 4-approximation algorithm which runs

in O((n+m)logn) time.

Given G = (V,E) with source s and destination t, the idea

of approximation algorithm is to find two disjoint P1 and P2

such that w(P1) + w(P2) is minimized. Such P1 and P2 can

be found either using min cost max flow algorithm or the

algorithm due to Suurballe presented in [11]. And we need to

show both w+(P1) and w+(P2) are at most four times of the

optimal solution.

Algorithm 3 MinMax2OWFN Approximation Algo-

rithm 1 (MAA1)

1: Run Suurballe’s algorithm on G, denote P1, P2 be two

resulting path.

2: Compute w+(P1) and w+(P2).
3: Output max{w+(P1), w

+(P2)}.

135

Lemma 5. For any path P , w+(P) ≤ 2w(P).

Proof: By definition, w+(P) = w(P)+w(e∗(P)). Since

w(e∗(P)) ≤ w(P), then w+(P) ≤ 2 ∗ w(P).

Lemma 6. If P1 and P2 are two edge joint path from s to
t such that w(P1) + w(P2) is minimum, then w+(P1) and
w+(P2) are at most four times of the optimal solution.

Proof: Say opt is the optimal value of a

MinMax2OWFN instance and Q1,Q2 are two s − t
edge disjoint path in one optimal solution. W.l.o.g, we may

suppose w+(P1) ≥ w+(P2) and w+(Q1) ≥ w+(Q2). Let

w(P1)+w(P2) = p and w(Q1)+w(Q2) = q, by assumption,

p ≤ q. Also, we have w+(P1) = w(P1) + e∗(P1) ≤ 2p,

opt = w+(Q1) = w(Q1) + e∗(Q1) > q
2 . Hence,

w+(P2)
opt ≤ w+(P1)

opt < 2p
q/2 ≤ 4

Theorem 4. MAA1 is a 4-approximation algorithm running
in O((n+m)logn) time and 4 is a tight bound.

Proof: By Lemma 5 and 6, MAA1 has approximation

ratio at most 4.Then we show MAA1 has approximation at

least 4 for certain cases. Consider the following graph.

It is easy to check, P1 = {s → t}, P2 = {s → r → t} are

two edge disjoint path with minimum length 2k+2, w+(P1) =
4k > w+(P2) = 3. However, let Q1 = {s → u1 → u2 →
... → uk−1 → uk → r → t}, Q2 = {s → r → v1 → v2 →
... → vk−1 → vk → t}, then w(Q1) +w(Q2) = 2k+4 while

w+(Q1) = w+(Q2) = k + 3.
w+(P1)
w+Q1

= 4k
k+3 ≈ 4 when k is

sufficiently large. Hence, 4 is a tight bound for MAA1.
We need O((n + m)logn) time running Suurballe’s al-

gorithm and O(n) time computing w+(P1) and w+(P2).
Therefore total running time is O((n+m)logn).

F. Approximation Algorithm for the Disjoint Path Problem,
with approximation factor 2

In MAA1, layering technique is not used and we only

consider the original graph. However, by taking all Ge of G
into account, we can have a better approximation ratio.

Say Q1, Q2 are two disjoint paths in one optimal solution.

Let e′ = max{e∗(Q1), e
∗(Q2)} and P1, P2 be the resulting

paths when computing layer Ge′ ; w.l.o.g, we may assume

w(P1) > w(P2). Also, let anse′ = max{w+(P1), w+(P2)}.

Lemma 7. anse′ < 2max{w+(Q1), w+(Q2)}.

Proof: Noting that w(e∗(P1)) ≤ w(e′) and w(e∗(P2)) ≤
w(e′) since they both belong to Ge′ . Then anse′ ≤ w(P1) +

Algorithm 4 MinMax2OWFN Approximation Algorithm

2(MAA2)

1: set ans = ∞
2: for every Ge of G do
3: Run Suurballe’s algorithm on Ge, denote P1, P2 be

two resulting path.

4: Compute w+(P1) and w+(P2).
5: ans = min{ans, max{w+(P1), w

+(P2)}}.

6: end for
7: Output ans.

w(e′). It suffices to show
w(P1)+w(e′)

max{w+(Q1), w+(Q2)} < 2. We prove

it by contradiction. Suppose
w(P1)+w(e′)

max{w+(Q1), w+(Q2)} ≥ 2, then

w(P1) + w(e′) ≥ w+(Q1) + w+(Q2)

Which follows,

w(P1) +w(e′) ≥ w(Q1) +w(e∗(Q1)) +w(Q2) +w(e∗(Q2))

By definition, e′ is one of e∗(Q1), e
∗(Q2). Hence,

w(P1) > w(Q1) + w(Q2)

It is impossible since w(P1) + w(P2) is minimum in layer

Ge′ .

Theorem 5. MAA2 is a 2-approximation algorithm running
in O(m(n+m)logn) time and 2 is a tight bound.

Proof: By Lemma 7, in one of the layer, we guarantee

to have a 2-approximation solution. Since we take minimum

outcome among all layers, the final result is no worse than

twice of the optimal solution. Now we need to show there

exists certain case, such that MAA2 is no good than twice of

the optimal solution. Consider the following graph

There is only one layer, and P1 = {s → x1 → x2 →
... → x2k−1 → x2k → t}, P2 = {s → r → t} are two

edge disjoint path with minimum length 2k + 3, w+(P1) =
2k + 2 > w+(P2) = 3. Again, set Q1 = {s → u1 → u2 →
... → uk−1 → uk → r → t}, Q2 = {s → r → v1 → v2 →
... → vk−1 → vk → t}, then w(Q1) +w(Q2) = 2k+4 while

w+(Q1) = w+(Q2) = k + 3.
w+(P1)
w+Q1

= 2k+2
k+3 ≈ 2 when k is

sufficiently large. Hence, 2 is a tight bound for MAA2.

