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a b s t r a c t

This paper introduces the wavelet image two-line (Wi2l) coding algorithm for low
complexity compression of images. The algorithm recursively encodes an image back-
wards reading only two lines of a wavelet subband, which are read in blocks of 512 bytes
from flash memory. It thus only requires very little memory, i.e., a memory array for two
wavelet subband lines, an array to store intermediate tree level data, and an array for
writing binary data. A picture of 256�256 pixels would require 1152 bytes of memory.
Computation time for the coding is derived analytically and measured on a real system.
The times on a low-cost microcontroller for 256�256 grayscale pictures are measured as
0.25–0.6 s for encoding and 0.22–0.77 s for decoding. The algorithm can thus realize a low
complexity system for compression of images when combined with a customized scheme
for the wavelet transform; low complexity here refers to low memory, minimum write
access to flash memory, usage of integer operations only, and low conceptual complexity
(ease of implementation). As demonstrated in this paper, a compression performance
similar to JPEG 2000 and the more recent Google WebP picture compression is achieved.
The compression system uses flash memory (SD or MMC card) and a small camera sensor
thus building an image communication system. It is also suitable for mobile devices or
satellite communication. The underlying C source code is made publicly available.

& 2015 Published by Elsevier B.V.
1. Introduction

The storage, communication, and sharing of pictures is
usually alleviated or even made possible by picture
ceedings of the IEEE
HT, March 2009,

: þ45 9815 1583.
compression techniques. There exist different compression
techniques, for example, the cosine transform used by JPEG or
wavelet-based techniques used by JPEG 2000. The wavelet-
based techniques generally give better compression perfor-
mance, however, the available implementations are rather
designed for PC-usage and not for low complexity devices
such as wireless sensors. It is not convenient for users and
developers to care about different image compression stan-
dards. The feature of JPEG is that it more or less runs on every
device, as its complexity is rather low. A new compression
technique that gives better performance is more likely an
alternative (to JPEG) if it is applicable to a wide range of
devices.
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Fig. 1. Camera sensor node with the Microchip dsPIC30F4013 controller
that serves to evaluate the proposed coding algorithm.
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Despite the compatibility issue, low complexity tech-
niques save computational and memory requirements,
which are usually limited or shared between different
applications. A wise access of memory and minimum
number of operations can save energy and improve user-
responsiveness on mobile phones. The effective compres-
sion will also support the smart space, as the underlying
tiny sensor nodes usually employ microcontrollers with
little random access memory (RAM) in the range of a few
kilobytes. A low complexity compression algorithm will
allow to upgrade such nodes to a camera sensor node by
connecting a small camera sensor to them. Moreover,
phones and sensors both employ flash memory (multi-
media or secure digital cards) for intermediate data
storage, which use block-wise access to ideally be taken
into account by the compression system. In this paper, we
propose a wavelet-based image compression coding algo-
rithm that gives state-of-the-art image compression, while
the data access is line-wise and limited in space and time.
The given memory requirements are in line with the
limitations of the typical low-cost microcontrollers. A
picture of 256�256 8 bit pixels can for instance be
compressed using less than 1500 bytes of RAM.

The proposed coding algorithm requires a wavelet
transform of the picture of interest. A picture wavelet
transform results in a picture of the same dimension and
allows a suitable coding technique to summarize the
observed patterns, e.g., areas of zero-coefficients. In this
paper we use a line-based wavelet transform and store the
transformed image on flash memory. As the forward
transform is regardless of the required compression rate,
the intermediate storage of the transformed picture has
the advantage that the transform can be reused for
different quality versions of the image and is thus com-
puted only once. On the receiver entity the picture is
decoded similarly using the line-based algorithm and then
inversely transformed to obtain the reconstructed image.
Here the transform has to be repeated if the receiver
requests for a new compression rate. For a sensor node, the
line-wise coding gives the advantage that the binary data
can be accessed directly from the flash memory. Thus, for
encoding a picture, a very small buffer to store two
subband lines is needed, and then the corresponding
compressed binary stream can be written to the flash
memory or directly be sent out.

In standard tree-based wavelet coding, such as per-
formed with the Set-Partitioning in Hierarchical Trees
(SPIHT) algorithm [1], the coefficients are scanned in a
tree-based manner for each bit plane. This results in
several scans of a transformed picture, and the access
pattern is not line-wise. Furthermore, different lists to
store the types of the coefficients due to the coding of
previous bit-planes need to be maintained, which exceed
the memory resources of a small sensor. The new algo-
rithm encodes the image recursively and backwards, and
thereby only needs a very small buffer for intermediate
information between consecutive lines. Each image line is
only accessed once. The backwards encoding starts to
access the coefficients from the lowest wavelet level. To
decode the image properly, the binary stream needs to be
read at the receiver in the reversed order. The reversion
can be performed on the sender or the receiver entity. We
note that the reversal of the bit stream is not an explicit
operation, but a rule that can be achieved by setting a
reading pointer to the correct position and reading the
data in the required order. A sensor node, for instance, if it
saves the binary stream on the flash memory, can read the
stored data reversely for the sending procedure. On the
receiver the image is decoded in the usual order from the
top wavelet level on. A drawback of the required data
reversion is that it is not possible to perform an online
data compression; the complete picture data needs to be
encoded before the decoding can start.

The paper is structured as follows. In the next subsec-
tion related work is reviewed. In Section 2, we first shortly
describe the so-called fractional wavelet transform, which
is a computational scheme employed in this paper to
transform the image with very little memory and integer
calculations only. Then we give our notation for the tree-
based coding and explain the principle of backwards
wavelet coding. Specifically, we have implemented a
recently introduced backwards algorithm as a reference
for the introduced line-based algorithm. In Section 3, we
describe the new algorithm, which is compared in Section
4 to the BCWT reference implementation, to SPIHT, to JPEG
and JPEG 2000, and to the recent Google WebP format. We
also implement the new algorithm on a 16 bit microcon-
troller and conduct measurements on the camera sensor
node illustrated in Fig. 1 to estimate the required coding
times. In the last section the paper is concluded.

1.1. Related work

In this section we motivate the selection of a wavelet-
based coding technique as a starting point and review
related work for low complexity coding of wavelet-
transformed pictures. We aim for a lossy compression
system for natural images that is of low complexity and
practical to implement. While there exist many proposals
for new algorithms for image compression, there only exist
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a few number of well-known standards. From the JPEG
committee, these are the JPEG image coding standard
(ITU-T T.81 ∣ ISO/IEC 10918-1), the more recent JPEG XR
standard (ITU-T T.832 ∣ ISO/IEC29199-2), and the JPEG
2000 standard (ITU-T T.800 ∣ ISO/IEC 15444-1). Recently,
there has also been proposed the WebP format from
Google based on the VP8 image and video compression
[2], which uses a block-based predictive coding. While the
underlying methods of these methods are not necessarily
designed for very low complexity platforms such as
microcontrollers in wireless sensors, it yet makes sense
to include them in our considerations as a reference for
compression performance. The JPEG technique is more
than 20 years old and does not give state-of-the-art
compression any more [3]. The JPEG XR technique con-
sistently outperforms JPEG and is very practical in terms of
implementation; its performance is however slightly
lower than with JPEG 2000 [4]. The WebP format is not
yet extensively evaluated for a wide range of pictures,
however, it is concluded from the measurements in [5]
that its performance is close to JPEG 2000. A more
important finding (that will be confirmed by our results
in Section 4) is that for very high compression rates (such
as 0.125 bpp), the JPEG and VP8 techniques do not provide
support, and JPEG XR is outperformed by JPEG 2000.
Another compression technique for still images that has
only attained little attention is the AVC (H.264, MPEG-4
Part 10) intra-frame coding [6] based on a block-based
integer DCT transform. It is evaluated in [7,8] to give
similar or better compression performance for medium
and high bit rates, while at very low bit rates JPEG 2000
can achieve better PSNR values. The employed block-based
transform can result in visible artifacts which do not
appear with the wavelet-based method, where the picture
is transformed as a whole. The artifacts due to the block-
based processing are addressed in [9], however, applica-
tion on low-complexity target platforms is not aimed.

