
Wavelet Image Two-Line Coder for Wireless Sensor Node
with extremely little RAM∗

Stephan Rein, Stephan Lehmann, Clemens Gühmann
Wavelet Application Group, Dept. of Energy and Automation Technology

Technische Universität Berlin
[stephan.rein|clemens.guehmann]@tu-berlin.de uni@stephanlehmann.net

Abstract
This paper gives a novel wavelet image two-line (Wi2l) coder that is designed to

fulfill the memory constraints of a typical wireless sensor node. The algorithm op-
erates line-wisely on picture data stored on the sensor’s flash memory card while it
requires approximatively 1.5 kByte RAM to compress a monochrome picture with the
size of 256x256 Bytes. The achieved data compression rates are the same as with the
set partitioning in hierarchical trees (Spiht) algorithm. The coder works recursively
on two lines of a wavelet subband while intermediate data of these lines is stored to
backward encode the wavelet trees. Thus it does not need any list but three small
buffers with a fixed dimension. The compression performance is evaluated by a PC-
implementation in C, while time measurements are conducted on a typical wireless
sensor node using a modified version of the PC-code.

1: Introduction and Motivation

A wireless sensor network consists of small devices that typically are equipped with
a low-complexity microcontroller. These systems can gather and transfer environ-
mental information, e.g., temperature, acceleration, and sound. Pictures are rarely
taken by these low-cost systems, as the controllers are considered to be of too low
complexity to process picture data and the network itself is designed for very small
data rates. A low-complexity picture compression technique that gives good quality
for high compression rates may solve these problems in that it prevents network con-
gestion and reduces transmission times. The compression can also save energy within
the network, as the coding energy is lower than the transmission energy.

State of the art compression performance for high compression rates is achieved
with wavelet based techniques like set partitioning in hierarchical trees (Spiht). How-
ever, due to the high memory requirements of the transform and the coding system,
even recently developed versions of wavelet tree coding systems are rather applicable
to field programmable gate arrays (FPGA) or digital signal processors (DSP) than
to the typical sensor node platforms that are subject of the current sensor network
research activities. A wavelet-based picture compression system would have to get
along with extremely little memory as the employed microcontroller’s RAM and pro-
gram memory is generally exhausted by the wireless communication protocols. In this
work, such a system - the wavelet image two-line (Wi2l) coder, is detailed, which uses
a backward algorithm for coding of wavelet trees. The coder only allocates 1.5 kByte
of RAM for a monochrome picture with 256x256 8-Bit pixels. A typical sensor node
can thus be extended to a camera sensor node by a software update, a camera module,
and a flash memory card for storage of the pictures. As the cost for flash memory has
fallen dramatically while size, power consumption, and access times were improved
[7], flash memory like a multimedia card (MMC) may be a standard component of
future sensor nodes to store the gathered data and to allow for more complex appli-
cations while relieving the wireless network. To demonstrate the proposed algorithm

∗) accepted for publication at the IEEE Data Compression Conference’09, Snowbird, UT, March 2009

1

a typical sensor node is extended in this way. The node consists of the Microchip
dsPIC30F4013 controller with 2 kBytes of RAM, the C328-7640 camera module (see
http://www.comedia.com.hk), and a standard 64 MByte MMC card. The MMC card
data is accessed through the library given in [14]. Camera and flash card can be con-
nected to any controller with universal asynchronous receiver/transmitter (UART)
interface and serial port interface (SPI).

The paper is organized as follows. In the next subsection related literature is
reviewed. A recent coding system that backwards codes wavelet trees is taken as
a starting point for the own research investigations. In section 2 the low-memory
wavelet transform algorithm introduced in [10] is shortly reviewed, which is used in
this work to calculate the picture wavelet coefficients with fixed-point arithmetic using
16 Bit integer numbers. Section 3 describes the novel recursive wavelet coder includ-
ing the complete pseudo-source code that exactly reflects our own C-code program.
A performance evaluation is given in section 4, where the system is demonstrated
to give the same compression as Spiht, and time measurements are conducted for
the own sensor architecture. The last section summarizes the paper and reflects our
findings.