Finally, it is easy to see that the running time is O(m(n+
m)logn).

136

S D Opt Approx Approx Approx Approx
node node Sol Sol 1 ratio 1 Sol 2 ratio 2

14 2 47 55 1.17 55 1.17
18 8 46 46 1 46 1
1 6 28 28 1 28 1
18 4 50 58 1.16 57 1.14
20 3 40 40 1 40 1
10 3 27 27 1 27 1
1 11 35 35 1 35 1
14 6 50 52 1.04 52 1.04
20 7 38 38 1 38 1
10 5 36 38 1.05 38 1.05
18 12 22 22 1 22 1
1 20 46 52 1.13 52 1.13
20 13 26 26 1 26 1
14 19 29 29 1 29 1
10 17 36 36 1 36 1
20 16 29 29 1 29 1
5 11 40 48 1.2 48 1.2

TABLE I
COMPARISON OF THE APPROXIMATE SOLUTIONS WITH THE OPTIMAL

SOLUTION FOR THE ARPANET GRAPH

G. Experimental Results for the Disjoint Path Problem

In this section, we present the results of simulations for

comparing the performance of our approximation algorithms

with the optimal solution when w+() metric is applied.

The simulation experiments have been carried out on the

ARPANET topology (as shown in Fig 1 with nodes and links

shown in black) which has twenty nodes and thirty two links.

The weights of the links have been randomly generated and

lie in the range of two and eleven (as shown in red in Fig

1) and we consider the graph to be undirected. The results of

the comparison is presented in Table I. We have compared the

lengths of the longer of the two edge disjoint paths computed

by the optimal and the approximate solutions for seventeen

different source-destination pairs. It may be noted that for

almost 65% of the cases, the approximate algorithms obtain

the optimal solution. In the remaining cases, the approximate

solutions lie within a factor of 1.2 of the optimal solution

Thus, even though the approximation ratio in the worst case

are proven to be 4 and 2, in practical cases, it is within 1.2.

From these experimental results, we can conclude that the

approximation algorithms produce optimal or near optimal

solutions in majority of the cases. It may be noted that the

two approximation algorithms perform in a similar fashion

in the ARPANET graph, however, as proven theoretically,

the two approximation algorithms differ in their worst case

approximation ratio.

V. CONCLUSION

In this paper, we study the shortest path problem in FiWi

networks. Based on the path length metrics proposed in [3],

[5], we present polynomial time algorithms for the single

path scenario. In the disjoint path scenario, we prove that the

problem of finding a pair of disjoint paths, where the length

of the longer path is shortest, is NP-complete. We provide an

ILP solution for the disjoint path problem and propose two

Fig. 1. The ARPANET graph with 20 nodes and 32 links

approximation algorithms. Both the approximation algorithms

have a constant factor approximation bound. However, there is

a trade-off between the quality of the solution (approximation

bound) and the execution time. Finally, we show that both the

approximation algorithms obtain near optimal results through

simulation using the ARPANET topology.

REFERENCES

[1] N. Ghazisaidi, M. Maier, and C. M. Assi, “Fiber-Wireless (FiWi) Access
Networks: A Survey”, IEEE Communications Magazine, vol. 47, no. 2,
pp 160-167, Feb. 2009.

[2] N. Ghazisaidi, and M. Maier, “Fiber-Wireless (FiWi) Access Networks:
Challenges and Opportunities”, IEEE Network, vol. 25, no. 1, pp 36-42,
Feb. 2011.

[3] Z. Zheng, J. Wang, X. Wang, “ONU placement in fiber-wireless (FiWi)
networks considering peer-to-peer communications”, IEEE Globe-
com, 2009.

[4] Z. Zheng, J. Wang, X. Wang, “A study of network throughput gain
in optical-wireless (FiWi) networks subject to peer-to-peer commuinca-
tions”, IEEE ICC, 2009.

[5] F. Aurzada, M. Levesque, M. Maier, M. Reisslein, “FiWi Access
Networks Based on Next-Generation PON and Gigabit-Class WLAN
Technologies: A Capacity and Delay Analysis”, IEEE/ACM Transactions
on Networking, to appear.

[6] A. Sen, B.Hao . B. Shen , L.Zhou and S. Ganguly, “On maximum
available bandwidth through disjoint paths”, Proc. of IEEE Conf. on
High Performance Switching and Routing, 2005.

[7] M. Mosko, J.J. Garcia-Luna-Aceves, “Multipath routing in wireless
mesh networks”, Proc. of IEEE Workshop on Wireless Mesh Net-
works, 2005.

[8] J. Wang, K. Wu, S. Li and C. Qiao ,“Performance Modeling and Analysis
of Multi-Path Routing in Integrated Fiber-Wireless (FiWi) Networks”,
IEEE Infocom mini conference, 2010.

[9] S. Li, J. Wang, C. Qiao, Y. Xu ,“Mitigating Packet Reordering in
FiWi Networks”, IEEE/OSA Journal of Optical Communications and
Networking, vol. 3, pp.134-144, 2011.

[10] C. Li, S.T. McCormick and D.Simchi-Levi, “Complexity of Finding Two
Disjoint Paths with Min- Max Objective”, Discrete Applied Mathemat-
ics, vol. 26, pp. 105-115, 1990.

[11] J. W. Suurballe, “Disjoint paths in a network”, Networks, vol. 4, pp. 125-
145, 1974.

137

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