A low complexity sensor node can rather communicate
with low data rates, thus high compression is a basic require-
ment. Another reason for high compression is the lower
computational cost, which can save energy and time. As the
literature states that the wavelet-based methods are very
suitably for high compression, we select the wavelet trans-
form for data pre-processing. Another reason for selecting the
wavelets is that there already exist low complexity algorithms
for the transform [10–12] and previous works on coding
algorithms to be reviewed in the following, which give
promising compression already without using entropy coding.

An established wavelet coding scheme for natural
images that is included in most textbooks on data com-
pression (e.g. in [13]) is the Set Partitioning in Hierarchical
Trees (SPIHT) algorithm [1], which is based on the
Embedded Zerotree Wavelet (EZW) [14]. Regarding its
low complexity and our specific use-case that does not
require the complete range of image types (including for
instance artificial or medical images), the algorithm gives
promising compression performance which is competitive
to JPEG 2000, see the results in [3]. Entropy coding, as for
instance arithmetic coding [15], is not needed. We there-
fore limit our considerations on previous work on wavelet
coding to approaches that aim to reduce the complexity
and memory requirements of SPIHT. These can be a few
Megabytes only for the list entries, as the list approxi-
mately requires twice the memory as for the total number
of coefficients [16]. We differentiate between three classes
of literature aiming for (a) reduction of intermediate data,
(b) reduction of picture data, and (c) improved speed and
energy usage.

SPIHT maintains three lists: the list of insignificant pixels
(LIP), the list of significant pixels (LSP), and the list of
insignificant sets (LIS). Works of class (a) are given in [16–
22], and the memory savings are due to reduction of list
entries or cancellation of the lists. As these works assume the
complete original picture to be kept in the memory, these
works do not comply to our use-case of little RAM in the
sensor node. Works of class (b) require a subset of the original
image, and are reviewed in the following. In [23,24] coding
systems for FPGA platforms are given, which require 15 kB of
RAM for a picture dimension of 128�128 and 0.5 MB of RAM
for a picture dimension of 512�512. The coder in [25] uses –
at minimum – memory for eight picture lines with the use of
a novel tree structure, and requires 256�8�2 bytes RAM for
a picture dimension of 256�256 using 16 bits per coefficient.
The system is verified via a Matlab simulation. The more
recent algorithmic in [26] performs single lines of the image
that exceed the symmetrical part. These lines are transformed
and coded differently thus giving a better compression
performance, while no line-based solution for the symme-
trical part is given.

Examples for works that relate to class (c) are the high-
speed version of SPIHT in [27], which gives slightly lower
performance, and the work in [28], which presents a
wavelet-based technique called SHPS (Skipped High- Pass
Sub-band) to distribute the computations over cooperating
sensor nodes. SHPS can be parameterized to obtain differ-
ent trade-offs between the image quality and the energy
expended for compression and transmission of the image.
A principle that is more in line with our low memory
requirements in the range of a few kilobytes is the back-
ward coding wavelet tree (BCWT) [29–31]. It belongs to the
classes (b) and ( c), as it reduces the need for memory by
traversing the image using a small set of lines and thereby
saves operational cost as each line is only accessed once.
The savings result from the backwards scanning of the
image, whereby each coefficient is entirely coded using a
map of maximum quantization levels. While the compres-
sion performance of BCWT is the same as with SPITH,
BCWT does not provide the progressive feature.

The memory reductions of BCWT over SPIHT are
already promising. For a picture dimension of 256 it
requires 42�256 coefficient entries (each one of 16 bits)
and 3�256 entries for the map of quantization levels
(each one of 8 bits), which results in roughly 22 kB. In this
work the principle of backwards coding is resumed with
the aim to further reduce the requirements by more than
one order of magnitude. We review and evaluate the so-
called Wavelet image two-line coder (Wi2l) [32], which
builds in combination with a selected low complexity
transform a system for image compression. The conceptual
difference between the BCWT and the new Wi2l algorithm
is that BCWT encodes the image in squared units of 16
coefficients, while Wi2l encodes a set of two wavelet
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subband lines. BCWT encodes all units of a wavelet
subband, and then the algorithm switches to the next
higher wavelet level. The order in which the units are
selected is not relevant (as long as it is in line with the
order performed by the decoder). As in the next higher
level, maximum quantization level information from the
units of the previous level is needed, a list is employed to
store all relevant information of a complete subband. In
contrast to BCWT, the Wi2l algorithm reads two wavelet
subband lines and only stores intermediate information
regarding these two lines, thereby achieving the memory
savings. The link between different levels of the wavelet
transformed image is achieved via a proper selection of
subband lines – in fact, Wi2l frequently switches between
lines of different levels, while BCWT encodes a subband as
a whole. To our best knowledge, the proposed scheme
allows for the first wavelet-based picture compression
system that is demonstrated to operate on a low-cost
microcontroller.
2. Principles for wavelet coding and notation

In this section we describe (1) the low complexity
scheme for the wavelet transform that has to be applied
Fig. 2. Picture wavelet transform: Original image (a), o
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2.1. Low complexity wavelet transform

The wavelet-based compression is two-fold in that first,
a wavelet transform has to be performed, which rear-
ranges the image information such that following sum-
marizing techniques (the coding of wavelet coefficients)
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(used in this work in conjunction with the file system from
[34]), large images can be transformed using extremely
little RAM memory. As the filter is intended for low-
complexity target platforms (16 bit microcontrollers),
fixed-point arithmetic is used instead of floating-point
filter computations. The loss of precision due to fixed-
point calculations does not affect the compression perfor-
mance in case of high compression rates, as in that case
the least significant bits are cut off anyway.

Fig. 2 shows an example of a wavelet transform for
different wavelet levels of the Lena image. The term
wavelet level in this work refers to a wavelet decomposi-
tion level. In (a) the original image is shown, in (b) the
one-level transform, and in (c) the two-level transform.
We denote the four square matrices that result from a
transform as LL (upper left), HL (upper right), LH (lower
left), and as HH matrix. In this work the transform is
computed up to wavelet level 6. The interested reader is
referred to the tutorial in [35] for more details on the
fixed-point fractional wavelet filter and the provided
source code.

2.2. Notation for coding of wavelet coefficients

In this section our notation for encoding of wavelet
coefficients is given. In wavelet based coding, the tree
structure of the coefficients is utilized; thus it is necessary
to traverse the tree and to address specific sets of coeffi-
cients. In the following we first give the notation for sets of
descendant coefficients in the tree. Then we describe how
single coefficients and quantization levels are addressed
and finally, we give the notation for binary encoding and
decoding of coefficients and levels.

2.2.1. Sets of wavelet coefficients
An elementary part of a typical wavelet tree is denoted

as quadtree. A quadtree has a root node and four descen-
dants which are referred as child nodes. Fig. 3(a) illustrates
three examples of a quadtree, where the root node is
defined by a line and a column index, which each start at
index zero. (The position (0,0) relates to the node in the
most upper left corner.) If the root node is defined by the
indices (i,j), with i and j each corresponding to a line and
column, respectively, the four child node locations are
given by ð2i;2jÞ, ð2i;2jþ1Þ, ð2iþ1;2jÞ, and ð2iþ1;2jþ1Þ.
Table 1
Notation for the description of set of nodes.

Cði; jÞ Set of four child nodes of the root (i,j)
Dði; jÞ Set of all descendant nodes of root (i,j)
Gði; jÞ ¼Dði; jÞ�Cði; jÞ Set of grandchild nodes of (i,j)

Table 2
Notation for the quantization levels of nodes.

cði; jÞ Value
qði; jÞ Quant
qC ði; jÞ Maxim
qGði; jÞ Maxim
mði; jÞ MQL n
qmin Minim
The set of the four child positions is denoted as Cði; jÞ. The
descendants of the child nodes are called grandchild nodes,
and examples of trees including child and grandchild
nodes are given in Fig. 3(b). The set of nodes that includes
all descendants is denoted by Dði; jÞ, and the set of grand-
child nodes is thus defined as Gði; jÞ ¼Dði; jÞ�Cði; jÞ. Table 1
summarizes the notation.