1.1: Related Work

There exists a large amount of literature in the field of low-memory wavelet-based
image coding. We here review work that intends to reduce the memory requirements
of Spiht, which is a standard technique for image coding that gives very competitive
compression while it is conceptually simple. We categorize the work into two classes,
the first one reducing the requirements for storage of intermediate data, and the
second one concerning the maintenance of the picture data itself. Examples of the
first class are given in [16, 15, 1, 12, 8, 13, 9], where the list of insignificant pixels
(LIP), the list of significant pixels (LSP), and the list of insignificant sets (LIS) are
reduced or excluded. As these lists are essential in Spiht and can require several
MBytes of RAM, the reported memory savings are given in respect to the lists.

In the second class of low-memory coders the memory requirements of the trans-
formed picture itself are addressed. Whereas the first class assumes free access on
each pixel, this class only considers a subset of all pixels to be accessible by the coding
algorithm. The memory needed for this subset is added to the RAM requirements.
This class is discussed in the following to be more relevant for this paper, as only a
small buffer of coefficients is available for direct coding activities.

The coders in [6, 5] both are designed for FPGA platforms and require 15 kByte
of RAM for a picture dimension of 128x128, and 0.5 MByte of RAM for a picture
dimension of 512x512, respectively. The work in [2] reports that there are at min-
imum eight memory lines needed by proposing a novel tree structure, which would
require 256x8x2 bytes RAM for a picture dimension of 256x256 using 16 Bits per
coefficient. Results are given using a Matlab simulation. While these works require
specific hardware or were not yet verified using low-level implementations, the mem-
ory requirements are still too high. We consider the backward coding wavelet tree
(Bcwt) algorithm in [3, 17] to give the most potential for a low-complexity wavelet
coder and resume its idea of backwards coding, where the encoder starts at the lowest
level. The coded coefficients can here be discarded as a map keeps track of the most
significant levels of a tree. It is actually a backward version of Spiht with same com-
pression rates with the cost that the progressive feature is distorted. If w denotes the
picture width in pixels, Bcwt requires 42·w coefficients (16 Bit) and 3·w quantization
levels (8 Bit) for the map, resulting in more than 20 kBytes of RAM for a 256x256
picture. This is due to the fact that coding one Bcwt unit requires data from several

vertical filter area

LL HL

LH HH

LL HL

HHLH

Al(j)/Ah(j)

update

read
line

current input row

horizontal filter

INT16

INT16

destination INT16INT8pic
SD−card

INT8

a)

MaxLevel−3

start

2k

2k+1

k+1

k

two lines
second

lines
first two

recursively code

MQL

HL

HHLH

last two
levels

G
qm mi Gi q

MaxLevel−2

b)

Figure 1. Fig.a) shows the system for the picture wavelet tra nsform. The horizontal
wavelet coefficients are computed on the fly and employed to co mpute the frac-
tional wavelet coefficients that update the subband buffers . Fig.b) illustrates how
Wi2l recursively codes two lines from right to left using a sm all buffer with level
information of the lines. Such a buffer exists for each wavel et subband from the
third highest level.

lines from different wavelet levels. A Bcwt unit codes a block of 16 coefficients while
data of the parent coefficients is required. A unit generally also needs tree level data,
which is stored in a list that concerns a complete subband.

This paper introduces the novel backward Wi2l coder that in contrast to Bcwt
operates on two lines of a subband and only stores intermediate results concerning
these lines in a small maximum quantization level (MQL) buffer. Thus the memory
requirements are approximatively 1.5 kByte for the reference picture dimension of
256x256 pixels. To our best knowledge such a low-requirement system has not yet
been proposed in the literature.