2.2.2. Description of wavelet coefficients and levels
Let cði; jÞ denote the numerical value of a wavelet coeffi-

cient at the position (i,j). In tree-based binary encoding, the
numerical values of the coefficients are checked for their
quantization level, thereby deciding if a coefficient or a set of
coefficients is significant or insignificant. Only significant
coefficients need to be encoded. A tree that has insignificant
values only is called a zerotree. The quantization level qði; jÞ of
a coefficient cði; jÞ is given as

qði; jÞ ¼
⌊log2jci;jjc; jci;jjZ1
�1; jci;jjo1;

(
ð1Þ

where ⌊ð⋯Þc rounds to the nearest integer lower or equal the
input value. For the significance classification of a set of
nodes it is necessary to find themaximum quantization level.
The maximum quantization level for the set of four child
nodes of position (i,j) is given as

qCði; jÞ ¼ max
ðk;lÞACði;jÞ

fqðk; lÞg: ð2Þ

Similarly, for the set of the grandchildren of (i,j) the max-
imum quantization level is given with

qGði; jÞ ¼ max
ðk;lÞAGði;jÞ

fqðk; lÞg: ð3Þ

Of particular relevance for the backwards coding algorithms
are the so-called maximum quantization levels (MQL) mði; jÞ,
which give the maximum quantization level for all values of
the descendant nodes:

mði; jÞ ¼ max
ðk;lÞADði;jÞ

fqðk; lÞg ð4Þ

We denote the level qmin as the minimum quantization level,
which decides about the compression rate for a complete
picture. Table 2 summarizes the notation for quantization
levels.

2.2.3. Coding/decoding of a number
In tree-based coding algorithms, there generally exists

the need for binary encoding or decoding (i) an integer
number referring to a wavelet coefficient and (ii) a
quantization level referring to a maximum level of a group
of coefficients. (For encoding of an integer number we take
16 bit variables as an input.) Generally, only a portion of
bits of the binary representation of the number has to be
of the coefficient at (i,j)
ization level of cði; jÞ
um quantization level for the quadtree (i,j)
um quantization level of the grandchild nodes of (i,j)
ode level for the quadtree at (i,j) and all descendants
um quantization level for a picture
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Table 3
Notation for the coding of coefficients and levels using the quantization
levels Qmin and Qmax.

encodeðc;Qmin ;QmaxÞ Encode coefficient cð�Þ
decodeðc;Qmin ;QmaxÞ Decode coefficient cð�Þ
encodeLðq;Qmin ;QmaxÞ Encode level qð�Þ
decodeLðq;Qmin;QmaxÞ Decode level qð�Þ
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encoded. We define the portion with the minimum quan-
tization level Qmin and the maximum quantization level
Qmax. A quantization level of 0 refers to the least significant
bit. We introduce the function encodeðc;Qmin;QmaxÞ to
encode a portion of the coefficient c starting at bit position
Qmin and ending at position Qmax. Thus, there are
Qmax�Qmin bits encoded. In addition, a sign bit is coded.
Similarly, the function decodeðc;Qmin;QmaxÞ returns the
decoded coefficient c. When decoding a coefficient, we use
a rounding method to move the transformed value to
the midpoint of the bin in which it lies, as it is proposed
in [36].

A quantization level q is similarly encoded as a coeffi-
cient using a portion of bits from its binary representation,
which is specified by a minimum level Qmin and a max-
imum level Qmax. The binary number generally has a
sequence of zero bits and a single one bit, as it results
from Eq. (1). The number is encoded starting from the bit
position maxfq;Qming to position Qmax. Note that the
inclusion of q within the term maxfq;Qming ensures that
the least significant zero bits of q are not coded. The
decoder accordingly starts decoding from the most sig-
nificant bits and uses the single one as a stop bit. We
define the functions encodeLðq;Qmin;QmaxÞ and
decodeLðq;Qmin;QmaxÞ for the encoding and decoding of
a quantization level q. When coding coefficients, Qmin

generally equals the minimum quantization level qmin of
the complete picture. A summary of the coding functions
is given in Table 3.

2.3. Principle and reference implementation of backwards
coding

In this work the principle of backwards coding of
wavelet trees (BCWT) for wavelet-based picture compres-
sion is selected as a starting point. In the following we
briefly review the BCWT method and describe our imple-
mentation of it, which serves as a reference to verify the
new algorithm in Section 3. BCWT was introduced by Guo
et al. [37] as a backward version of the Set Partitioning in
Hierarchical Trees (SPIHT) algorithm [1]. Similarly than
SPIHT, the BCWT algorithm utilizes the specific ordering
of wavelet coefficients within trees. More specifically,
coefficients tend to become smaller with more distance
to the root of the tree. A part of the tree that only has
insignificant values can be summarized, thereby achieving
compression. The method starts with coding units of 16
wavelet coefficients within a subband from the first
wavelet level on and moves up one level when all units
of that subband have been encoded. (In spite of that
method, the general forwards encoding starts from the
top level.) When encoding one unit, it does not need to
store the individual maximum quantization levels (MQL)
of the quadtrees but only the maximum one. This MQL
node is kept in the memory via a list to be retrieved when
coding the next level. The encoded wavelet coefficients are
not needed any more (for the detection of a maximum
quantization level of a subtree) and the memory can be
relieved. In the following we describe the encoding of a
single BCWT unit. A BCWT unit includes a root node at (i,j),
the four child nodes Cði; jÞ, and the set of the 16 grandchild
nodes Gði; jÞ to be encoded. The coding steps are given as
follows:
1.
 Compute the (four) MQL levels mðk; lÞ; ðk; lÞACði; jÞ with
Eq. (4).
2.
 Compute qG: qGði; jÞ ¼maxðk;lÞACði;jÞfmðk; lÞg

3.
 Encode coefficients at Cði; jÞ and the respective MQLs: If

qGði; jÞZqmin do 8ðk; lÞACði; jÞ
(a) if mðk; lÞZqmin do 8ðu; vÞACðk; lÞ encode

ðcðu; vÞ; qmin;mðk; lÞÞ
(b) encodeL ðmðk; lÞ; qmin; qGði; jÞÞ n

Compute mði; jÞ : mði; jÞ ¼max qGði;jÞ;maxðk;lÞACði;jÞ
fqðk; lÞgg and put the result to the MQL list (needed for
next level). The MQL nodes mðk; lÞ8ðk; lÞACði; jÞ can be
deleted.
5.
 Encode the qG level: If mði; jÞZqmin encodeL
ðqGði; jÞ; qmin;mði; jÞÞ.
Decoding a BCWT unit works in the reverse way than for
the encoding. Specifically, first the MQL level mði; jÞ is
fetched from the list, then qGði; jÞ is decoded. Then the
mðk; lÞ; 8ðk; lÞACði; jÞ and the respective coefficients are
decoded. Note that the mðk; lÞ are put to the list to be
retrieved when moving to the next lower level (the
decoding starts at the top level). The decoder can detect
a zerotree that prevents that the tree is scanned further a)
with decoding mði; jÞoqmin or b) with decoding
qGði; jÞoqmin. In our implementation we insert child MQL
nodes of (i,j) into the list each time before a unit (i,j) is
decoded and initialize them with �1 for a potential later
detection of zerotrees.

For encoding of a complete wavelet picture, all units in
the subbands of all levels have to be traversed using the
described procedure for encoding of a BCWT unit. This is
achieved by a main loop (for each subband LH, HL, and HH)
that starts with the unit root node at wavelet level 3 (to
span the levels 3,2,1) and goes up one level each time
when all units in the current level are completed. The last
three units that are encoded have their root nodes at ð0;1Þ,
ð1;0Þ, and ð1;1Þ. Using this loop, the 16 coefficients of the
two highest levels (of all subbands) are not encoded. These
coefficients can be encoded separately using a uniform
quantization with the minimum quantization level qmin

and the measured maximum quantization level of the
complete wavelet picture. The measured maximum quan-
tization level has to be encoded using a defined maximum
level. Recall that the wavelet transform is usually not
performed up to the highest possible wavelet level (which
is given by log2ðNÞ, where N gives the picture dimension).
For instance, using the picture dimension N¼256, we
perform the transform up to level 6. In this case, the
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remaining coefficients for which the uniform quantization
should be performed relate to the 6th level HH subband.

The BCWT coding algorithm allocates memory for
storage of the MQL list and needs to access the image
within the defined units. A unit spans data of different
wavelet levels, and does not accord to line-based access.
Memory is required for 42 � N coefficients and 3 � N quan-
tization levels. In the next section we introduce the
wavelet image two-line coder, which similarly as BCWT
encodes the image backwards but recursively reads lines
of wavelet subbands to perform the compression, ther-
eby reducing the memory requirements by an order of
magnitude.
3. Wavelet image two-line coder

The standard backward wavelet coding traverses the
image (wavelet-) level by level. It keeps a list of MQL level
information for a complete subband in the memory which
is retrieved when switching to the next higher level. In this
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Fig. 4. Principle of the proposed Wi2l coder. The algorithm encodes
blocks of four coefficients within two lines, where intermediate level
information is stored in a small buffer.
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section we introduce the wavelet image two-line coder
(Wi2l) which uses a specific concept to line-wisely access
the image in a recursive way. The concept allows to apply
the wavelet coding with very little memory and is in line
with the access attributes of flash memory. Similarly as
with the BCWT algorithm, Wi2l assumes that the wavelet
decomposition is already given (for instance using the
low-complexity scheme mentioned in Section 2.1). In this
section, we first introduce the basic principle of the
proposed scheme. We define the required memory struc-
tures that link the level information between consecu-
tively coded subband lines and extend the notation to
access the respective information. Finally the function to
encode two subband lines and a main procedure that calls
this function are described.

3.1. Wi2l principle

The Wi2l scheme divides the image in units of line quad
sets. Such a quad set is built of four consecutive lines of a
wavelet subband (and contains the sets of 16 grandchild
coefficients, see Section 2.2.1). We denote the lines of a
quad set with the line index l4 ¼ k mod 4, where k denotes
the absolute lines index within a wavelet subband (with
k¼0 denoting the topmost line). l4 ¼ 0;1 thus denotes the
two topmost lines of a quad set, and l4 ¼ 2;3 the two
bottommost lines. Fig. 4 illustrates the basic principle of
encoding sets of two lines building a line quad set.

There is a difference in the encoding for the lines
l4 ¼ 2;3 and the lines l4 ¼ 1;2. When encoding the lines
l4 ¼ 2;3, the scheme traverses the two lines in sets of four
coefficients from right to the left. For each set, the MQL
levels are computed. The coefficients of a set are encoded
using the computed MQL levels, which are stored in the
MQL buffer. Such a buffer exists for every wavelet level (the
wavelet level here refers to a wavelet decomposition level,
see Section 2.1). The lines l4 ¼ 0;1 are traversed afterward,
where sets of four coefficients are encoded similarly. The
MQL buffer, however, does now serve to deliver the mi

levels of the previous two lines for computation of the qG
levels. The qG levels in turn are stored in the MQL buffer
(instead of the mi levels) to be retrieved when encoding
the corresponding two lines at the next higher wavelet
level. Fig. 5 illustrates the usage of the MQL buffer to
encode lines l4 ¼ 2;3 (figure a)) and lines l4 ¼ 0;1 (figure
b)). A function call for encoding of two lines ensures via
recursion that the required qG levels are computed and
stored in the MQL buffer. While the algorithm timely
encodes the lines l4 ¼ 2;3 before the lines l4 ¼ 0;1, the
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Fig. 6. Notation to access the coefficients of two lines for an example dimension of 256 coefficients.
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Fig. 7. Example of the data structure for the maximum quantization level (MQL) buffer for N¼256. For each wavelet level i there exist N=2iþ1 entries of
one byte.

Table 4
Extended notation to access the MQL and the wavelet coefficients. The little memory requirements of Wi2l are achieved via
a linewise coefficient access pattern.

GetMQLðl; iÞ Returns the quantization level for wavelet level l and set(i)
PutMQLðq; l; iÞ Puts level q to the buffer at level l and set(i)
Read2Linesðpic;band; kÞ Read two lines k and kþ1 from picture pic at subband band
Write2Linesðpic; band; kÞ Write two lines k and kþ1 to picture pic at subband band
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sets of two lines of a line quad set are not necessarily
encoded in a sequence. The MQL buffer serves as a part of
an optimization strategy to ensure that in the next wavelet
levels, the quantization levels of the children do not need
to be recomputed; instead they are found in the buffer.
Note that in Fig. 5, the MQL level buffers of the previous
wavelet level (indexed by MQLðlevel�1Þ) relate to different
lines of the wavelet subband. In the following we give our
notation to access subband lines and the MQL buffer.

3.2. Extension of the notation and memory requirements

The standard backwards coding technique traverses the
image via units, which are defined by a root node (i,j). It
encodes the set of coefficients Gði; jÞ. In contrast to the
encoding of unit coefficients, Wi2l operates on two lines of
a subband. We introduce a more suitable notation to access
the coefficients of those lines. Fig. 6 illustrates the notation for
two lines for an example dimension of 256 coefficients.
Sets of four coefficients are accessed by the index
setðiÞ; i¼ 0;…;63, where setð0Þ relates to the most left set.
The lines themselves are addressed by the line index k, where
k¼0 refers to the top line of a subband, and by a subband
index band; band¼HL; LH;HH. To access two lines of the
picture pic from the line buffer we define the functions
Read2Linesðpic; band; kÞ and Write2Linesðpic; band; kÞ. The
MQL buffer is addressed via the functions GetMQLðl; iÞ and
PutMQLðq; l; iÞ, where l refers to awavelet level and i to a set i
of four coefficients within the two lines. GetMQL() returns a
quantization level q, while PutMQL() takes q as a parameter.
An example data structure for an MQL buffer with N¼256 is
given in Fig. 7. It contains 135 different quantization levels,
where for each wavelet level l; l¼ 0;…;6, the set numbering
starts with setð0Þ. Table 4 lists the defined functions of the
extended notation.

The line and MQL buffers account for the memory
requirements of Wi2l. The line buffer requires N � 2 bytes,
as two lines of a wavelet subband of a picture require 2 �
N=2 coefficients, where each coefficient takes two bytes
(as it is motivated by the fixed-point number representa-
tion in Section 2). Note that this requirement is given by
the subband lines of the lowest wavelet level, while for the
higher levels only a part of the allocated memory is used.
The dimension dimMQL of the MQL buffer is given for a
picture dimension N as

dimMQL ¼
Xlog2ðNÞ�2

i ¼ 1

N

2iþ1 ¼⋯¼ 1
2
N: ð5Þ

(The expression converges as it is a geometric series of the
form

P1
k ¼ m aqk ¼ aqm=ð1�qÞ; jqjo1.) The Wi2l coder also

requires a binary buffer to access compressed data from
the flash memory. At the sender side, the compressed bits
are written to this buffer, and a full block is written to the
flash memory. When the encoding process is finished, the
compressed blocks are sent out in the reverse order. The
intermediate storage on the flash memory allows to
account for the unstable available wireless bandwidth. At
the receiver side, such a buffer exists similarly, fromwhich
the compressed bits are read. We set the dimension of this
buffer to 512 bytes to regard the block size of typical flash
memory. The total memory requirements dimtot for all
buffers are thus given as

dimtot ¼N � 2þ1
2Nþ512¼ 2:5 � Nþ512: ð6Þ

In the following a formal description of the Wi2l algorithm
is given which uses the introduced notation to access
subband lines and MQL level information.

3.3. Coding of two lines

The Wi2l principle of recursively encoding two wavelet
subband lines is given in Fig. 8. The function Code2Lines
takes a pointer pic to the picture, the wavelet subband
(band¼HL; LH;HH), the wavelet level l, and the line
number k; k¼ 0;…;N as an input to encode the subband
lines k and kþ1. The steps for encoding are explained as
follows.



Fig. 9. Counterpart of the recursive Wi2l encoding function for decoding
two lines of a wavelet subband.

Fig. 8. Wi2l base function Code2Lines to recursively encode two lines of
a wavelet subband.