2: Low-Memory Fixed-Point Wavelet Transform

In this section we give a short outline of the low-complexity wavelet transform
technique that is introduced in [10] and employed in this work before the coding
algorithm starts. The same limitations than for the encoder hold true for the trans-
form: 1)RAM memory requirements should be very low, as the total RAM of the
controller is smaller than 2 kByte, and 2) picture data can be read line by line from
external memory. This is due to the flash memory card, which only can read or
write blocks of 512 Bytes. The transform uses the Daubechies 9/7 filter coefficients
and real numbers are computed with fixed-point arithmetic on 16 Bit integers. Thus
the controller only performs integer calculations, where we use INT8 and INT16 to
denote the integer data format with 8 or 16 Bits. The system is illustrated in figure 1
a) and works as follows for the first wavelet level. The picture is located on the flash

a) Code2Lines(band,level,k)

//Code l i n e k and l i n e (k+1):
1) i f level > 1

Code2Lines(band, level − 1, (2k + 2))
Code2Lines(band, level − 1, (2k))

2)Read l i n e s k and (k + 1) to bu f f e r
3)DimMql=DimPic/2level+1

for TwoSets=DimMql−1:−2:1{
3a) for i =1:−1:0

s e t (i)=TwoSets+i−1
i) i f level > 1 get qGi(level − 1, 2set(i))

from bu f f e r
else qGi = −1

i i)mi = max
{

qGi, max∀j∈set(i){qj}
}

i i i) i f mi ≥ qmin

A) i f level > 1
encode qGi(level − 1) us ing mi

B) ∀ j ∈ set(i) do encode cj

us ing mi

3b) i f k/2==odd {Write m0,1 to
bu f f e r (TwoSets, TwoSets − 1)}

else // second two l i n e s
i)Get m2,3 o f p rev iou s two l i n e s

from bu f f e r
i i)qG = max{m0, m1, m2, m3}

i i i) i f qG ≥ qmin

encode m0...3 us ing qG

i v) Write qG to bu f f e r (TwoSets − 1)
}// loop 3)

b) Decode2Lines(band,level,k)

// decode l i n e (k+1) and l i n e k :
1) I n i t c o e f f i c i e n t s in

l i n e bu f f e r with 0
2)DimMql=DimPic/2level+1

for TwoSets=1:2 :DimMql−1 {
2a) i f k/2==even

i)Get qG from bu f f e r
at p o s i t i o n(TwoSets − 1)

i i) i f qG ≥ qmin

decode m3, m2, m1, m0 us ing qG

else i n i t the se l e v e l s with −1
i i i)Put m2, m3 to bu f f e r at

p o s i t i o n (TwoSets − 1) , TwoSets
else { // k/2 i s odd :
Get m0, m1 from bu f f e r at
p o s i t i o n (TwoSets − 1) and TwoSets

}
2b) for i =0:1

i) i f mi ≥ qmin decode s e t i o f
c o e f f i c i e n t s us ing mi and
wr i t e to l i n e bu f f e r

i i) i f level > 1
A) i f mi ≥ qmin{decode

qGi(level − 1) us ing mi}
else qGi(level − 1) = −1

B)Put qGi(level − 1, 2 · (TwoSets + i − 1))
to bu f f e r

}// loop 2)
3) Write l i n e s (k + 1) and k from l i n e

bu f f e r to d e s t i n a t i on
4) I f l e v e l >1

Decode2Lines (band, level − 1, (2k))
Decode2Lines (band, level − 1, (2k + 2))

Figure 2. Core function of the novel Wi2l coder (fig.a)) and de coder (fig.b)). Even
if two lines are coded recursively, the input line buffer and the MQL buffer are the
same for all instances. Coding of levels and MQL buffer activ ities vary with coding
the first or the second two lines.

memory in the INT8 data format. Three buffers have to be allocated in the RAM
memory, one for the input line and two destination buffers that are updated by the
wavelet algorithm until they keep the final coefficients. The buffers need N/level · 5
Bytes for a picture with the dimension NxN and a transform with level levels. So
for a 256x256 dimension, 1280 Bytes are needed. The first picture line is read into
the input line buffer. Two wavelet coefficients one for the lowpass filter Al and the
other one for the highpass filter Ah are computed on the fly. These two values are
used to compute four fractions of four coefficients each of them referring to one of
the wavelet subbands LL, HL, LH, HH , where HL for instance denotes the subband
resulting from horizontal highpass filter operation followed by a vertical lowpass fil-
ter operation. This operation of computing four fractions is repeated until Al and
Ah have been slided over the whole input line and the two destination buffers are
filled. Now the same procedure is repeated for the next eight picture input lines,
as the larger vertical filter has nine coefficients. For each input line the fractional
coefficients in the destination buffers are updated. After the last update operation
four wavelet subband lines are located in the destination buffers and can be written
to the flash card. The other subband lines are computed as well. For the next level
the LL subband on the card is used as the input for the input buffer. The input
buffer must now be of the type INT16 and keep N/2 elements.

MQL buffer level l

m0 m1

maxmax

q q

2 1
34

lines
first two

level l−1

set 2 set 3set 0

0 1

0 7GG

MQL buffer

a)

M
Q

L buffer

maxmax

q q

2 1
34

lines

level l−1

set 2 set 3set 0

0

0 7GG

m
0

m
1

m

max

2

3

second two 3
m

level l

MQL buffer

b)

Figure 3. Fig.a) illustrates how the Wi2l algorithm acts on t he first two lines. The mi

levels are computed retrieving the qG levels through the MQL buffer of the previous
level. The result is stored to the current level MQL buffer. I n fig. b) the mi levels for
the second two lines are computed similarly. The mi levels of the first two lines are
retrieved from the current level MQL buffer to compute the qG levels for the next
wavelet level.

The first level coefficients are in the Texas Instrument’s Q10.5 data format, the
second level coefficients in the Q11.4 format, and so on. We typically use 6 levels. The
filter coefficients are in the Q15 data format. In our implementation, each wavelet
level is stored on a separate location on the flash card. Thus it is possible to access
two wavelet subband lines by one read operation.

3: A Novel Coding Algorithm

3.1: Binary Notation and Quantization Levels

In this subsection the binary output when coding coefficients or levels is described.
A coefficient c is coded using a minimum quantization level qmin and a maximum
quantization level qmax. qmin is constant throughout the coding procedure and is
thus omitted in the algorithm description. If B(c)|ba denotes the binary sequence of
a coefficient c starting at the ath and ending at the bth right most bit, c is coded as
B(c)|qmax

qmin
, where qmax denotes the maximum quantization level relevant for the current

set of coefficients. As c can be negative, a sign bit precedes this binary sequence.
Coding a level q is done using qmax by writing the binary output B(2q)|qmax

max{q,qmin}
.

The work in [3] gives examples using this notation. Note that the quantization level
for a coefficient c is given as ⌊log2 |c|⌋ if |c| ≥ 1 and as −1 otherwise. Levels are
implemented with the INT8 data type.

This paper also uses the typical Spiht notation [11] in that a coefficient c(i, j)
has four children C(pos(., .)) at the positions (2i, 2j), (2i, 2j + 1), (2i + 1, 2j), and
(2i+1, 2j +1). The level mi denotes the maximum quantization level of set i of four
coefficients and all the descendant coefficients (including the children, children of the
children, and so on). A quantization level qGi is the maximum quantization level of
a set of 16 coefficients (that are the children of the coefficients in set i) and all their
descendants.

3.2: Coding of Two Lines

The core of the novel algorithm is a recursive function that codes two lines of a
wavelet subband. Three buffers - the line buffer, the maximum quantization level

a) CodePic():

1) // Code 3 subbands :
list = {HL,LH, HH}
for i =1:3 {

1a) Code2Lines (list(i),
level = MaxLevel − 2, k = 2)

1b)qG(i)=Code2Lines (list(i),
level = MaxLevel − 2, k = 0)

}
2) CodeLast2Levels (qG(i = 1, 2, 3))

b) DecodePic():

1)qG(i = 1, 2, 3)=DecodeLast2Levels ()
2) // Decode the 3 subbands :

l i s t={HL, LH,HH}
for i =3:1 {

2a) Write qG(i) to appropr ia t e bu f f e r
p o s i t i o n

2b) Decode2Lines (list(i),
level = MaxLevel − 2, k = 0)

2c) Decode2Lines (list(i),
level = MaxLevel − 2, k = 2)

}

Figure 4. Main loop of the Wi2l coder for low-memory encoding (fig. a)) and decod-
ing (fig. b)). It is sufficient to call the recursive core funct ion two times from the
third highest level to completely code one of the three subba nds from this level.