S.A. Rein et al. / Signal Processing: Image Communication 37 (2015) 58–7466
In step (1) the recursive encoding of the lines 2kþ2 and
2k is performed. This ensures that the appropriate tree
level information for the lines k and kþ1 is gathered and
stored in the MQL buffer. The selection of the line numbers
2kþ2 and 2k is due to the wavelet quadtree structure,
which is denoted in Section 2. The lines to be encoded
recursively contain the descendant coefficients. In step (2)
the input lines k and kþ1 are read into the line buffer. In
step (3) the main loop for encoding of coefficients and
levels is initiated. The variable DimMql is set for the
current wavelet level as the number of MQL levels that
exist for the two current coefficient lines, specifically, it
equals half the dimension of a line as one MQL level relates
to a set of four coefficients. The loop traverses the two
lines in sets of eight coefficients from right to left. Such a
set relates to one half of the grandchildren of a quadtree
root node. The variable TwoSets relates to the right-hand
set of four coefficients, and TwoSets�1 to the left-hand set.
In (3a) these two sets denoted by set(i) are processed,
starting with the right-hand one. In (i) the corresponding
maximum quantization level for the grandchildren of set i
is denoted as qGi and retrieved via the function GetMQL().
We note that the maximum quantization level qGi relates
to the notion of qGði; jÞ in Table 2 with the difference that
sets of four coefficients are denoted by the set index i
(instead of the indices (i,j) for the root node of the set), see
Section 3.2.

Similarly as with the recursive function call, the quan-
tization level information qGi is found in the next lower
level MQL buffer, where the set number is multiplied by
two as there exist twice as much entries for that buffer,
from which each second one contains a qGi level. In case of
the first wavelet level the qGi does not exist, and it is set to
minus one to signal the end of the tree. In (ii), the MQL
level mi for the current set of coefficients is calculated as
the maximum of their four quantization levels and qGi. In
case mi is significant, the qGi of the previous level and the
four set coefficients cj are encoded in step (iii). For both,
the mi serves as an upper bound for the encoding.

The individual subunits of eight coefficients are
encoded sequentially within the bottommost and the
topmost two lines. Wi2l links the subunits via the MQL
buffer to preserve the context of the larger units of 16
coefficients. In step (3b) it is detected if the lines k and
kþ1 refer to the bottommost or the topmost two lines. In
case of the bottommost lines, the previously computed
MQL levels m1 and m2 are saved in the MQL buffer at the
positions TwoSets and TwoSets�1. In case of processing the
topmost lines, the MQL levels stored for the bottommost
lines are retrieved in (i) and (ii). Note that while the
bottommost and the topmost lines relate to four consecu-
tive subband lines, they are not necessarily encoded in a
sequence. In step (iii) the maximum level qG of the four
MQL levels mi; i¼ 0;…;3, are calculated. This level relates
to the set of four lines, while the level qGi; i¼ 1;0, encoded
in (3a) (iii) relates to the next lower level (more deeply
located in the tree). In step (3b) (iv) the levels
mi; i¼ 3;…;0, are encoded using qG as an upper bound.
In step (v) the qG level is stored to the MQL buffer to be
retrieved within coding of the next higher level.

3.4. Decode two lines

The Wi2l-function Decode2Lines() for decoding of two
lines is given in Fig. 9. It takes similarly as the counter-
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part encoding function a pointer pic to the image to be
decoded, the wavelet subband band and level l, and the
line index k as input parameters. The encoded bit stream
is interpreted by this function in the reverse order, such
that the decoding of the lines k and kþ1 starts from the
top level. In our implementation, the reversal is per-
formed on the sender side when the compressed bit
stream is read from the flash memory (which serves as
an intermediate storage).

In step (1) the coefficients in the line buffer are
initialized with zero. This ensures that insignificant sets
of coefficients will have a defined value. In step (2) the
main loop to decode all sets of coefficients within the two
lines and related levels is given. The dimension DimMql of
the MQL buffer is set as before in the encoding function,
and the TwoSets variable takes the reverse range of values.
In (2a), the MQL levels for the topmost two lines (k=2 is
even) and the bottommost two lines (k=2 is odd) are
retrieved. Note that we denote the sets of lines with
bottommost and topmost the same way as with the encod-
ing, and that therefore the decoding starts with the top-
most lines. For the topmost lines, the qG for the previous
wavelet level is retrieved in (2a) (i). This level is used as
the upper bound for decoding of the levels mi; i¼ 3;…;0,
in (ii). The levels m0 andm1 are stored to the MQL buffer in
(iii). These are retrieved in (2a) in case of the bottommost
lines (k=2 is odd), however, in that case they are denoted
with m0 and m1.

In step (3b) the decoding actions for the sets
TwoSets�1 ði¼ ¼ 0Þ and TwoSets ði¼ ¼ 1Þ are taken. If mi

is significant, the coefficients cj; jAsetðiÞ are decoded and
written to the line buffer. In step (ii), the qGi of the previous
wavelet level is retrieved and saved in the MQL buffer. The
decoded lines are written to the flash memory in (3). In
(4), the recursion to decode the four lines 2k;…;2kþ3 is
performed. The recursion has to be the last step, as the
decoding function which starts with the recursion oper-
ates the reverse way than the encoding function. The
recursive functions decode coefficients within the next
lower level and will find the required qGi information
retrieved in step (2b) (ii) in the MQL buffer.
3.5. Main loop

The Wi2l coding functions each code the two lines k and
kþ1 of a subband. In the following we give a description of
the initial calls of these functions to ensure that the
complete picture is recursively encoded. A general consid-
eration is that the recursive coding only makes sense within
the typical wavelet tree structure – that means, to appro-
priately encode the image, the level until which the wavelet
transform has been performed has to be regarded. As stated
in Section 2, the transform is generally not computed until
the highest possible level. The main procedure for encoding
a complete picture is given as follows:
1.
 list ¼ fHL; LH;HHg

2.
 for i¼ 1;2;3

(a) Encode2Lines ðlistðiÞ;MaxLevel; k¼ 2Þ
(b) qG(i)¼Encode2Lines ðlistðiÞ;MaxLevel; k¼ 0Þ
� �

3.
 EncodeLL qGði¼ 1;2;3Þ
For instance, if the picture dimension is N¼256, the
maximum possible level would be log2ð256Þ ¼ 8, and the
third highest possible level would be given as
MaxLevel¼ 8�2¼ 6. If the picture is transformed until
the third highest level, there remain 16 coefficients at the
remaining top levels. Therefore, the main encoding func-
tion traverses the lines k¼ 0;…;3 in the third highest
subbands via two encoding function calls in step (1),
which ensures that all successor lines are encoded. The
procedure has to be performed for each subband HL; LH,
and HH. If the transform is only computed until the next
lower wavelet level (which in case of N¼256 would be
level 5), the lines k¼ 0;…;7 would have to be encoded. For
each set of four lines, a maximum level qG(i) has to be
returned. This level has to be encoded separately, as there
is no recursive function that takes care of it. In step (2), the
remaining coefficients of the highest LL subband and the
qG(i) returned by the previous function calls are encoded
via the function EncodeLL(). Both use the maximum
quantization level of the complete picture as an upper
bound. The maximum quantization level in turn has to be
encoded using a defined maximum level given in the
implementation.

Note that while the Encode2Lines() functions are called
from the highest wavelet levels, the actual encoding of
coefficients starts at the first wavelet level due to the
recursion. This allows the decoding to start from the
highest wavelet level by interpreting the reversed bit
stream. The main decoding function first decodes the
highest LL subband and for each subband i¼ 1;2;3 a
qG(i) level, for which we define the function DecodeLL().
For each set of four lines to be decoded in the following
there exists such a qG level. The decoding of the subband
lines for each subband HL; LH and HH is performed in step
(2). The main decoding procedure is given as follows:
1.
 qGði¼ 1;2;3Þ¼DecodeLL()

2.
 list ¼ fHL; LH;HHg for i¼ 3;2;1

(a) Write qG(i) to appropriate buffer position
(b) Decode2Lines ðlistðiÞ;MaxLevel; k¼ 0Þ
(c) Decode2Lines ðlistðiÞ;MaxLevel; k¼ 2Þ
Specifically, in (2a) the qG(i) level is written to the MQL
buffer to be found by the decoding functions for the lines
0;…;3 called in b). In case the highest LL subband would
be at the fourth highest possible wavelet level, two qG
levels would have to be stored in the buffer, and Decode2-
Lines() would be called four times for each subband.

4. Evaluation of the Wi2l algorithm

In this section we evaluate the functionality and perfor-
mance of the proposed Wi2l algorithm. As the Wi2l coding
operations are performed on the wavelet-transformed
image, we first measure in Section 4.1 the quality loss
resulting from the fixed-point transform that is used in this
work to verify the usability of Wi2l on a low complexity
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platform. In Section 4.2 our backwards coding reference
implementation BCWT is checked for its proper operation.
We have implemented the BCWT algorithm to verify the
principle of backwards coding, which we use as a starting
point to design a purely line-based algorithm. In Subsection
4.3 we compare the compression performance of the new
Wi2l coder to the SPIHT algorithm. Then, in Section 4.4, the
compression performance of Wi2l is compared to the
standards JPEG, JPEG 2000, and the Google WebP format.
Last, the encoding and decoding times are measured on a
typical low-cost 16 bit microcontroller.

4.1. Performance of the fixed-point wavelet transform

In Section 2, we have shortly described the fractional
wavelet filter – a low complexity wavelet transform that
combined with the new Wi2l coding algorithm builds a
compression system that can operate on very limited
platforms. The fractional wavelet filter, while it allows for
line-wise computation of the wavelet transform, intro-
duces a quality loss as it transforms the floating-point filter
operations to fixed-point arithmetic (thereby featuring fast
computation on hardware without floating-point support).
Fig. 10 shows the PSNR performance for the pictures from
the GraySet1 test images from the Waterloo Repertoire
(available at http://links.uwaterloo.ca/). This set contains
twelve grayscale images with 256�256 pixels (N ¼ 256)
and 8 bits per pixel. The images are given in the portable
network graphics (PNG) format and converted to plain text
numbers of the type signed character using the software
suite ImageMagick and Octave. For each image, a forward
transform is computed followed by a reverse transform.
For each transform, four quality values are calculated for
the maximum wavelet levels lev¼ 5;6 and the fixed-point
number representation format used for the first wavelet
level is selected as ExpFirst¼5,6. ExpFirst gives the number
of bits used for the fractional portion of the number, as
explained in Section 2.

From the figure it can be concluded that the choice of
six bits for the fractional part (ExpFirst¼6) results in less
loss of image quality, as quality values in the range of 49.6
and 51.25 and 51.2 to 52:8 dB are achieved for the levels 6
and 5, respectively. Using five bits for the fractional part
(ExpFirst¼5) results in values between 46.2 and 47 dB for
level 6 and 48 and 48.3 for level 5. The better qualities for
more fractional bits are due to the higher precision of the
calculations. We have included the ExpFirst¼5 representa-
tion as especially for the wavelet levels lev¼ 1;2;3 the
actual wavelet coefficients exceed the possible number
range for the representation ExpFirst¼6 (measurement
results not given here). The quality gain with more frac-
tional bits holds true as only a small number of coefficients
exceed the range. Regarding the maximum level until the
transform is computed, the higher level introduces more
loss as more computations have to be performed for it.

In the following sections, the question will be answered
if the higher level can provide better compression for the
higher compression rates. Regarding the Wi2l compres-
sion, we expect that the quality loss due to the transform is
in general not visible for the high compression rates, as the
coding cuts of the least significant bits. For the low
compression rates (high picture qualities), as it will be
illustrated in Figs. 12 and 13 in Section 4.3, the loss due to
the fixed-point arithmetic results in an image quality
saturation for the Wi2l algorithm at approximately 50 dB.

4.2. Verification of the BCWT reference implementation

As the recent technique of wavelet based backwards
coding seems to be promising in terms of memory
resource consumption, we have implemented the BCWT
algorithm to verify the basic principle and as a reference
for the new Wi2l algorithm (which shall not give lower
compression performance). In this section, the achieved
PSNR quality with BCWT is compared to the quality
achieved with SPIHT. BCWT is expected to give the same
compression performance as SPIHT while only a smaller
part of the image needs to be kept in the memory.
Similarly as in the previous section, we use the GraySet1
test images. However, instead of a low complexity wavelet
transform, we use a floating-point transform (computed
with the software Octave) as the SPIHT software similarly
uses floating-point numbers. To perform the SPIHT com-
pression we use the software provided by A. Said and W.A.
Pearlman (available at http://www.cipr.rpi.edu/research/
SPIHT), specifically the commands fastcode and fastdecd.
A PSNR value for BCWT is computed via a forwards
wavelet transform, an encoding with the BCWT imple-
mentation, a decoding with BCWT, a reverse transform,
and a PSNR calculation using the original picture and the
reconstructed one. Fig. 11 gives the compression perfor-
mance for the wavelet levels lev¼5,6 and the minimum
quantization levels qmin ¼ 0;…;8. The compression rate is
given in bits per bytes (bpb) and is here equivalent to the
bits per pixel (bpp) metric, as one image pixel is repre-
sented by eight bits. Recall that a larger qmin parameter
results in higher compression (and lower PSNR quality).

From the figures it can be seen that BCWT gives the
same compression performance than SPIHT. On one hand,
it can be concluded that the principle of backwards coding
fulfills the requirement of maintaining the same entropy
than SPIHT, as the algorithm reorders the bit stream such
that a compressed result can be generated for a set of
picture input lines. On the other hand, it also verifies the

http://links.uwaterloo.ca/
http://www.cipr.rpi.edu/research/SPIHT
http://www.cipr.rpi.edu/research/SPIHT
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proper operation of our BCWT implementation, which we
used as a reference to derive new schemes. In contrast to
the given SPIHT software (given as an executable), the
BCWT implementation allows for more flexibility, as
different types of wavelet transforms can be used and
parameterized. In the next section, the performance of the
Wi2l scheme is compared to SPIHT.

4.3. Wi2l compression results in comparison to SPIHT

In this section, the PSNR quality achieved by our
implementation of the proposed Wi2l coding scheme for
different compression rates is measured and compared to
the results achieved by SPIHT, while the same methodol-
ogy than in Section 4.2 is used. That includes the forward
transform, encoding for the different quantization levels
qmin, qmin ¼ 0;…;8, reverse transform, and decoding. The
GraySet1 test images are used again, and PSNR values
computed as before. Fig. 12 illustrates the results for five
fractional bits (ExpFirst¼5) and the wavelet levels 5 and 6
in figures (a) and (b), respectively.

The compression performance of Wi2l until 43 dB is
almost identical to SPIHT. At 48 and 47 dB the Wi2l
compression stays constant, while SPIHT proceeds giving
better qualities. This is due to the employed fixed-point
wavelet transform; the maximal PSNR values are in line
with the results for the transform given in Section 4.1. The
higher wavelet level 6 gives marginal better qualities for
the high compression rates, as particularly visible for the
Squares image at 0.01251 bpb. Results for six fractional bits
(ExpFirst¼6) are given in Fig. 13.

The given PSNR values are similar as for five fractional
bits with the difference that now higher qualities up to 52
and 51 dB for levels 5 and 6 are achieved. This is again
caused by the fixed-point wavelet transform calculations,
which can utilize more bits to achieve more precision. The
results are confirmed by the PSNR values in Section 4.1.
The performance loss of Wi2l versus SPIHT is thus due to
the low complexity transform and not due to the proposed
coding scheme. The specific transform is employed here to
highlight a solution for a complete compression system,
including transform and coding, which can be applied to a
low complexity platform.

4.4. Wi2l compression results in comparison to JPEG, JPEG
2000, and WebP

In this section we give example results for the com-
pression of Wi2l compared to JPEG, JPEG 2000, and the
recent Google WebP format. The results for JPEG and JPEG
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2000 were obtained using the jasper library, see http://
www.ece.uvic.ca/mdadams/jasper/; the given results for
JPEG 2000 are implementation specific. We have used
jasper with the default configuration, which is not neces-
sarily tuned for visual performance. For WebP a command-
line executable is available from Google. Fig. 14 gives the
PSNR values for Wi2l (lines) and JPEG (dots) for the
selected example pictures Bird, Camera, and Bridge. There
is a significant quality gain visible for Wi2l over the
complete range of compression rates, which can be up to
5 dB. This is expected, as the JPEG algorithm is outdated
(yet it is still used by most in practice). JPEG typically uses
a quantization matrix that is optimized for visual and not
for objective quality (PSNR); perceptual quality metrics
may be more appropriate to illustrate the gain. The results
are included to indicate the potential gain due to wavelet-
based techniques especially in the sensor networks, where
data rates and communication energy within the network
are limited.