(MQL) buffer, and the input/output buffer for binary data, are employed within the
function. The line buffer is loaded with two lines from a wavelet subband located
on the flash memory. Its dimension is given as N · 2 Bytes, where N · N is the
picture dimension. The MQL buffer maintains maximum quantization levels of the

coefficients. Its dimension is given as
∑log2(N)−2

i=1 N/2i+1. A function qGi(level, n)
retrieves the nth element of the buffer for a given level. The third buffer reads or
writes the binary compressed data and is set to 512 Bytes. As each recursive function
call puts variables onto the stack, we also calculate 256 Bytes for stack content. Thus
we get a total memory of 512+512+126+256=1406 Bytes for N = 256.

We now go through this function given in figure 2 a). The function is called with
parameters specifying the two lines to be coded. These include the subband given
as HL, LH or HH , a wavelet level, and the line index k, which results into coding
blocks of 4 coefficients within the lines k and k + 1.
In step 1) the four child lines of lines k and k + 1 are coded. This makes sure that
the qG levels of all child coefficients of lines k and k + 1 are computed. One of these
MQL levels refers to 16 child coefficients.
In step 2) the two lines of coefficients to be coded are read into the line buffer. There
only exists one line buffer for all function calls. Even if there exist recursive calls, the
buffer is relieved when the function returns.
In step 3) the main loop for the function is started. This loop goes through all sets
of eight adjacent coefficients in the two lines from right to left. Such a set is denoted
by the variable TwoSets.
In 3a) this set is divided into two subsets set(i = 0, 1) each of them having 4 coeffi-
cients. For each set(i) the function goes through three steps: In i) qGi is retrieved from
the buffer and used in ii) together with the coefficient quantization levels qj, j ∈ set(i),
to compute the level mi. In iii) qGi and set(i) of coefficients are coded.
In 3b) the function detects if the first two or the second two lines are coded. Actions
for each of these situations are different, as a set of eight coefficients denoted by
TwoSets in two lines forms a unit with the eight corresponding coefficients in the
next two lines. Such a unit is coded as a whole in Bcwt and Spiht, but is broken
here into several parts that are intermitted by parts of other units and quantization
levels. If the function concerns the first two lines, then the two quantization levels
m0 and m1 are written to the MQL buffer at the positions (TwoSets, TwoSets− 1)
of the current level. The MQL buffer then serves to store intermediate results. When
the function is called for the next two lines, these two quantization levels will be
retrieved in 3b) i) and here denoted as m2, m3. Then they are used in ii) to compute

a) CodeLast2Levels(qG(i = 1, 2, 3)):

1)Read 4x4 matrix o f l a s t two
l e v e l s in to input l i n e bu f f e r

2) //Denote p o s i t i o n s o f H and H\LL

pos [4]={0 ,1 ,4 ,5}
3) for i =1:3

m(i) = max
{

qG(i), maxj∈C(pos(i)){qj}
}

4)qG(0) = maxi=1,2,3{m(i)}
5) for i =1:3 {
5a) Encode qG(i) us ing m(i)
5b) //Encode c o e f f i c i e n t s o f the

//MaxLevel−1 bands HL,LH,HH
i f m(i) ≥ qmin do ∀j ∈ C(pos(i))
encode cj us ing m(i)

5c) Encode m(i) us ing qG(0)
}

6)m(0) = max {qG(0), maxi=0...3{q(pos(i))}}
7) Encode qG(0) us ing m(0)
8) //Encode c o e f f i c i e n t s o f H:

for i =0:3 Encode c o e f f i c i e n t
at pos (i) us ing m(0)

9) Encode m(0) us ing qmax

b) DecodeLast2Levels():

//a 4x4 matrix i s decoded
1) Decode m(0) us ing qmax

2) pos [4]={0 ,1 ,4 ,5}
3) for i =3:−1:0 Decode c o e f f i c i e n t

at pos (i) us ing m(0)
4) Decode qG(0) us ing m(0)
5) for i =3:−1:1 {
5a) Decode m(i) us ing qG(0)
5b) i f m(i) ≥ qmin do ∀j ∈ C(pos(i))

decode cj us ing m(i)
5 c) Decode qG(i) us ing m(i)

}
6) Write decoded c o e f f i c i e n t s

from l i n e bu f f e r (4 x4 matrix)
to d e s t i n a t i on matrix

7) Return qG(i = 1, 2, 3) to decoder
main funct ion

Figure 5. The Wi2l coder uses a standard technique related to Spiht for coding
(fig.a)) and decoding (fig.b)) the last two wavelet levels. It makes sure that the
enclosed coefficients and the quantization levels of the con nected trees are coded.

the quantization level qG. In iii) the levels m0,1,2,3 are coded and in iv) qG is written
to the MQL buffer at position (TwoSets − 1) for the current level.