Fig. 15 gives the results for the comparison of Wi2l to
JPEG 2000 in (a) and the Google WebP format in (b). The
example pictures Bird, Lena, Camera, Goldhill, and Bridge
from the GraySet1 are selected. For the Wi2l measure-
ments, six fractional bits and wavelet level 5 are used. JPEG
2000 gives significantly less PSNR quality, especially for
the bird image and the high compression rates in general.
For the Bird and the Lena image, however, it is also visible
that for the compression rates from 2 bpb on, JPEG 2000
gives slightly better results. We note that these examples
are not representative, and that JPEG 2000 achieves for a
wide range of resolutions and picture types (including
artificial or medical images) in general better results than
SPIHT or the in this paper advocated low complexity
wavelet technique, see [3]. For a low-cost sensor node,
however, Wi2l is the more suitable technique, as more
likely low-resolution and natural images only will be
applied. This is due to the camera sensors in this kind of
marketplace, which are rather of low cost. In sensor
networks it is also customary to use a larger set of low-
cost sensors instead of a few more expensive high-
resolution cameras.

Fig. 15(b) gives the PSNR results for WebP and Wi2l.
WebP in general performs slightly better than Wi2l,
especially for the Camera image, where the difference is
roughly 1 dB over the entire range of compression values.
For the Bird, the Goldhill, and the Bridge image, Wi2l gives
slightly better results for high compression rates smaller
than 0.3 bpb. The examples indicate that WebP is rather
designed for web-usage, where lower resolution images
are more likely. The WebP technique is based on the intra-
frame-coding of the video VP8 codec and uses a block-
based transform together with a modern entropy coding
[2]. We note that Wi2l does not use entropy coding in
order to save computations and energy, while in principle
such a technique would also slightly improve the Wi2l
compression performance. Furthermore, the given code for
WebP is not applicable to sensor nodes as it is designed for
PC-usage. In the next subsection the coding times on a
microcontroller will be measured to verify the applicabil-
ity of Wi2l.

4.5. Computational complexity analysis

In order to estimate the coding time of the Wi2l
algorithm on an arbitrary platform we calculate the
number of required operations for encoding of one picture
with the dimension N � N. We first consider the BCWT
algorithm, which serves as a reference and then continue
with the proposedWi2l scheme. We note that the memory
locality of the considered coding algorithms is not taken

http://www.ece.uvic.ca/mdadams/jasper/
http://www.ece.uvic.ca/mdadams/jasper/
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into account by the following analysis, while it can indeed
effect the coding time. The aim of the given analysis is
however to prove that Wi2l does not introduce additional
coding bits when compared to BCWT. Regarding the (flash)
memory locality, Wi2l should give advantages over BCWT
due to its linewise processing.

BCWT and Wi2l both are low-complexity coding algo-
rithms, thus the coding time of either algorithm is not
determined by mathematical coefficient computations but
by the specific access patterns for the coefficient and
intermediate information. Retrieval of coefficients and
writing of binary information is done through flash mem-
ory card access, which requires a software library for
reading and writing of blocks of 512 bytes, while inter-
mediate information is accessed via a specific memory
structure (located in the RAM or heap memory). In order
to cover the time-consuming coding operations, we
denote r, c, and cl for reading, coding a coefficient and a
coefficient level, which all relate to flash memory access. g
and p serve to indicate the operation get and put for
wavelet level information (one byte or less), which both
refer to RAM memory access.

For the calculation of coding coefficients and levels we
consider the worst case, that is, the image is not compres-
sible at all. We note that the general way of processing for
both algorithms is not affected by the image compressi-
bility – that means, among others, the number of coeffi-
cient reading operations stays constant for any image.
4.5.1. BCWT coding algorithm
BCWT encodes units of 4 � 4 coefficients. We first

consider (1) the effort for encoding a single unit, then
use that result to estimate (2) the effort for encoding of a
complete wavelet subband, and finally can estimate (3) the
effort for encoding all levels of a subband and (4) the
complete image with all subbands.
(1)
 Encoding of a single unit at root (i,j): According to
the description in Section 2.3, BCWT requires read
operations of 4 � 4 coefficients at Gði; jÞ and four get
operations (which result from coding operations at
the next lower level) to compute the MQL levels of
the coefficients. Then the 16 coefficients are coded
(16cþ4cl operations). Last, the MQL level for the
nodes at Cði; jÞ is stored in the MQL list and the MQL
level for the nodes at Gði; jÞ is coded. The resulting
computations φðuÞ for coding a unit are given as
follows:

φðuÞ ¼ 16rþ4gþ16cþ4clþ4rþpþcl
¼ 20rþ4gþpþ16cþ5cl ð7Þ
(2)
 Encoding of one level in a subband: A subband at level
l has N2=ð4lÞ coefficients. The number of units (each of
them with 16 coefficients) per level in a subband is
given as ð1=16ÞðN2=4lÞ. Thus, the operations φðl;NÞ for
encoding of one level in a subband are given as

φ lð Þ Nð Þ ¼ 1
16

N2

4l
φ uð Þ ¼ 1

16
N2

4l
20rþ4gþpþ16cþ5clð Þ:

ð8Þ
(3)
 Encode all levels of a subband: The operations φðNÞ for
encoding of all levels ðl¼ 1;…;N�2Þ are given as

φ Nð Þ ¼
XlogN�2

l ¼ 1

φ lð Þ Nð Þ ¼
XlogN�2

l ¼ 1

N2

4lþ2
20rþ4gþpþ16cþ5clð Þ

¼N2

16
20rþ4gþpþ16cþ5clð Þ

XlogN�2

l ¼ 1

1

4l

� 1
3
N2

16
20rþ4gþpþ16cþ5clð Þ: ð9Þ
(4)
 Encoding all subbands: For the total number of opera-
tions ϕBCWTðNÞ for encoding a complete image all the
three subbands HL; LH and HH have to be considered:

ϕBCWT Nð Þ ¼ 3φ Nð Þ ¼N2

16
20rþ4gþpþ16cþ5clð Þ ð10Þ

The small number of remaining coefficients in the LL
subband (16 coefficients) is encoded separately and
not relevant for our analytical considerations.
4.5.2. Wi2l coding algorithm
The description in Fig. 8 serves as a basis for the

following considerations. First, the computations required
for (1) the coding of two lines are derived. Then, the (2)
coding of a complete level in a wavelet subband is
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considered. Finally, the computations (3) for all levels of a
wavelet subband and (4) for a complete image are given.

(1) Encoding of two lines: Let φðN; lÞðl4 ¼ 2;3Þ denote
the number of operations required to encode the lines
l4 ¼ 2;3 of a wavelet subband with N coefficients in each
line at wavelet level l. There exist N=2lþ1 sets of coeffi-
cients (with each set containing 4 coefficients) in the two
lines, which require 2ðN=2lÞ read operations. For each set, a
get operation for qGi

ðl�1Þ is required to compute the MQL
for the respective set in the previous level; then the
retrieved quantization level qGi

ðl�1Þ and each of the four
coefficients are encoded. The MQLs for each set are stored
in the quantization level memory (put operation). The total
number of the respective operations for l41 is given as

φ N; l41ð Þ l4 ¼ 2;3ð Þ ¼ 2
N

2l
rþ N

2lþ1
gþclþ4cð Þþ N

2lþ1
p

¼ N

2lþ1
4rþgþpþ4cþclð Þ: ð11Þ

There is an exception for the first wavelet level: As there
are no descendant coefficients in lower levels, there is no
retrieval of previous level information and no coding of
that level (see Fig. 8: (3a) (i) and (3a) (iii) A). Therefore, for
l¼1, Eq. (11) is modified as follows:

φ N; l¼ 1ð Þ l4 ¼ 2;3ð Þ ¼N
4
pþ4cþ4rð Þ: ð12Þ
For the image lines l4 ¼ 0 and l4 ¼ 1 (topmost lines),
there is a difference in the last additive term, see Fig. 8:
(3b)): Instead of two put operations, there are now two get
operations, a cl and one put operation. Thus, the computa-
tional requirements for l41 are given as

φ N; l41ð Þ l4 ¼ 0;1ð Þ ¼ 2
N

2l
rþ N

2lþ1
gþclþ4cð Þ

þ N

2lþ2
2gþ4clþpð Þ

¼ N

2lþ2
8rþ4gþ6clþ8cþpð Þ; ð13Þ

and for l¼1 as

φ N; l¼ 1ð Þ l4 ¼ 0;1ð Þ ¼ N

23 2gþ4clþ8cþpþ8rð Þ: ð14Þ

(2) Coding of a complete level in a wavelet subband: Let
φðN; lÞ denote the total number of operations for encoding
one complete level of a wavelet subband with N=2l lines.
With Eqs. (11) and (13) the total number of operations for
l41 is given as

φ N; l41ð Þ ¼ 1
4
N

2l
φ N; l41ð Þ l4 ¼ 2;3ð Þþ1

4
N

2l
φ N; l41ð Þ l4 ¼ 0;1ð Þ

¼ N2

4lþ2
6gþ3pþ16cþ8clþ16rð Þ; ð15Þ
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and with Eqs. (12) and (14) for l¼1 as

φ N; l¼ 1ð Þ ¼N2

64
16rþ2gþ3pþ16cþ4clð Þ: ð16Þ

(3) For all levels l of a subband, that is, for l¼
1;…; ðlog2NÞ�2 (the last two wavelet levels with 8 �
8¼ 64 coefficients are encoded separately as a single unit)
the total number of operations φðNÞ is given as

φ Nð Þ ¼
Xlog2N�2

l ¼ 2

φ N; l41ð Þþφ N; l¼ 1ð Þ

¼N2

16
6gþ3pþ16cþ8clþ16rð Þ

Xlog2N�2

l ¼ 2

1

4l

þN2

64
16rþ2gþ3pþ16cþ4clð Þ

�N2

64
4gþ4pþ64

3
cþ20

3
clþ64

3
r

� �
: ð17Þ

(4) Complete image: We denote ϕWi2lðNÞ as the total
number of operations required for the encoding of a
complete image with dimension N � N including the 3
subbands HL,LH and HH:

ϕWi2l Nð Þ ¼ 3φ Nð Þ ¼N2

16
16rþ3gþ3pþ16cþ5clð Þ: ð18Þ

4.5.3. Interpretation of the analytical results
A comparison of the final results for BCWT and Wi2l

(Eqs. (10) and (18)) reveals that the number of coding
operations is the same for both algorithms, that is, the
coding includes N2 coefficients and 5/16 levels per coeffi-
cient for each algorithm. Regarding the coefficient reading,
BCWT reads each coefficient 20/16 times, while Wi2l reads
each coefficient just one time. Wi2l can achieve this due to
its different coding order with the help of a small buffer for
quantization level information. Regarding the RAM access,
Wi2l requires one get operation less and two put opera-
tions more than BCWT. We can conclude that the compu-
tational complexity for Wi2l is nearly the same than for
BCWT. The advantage of Wi2l is that it works with much
less RAM memory (small buffer for MQL information) and
that the coefficient access via two image lines is suitable
for fast utilization of flash memory: Wi2l reads and writes
the data in sequential order to the flash memory; if the
read and write access times for fixed data units are known
for the target platform, the given analytical equation can
be utilized to predict the coding time.

4.6. Wi2l coding time measurements

For the coding time measurements we apply the Open-
Sensor platform [38] illustrated in Fig. 1, which employs a 16-
bit microcontroller with 2 kB RAM from the so-called dsPIC
family from Microchip (dsPIC4013) at 29 million instructions
per second (MIPS). The sensor node has a slot for a standard
secure digital/multimedia (SD/MMC) card. The wavelet-
transformed pictures Bird and Bridge (level 5 and five
fractional bits) are copied to the card and accessed via the
C-library in [34]. (The low complexity wavelet transformed
can also be computed on the sensor and the respective
computation times are given in [12].) The wavelet picture is
accessed line-wisely from the card in blocks of 512 bytes. The
compressed binary stream is read and written similarly in
512 byte blocks. Fig. 16 shows the encoding and decoding
times for the 256�256 images Bird and Bridge and the
quantization levels qmin ¼ 0;…;8. For this kind of evaluation
the type of the image is of less importance, as all pixels have
to be accessed. The different compressibility is however
reflected in the results; specifically, the encoding time is
shorter if less coefficients have to be encoded.

The processing times are given for SD-card read- and
write-access and calculation times, and the bars in the plot
are hatched accordingly. To give an indicator for the
relevance of the coding times, the achieved PSNR qualities
are also included in the plots. This allows to select a
suitable compression rate with respect to the time require-
ments of the application.

As visible in the plots (a) and (b), the encoding times are in
the range between 1.2 and 2.3 s. The reading time of
approximately 0.95 s stays constant over the entire range of
compression rates, while calculation and writing times
increase with better PSNR qualities. The calculation takes
between 0.25 and 0.7 s. Write access is in the range of 0–0.6 s.

The decoding operations are given in plots (c) and (d)
and can take up to 10.26 s. More than 90% of the decoding
time is taken by the write access of the SD-card. This is due
to the recursive decoding scheme, which traverses selected
blocks of two subband lines. As explained in [34], writing
single and not consecutive blocks is relatively slow in
contrast to a block-wise read operation. Note that the long
writing times are related to the specific SD-card access
library and that the decoding is not necessarily performed
on the sensor node. The decoding calculation time is in the
range of 0.22 and 0.77 s. As only the compressed stream has
to be read from the SD-card, the read times are shorter than
0.12 s and only significant for the high PSNR qualities. Time
results for the Lena, Camera, and Goldhill image will be
with respect to their compressibility within the required
time ranges of the Bird and Bridge images.

5. Conclusion

In this paper we have proposed and evaluated a
wavelet-based algorithm that allows for effective image
compression on very limited platforms. The algorithm
builds on the principle of wavelet backwards coding,
which encodes the picture starting from the lowest wave-
let level (and not from the top-level), reverses the com-
pressed bit stream, and decodes starting from the top-
level. The proposed algorithm reorders the bit stream such
that the coding can be conducted line-wisely. This is
achieved by recursively scanning the wavelet tree such
that the required quantization levels of the descendant
child nodes of two lines are computed in advance and
made retrievable via a specific buffer. The same buffer is
used to compute quantization levels of two consecutive
wavelet subband lines. Thereby, the buffer memory
requirements of the algorithm are limited to the size of
two wavelet subband lines (2 � N bytes using 16 bit
coefficients, with N denoting the picture dimension) and
a quantization level buffer of half the picture line
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dimension (0:5N bytes). As the algorithm is in line with the
typical block-access of flash memory, pictures can be read
and written to SD- or MMC-cards.

From the evaluation we conclude that the coding
algorithm achieves compression performance that outper-
forms the JPEG technique and is competitive to JPEG 2000
and Google WebP – in that it (a) gives for very high
compression rates similar or even better quality and (b) for
the specific application of lower resolution and natural
images gives very similar performance than the state-of-
the-art. We also verify the applicability of Wi2l on a 16-bit
microcontroller and find that the computational time
required by the algorithm is smaller than 300 ms for a
256�256 grayscale picture when a PSNR of 30 dB is
sufficient. In the past, more specific platforms like digital
signal processors have been regarded as mandatory for
wavelet based compression on tiny devices. Moreover, the
available implementations of JPEG 2000 and Google WebP
are designed for PCs. The Wi2l algorithm, in contrast to
these implementations, can run on a low-cost microcon-
troller, allowing typical sensor nodes to use modern
compression via a software update. The underlying C
source code is made publicly available in [39].

Future work may concern the improvement of the
granularity of Wi2l, a modification of the algorithm to
include the computation of the transform, or a scalability
feature similar as it is provided by SPIHT.
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