As can be concluded now, four adjacent lines have to be coded in step 1) to compute
the corresponding qG levels, which are then written to the MQL buffer at position
TwoSets − 1 to be accessed by function calls at the next higher level. The value
in the MQL buffer at position TwoSets is not needed any more. For completeness
the decoding algorithm is listed in figure 2 b). The encoding procedure and the
difference between coding the first and the second two lines is illustrated in figure
3. Fig. a) refers to the coding of the first two lines. Note that coding a set i of
coefficients is interluded by coding the corresponding qGi level. When the second
two lines of a subband are processed (fig. b)), coefficients and qG levels are coded
similarly. However, the coding of two sets is interluded by encoding the four mi levels
for the current two sets and the associated two sets of the previous two lines.

3.3: Main Loop and Coding of the Last Levels

The main loop for the coding process is illustrated in figure 4. For each of the
three possible wavelet subbands the recursive function Code2Lines() has to be called
two times, one time for the first two lines in the level MaxLevel − 2, and a second
time for the second two lines of this level. As illustrated in figure 1 b) the coder then
goes recursively through all the levels of the given subband, starting to encode the
lines from the lowest level. The qG level of the MaxLevel − 2 subband is passed to
the function CodeLast2Levels(), which is given in figure 5.

Coding of the last two levels is performed through a separate function, as the last
two wavelet levels are given as a 4x4 matrix and the typical qG levels for sets of
16 coefficients do not exist any more. In step 1) the coefficients are read into the
line buffer. In step 2) the set H of coefficients, which refers to the highest wavelet
subbands, is denoted by the position array pos[]. When the first position p[0] is left,
the array denotes the set H\LL, which is the set H excluding the LL subband. Step

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0.01 0.1 1

P
S
N
R

[
d
B
]

[bpb]

bird
bridge
camera
circles
crosses
goldhill

horiz
lena

montage
slope

squares
text

a)
 0.01 0.1 1 [bpb]

bird
bridge
camera
circles
crosses
goldhill

horiz
lena

montage
slope

squares
text

b)

Figure 6. Fig. a) compares the achieved PSNR values for 9 diff erent bits per byte
rates resulting from the Wi2l minimum quantization levels 8 ,7,..,0, where the dots
refer to Spiht and the lines to Wi2l. For the lower bpb rates, t he achieved picture
quality is nearly the same. As Wi2l uses a lossy, fixed-point w avelet transform,
Spiht goes beyond Wi2l from roughly 50 dB. In Fig. b) wavelet l evel 5 is used for
Wi2l.

3) computes the mi levels i = 1, 2, 3 for the children of the set H\LL. In step 4) qG(0)
is defined as the maximum of these mi. In step 5) qG(i = 1, 2, 3) of the MaxLevel−2
subbands and the coefficients with their mi levels for the MaxLevel−1 subbands are
coded. In step 6) m(0) is defined as the maximum quantization level of all coefficients.
In the steps 7) and 8) qG(0) and the coefficients of set H are coded. In the last step
m(0) is coded using a predefined maximum quantization level qmax, which is set in
the source code in accordance to the word length.

4: Performance Evaluation

4.1: Compression Results

For the quality evaluation the GreySet1 test images from the Waterloo Repertoire
(available at http://links.uwaterloo.ca/bragzone.base.html) were employed.
This set contains twelve 256x256x8 greyscale images in the graphics interchange for-
mat (GIF). The pictures were converted to the portable network graphics (PNG)
format using the convert command of the software suite ImageMagick. Finally, the
data was converted to plain text with unsigned char numbers (INT8) using the soft-
ware Octave. The data was then transformed with 6 levels and coded using an
own C-implementation of the fractional wavelet filter and the Wi2l coder, and then
retransformed in a similar way. The reconstructed picture was compared to the
original by computing the peak signal-to-noise ratio (PSNR). The measurements
were repeated for the minimum quantization levels qmin = 0 . . . 8. The same PSNR
computation was done using the Spiht executable programs fastcode and fastdecd
from http://www.cipr.rpi.edu/research/SPIHT/spiht3.html, where the previ-
ously achieved bits per byte (bpb) rate from Wi2l for the different qmins were taken
as an input parameter for fastcode. The resulting comparison is illustrated in figure
6 a) for wavelet level 6. In figure b) level 5 is used for the Wi2l coder. For picture
qualities lower than 45 dB, the performance of Spiht and Wi2l is nearly identical. For
the range of higher picture qualities, the PSNR values of Spiht go beyond the values

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

b
i
r
d

b
r
i
d
g
e

c
a
m

c
i
r
c

c
r
o
s
s

g
o
l
d

h
o
r
i
z

l
e
n
a

m
o
n
t
a
g
e

s
l
o
p
e

s
q
u
a
r

t
e
x
tt

i
m
e
[
s
e
c
]

read
calc

write

a)

 9.4

 9.5

 9.6

 9.7

 9.8

 9.9

 10

 10.1

 10.2

b
i
r
d

b
r
i
d
g
e

c
a
m

c
i
r
c

c
r
o
s
s

g
o
l
d

h
o
r
i
z

l
e
n
a

m
o
n
t
a
g

s
l
o
p
e

s
q
u
a
r

t
e
x
tt

i
m
e
[
s
e
c
]

write
calc
read

b)

Figure 7. Coding (fig.a)) and decoding (fig.b)) time for a 256x 256x8 picture on a real
controller (dsPIC4013) with 29 MIPS. For each picture 9 meas urements are visible
for qmin=0..8. For each measurement the time for coding, read and wri te access is
given.

of the Wi2l coder. This is because Wi2l uses a lossy, fixed-point wavelet transform for
sensor nodes. There is not much difference between level 6 (fig.a)) and level 5 (fig.b))
in the figures. For the lower compression rates, level 5 performs slightly better.

4.2: Coding Time on Sensor

For the coding time measurements a real wireless sensor platform with the con-
troller dsPIC30F4013 was employed, where the speed was set to 29.491 million in-
structions per second (MIPS). The PC-code was modified in that an MMC card
is used for data exchange. The data can be wavelet coefficients or the compressed
binary data stream, for which a write buffer of 512 Bytes was allocated. Figure 7
shows the results for a) coding and b) decoding times. For each picture, qmin was
varied from 0 . . . 8. The lower the quantization levels, the longer the coding time.
For the encoder the read access times stay almost constant at 0.96 seconds and take
the largest proportion, as each coefficient has to be read. For qmin = 4 most pictures
give coding times shorter than 1.3 seconds. For the decoder the write access time
take 9.3 to 9.5 seconds, thus total decoding time is approximatively 10 seconds. This
is because the decoder’s write access is not sequentially as it is for the binary stream
of the encoder. As detailed in [14], random write access on the MMC card is very
slow and not stable.

5: Conclusion and Future Work

In this paper, the Wi2l coder for wavelet image compression was introduced. Wi2l
is designed to fulfill the constraints of low-complexity sensor networks, which in the
past were considered to be not sufficient for image processing. The coder reads two
lines of a wavelet subband and codes the image backwards. For the image transform,
a fixed-point wavelet filter is employed so that the complete system only performs
integer calculations. As the coder works recursively, there only exists a small buffer
for each wavelet level where intermediate results for the two lines are stored. Thus
the memory requirements are extremely low: As it is demonstrated in this paper, a
256x256x8 Bit monochrome picture can be compressed using the dsPIC30F4013, a

low-cost controller with a total of 2 kByte RAM. As Wi2l is a backward version of
Spiht, it achieves the same compression rates. Due to the employed lossy wavelet
transform, the system is not suitable for lossless image compression. However, the
loss of picture quality is barely visible for PSNR values higher than 40 dB, and loss-
less compression may be a minor issue regarding the application of sensor networks.
Similarly, the long decoding times may be of secondary interest, as the pictures may
be decoded outside of the sensor network.

Future work on Wi2l may integrate a progressive feature, as a bit-rate control is
not yet possible. (For Bcwt such a feature was addressed in [4]). To speed up the
algorithm, the three wavelet subbands can be coded as a whole, so that two lines
contain two lines of each of the HL,LH, and the HH subbands. Another issue may
concern the interconnection of the transform and the Wi2l coding system to minimize
flash memory access.

References

[1] H. Arora, P. Singh, E. Khan, and F. Ghani. Memory efficient set partitionning in hierarchical tree
(Mesh) for wavelet image compression. In Proc.of IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP ’05), volume 2, pages 385–388, March 2005.

[2] L.W. Chew, L.-M. Ang, and K.P. Seng. New virtual spiht tree structures for very low memory strip-
based image compression. In IEEE Signal Processing Letters, volume 15, pages 389–392, 2008.

[3] J. Guo, S. Mitra, B. Nutter, and T. Karp. A fast and low complexity image codec based on backward
coding of wavelet trees. In Proc. of the Data Compression Conference (dcc’06), March 2006.

[4] J. Guo, B. Nutter S. Mitra, and T. Karp. Backward coding of wavelet trees with fine-grained bitrate
control. In Journal of Computers, volume 1, pages 1–7, July 2006.

[5] A. Kumarayapa, X.-F. Zhang, and Y. Zhang. Simplifying Spiht for more memory efficient onboard
machine-vision codec and the parallel processing architecture. In Proc. International Conference on
Machine Learning and Cybernetics, volume 3, pages 1482–1486, Aug. 2007.

[6] M. Lanuzza, S. Perri, P. Corsonello, and G. Cocorullo. An efficient wavelet image encoder for FPGA-
based designs. In Proc. of IEEE Workshop on Signal Processing Systems Design and Implementation,
pages 652–656, Nov. 2005.

[7] A. Leventhal. Flash storage memory. In Communications of the ACM, volume 51, July 2008.

[8] J. Lian, K. Wang, and J. Yang. Listless zerotree image compression algorithm. In Proc.of 8th Inter-
national Conference on Signal Processing, volume 2, 2006.

[9] Hong Pan, W.C. Siu, and N.F. Law. Efficient and low-complexity image coding with the lifting scheme
and modified Spiht. In Proc. of IEEE International Joint Conference on Neural Networks (IJCNN
’08), pages 1959–1963, July 2008.

[10] S. Rein, S. Lehmann, and C.Gühmann. Fractional wavelet filter for camera sensor node with external
flash and extremely little RAM. In Proc. of the ACM Mobile Multimedia Communications Conference
(Mobimedia ’08), July 2008.

[11] A. Said and W.A. Pearlman. A new, fast, and efficient image codec based on set partitioning in
hierarchical trees. In IEEE Transactions on Circuits and Systems for Video Technology, volume 6,
June 1996.

[12] M. Sakalli, W.A. Pearlman, and M. Farshchian. Spiht algorithms using depth first search algorithm with
minimum memory usage. In Proc. of 40th Annual Conference on Information Sciences and Systems,
pages 1158–1163, March 2006.

[13] Y.K. Singh. ISpiht-improved Spiht: A simplified and efficient subband coding scheme. In Proc. of
International Conference on Computing: Theory and Applications (ICCTA’07), pages 468–474, March
2007.

[14] S.Lehmann, S.Rein, and C.Gühmann. External flash filesystem for sensor nodes with sparse resources.
In Proc. of the ACM Mobile Multimedia Communications Conference (Mobimedia ’08), July 2008.

[15] C.-Y. Su and B.-F. Wu. A low memory zerotree coding for arbitrarily shaped objects. In IEEE
Transactions on Image Processing, volume 12, pages 271–282, March 2003.

[16] Y. Sun, H. Zhang, and G. Hu. Real-time implementation of a new low-memory Spiht image coding
algorithm using DSP chip. In IEEE Transactions on Image Processing, volume 11, pages 1112–1116,
Sep. 2002.

[17] L. Ye, J. Guo, B. Nutter, and S. Mitra. Memory-efficient image codec using line-based backward coding
of wavelet trees. In Proc. of the Data Compression Conference (dcc’07), 2007.

