
Ad Hoc Networks 9 (2011) 482–496
Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier .com/locate /adhoc
Performance evaluation of the fractional wavelet filter: A low-memory
image wavelet transform for multimedia sensor networks

Stephan Rein a, Martin Reisslein b,*

a Telecommunication Networks Group, Technical University Berlin, Berlin
b School of Electrical, Computer, and Energy Eng., Goldwater Center, MC 5706, Arizona State University, Tempe, AZ 85287-5706, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 13 August 2010

Keywords:
Image sensor
Image transform
In-network processing
Integer (fixed-point) arithmetic
Lifting computations
Wavelet transform
Wireless sensor network
1570-8705/$ - see front matter � 2010 Elsevier B.V
doi:10.1016/j.adhoc.2010.08.004

* Corresponding author. Tel.: +1 480 965 8593; fa
E-mail addresses: rein@tkn.tu-berlin.de (S. Rei

(M. Reisslein).
URL: http://mre.faculty.asu.edu (M. Reisslein).
Existing image wavelet transform techniques exceed the computational and memory
resources of low-complexity wireless sensor nodes. In order to enable multimedia wireless
sensors to use image wavelet transforms techniques to pre-process collected image sensor
data, we introduce the fractional wavelet filter. The fractional wavelet filter computes the
wavelet transform of a 256 � 256 grayscale image using only 16-bit fixed-point arithmetic
on a micro-controller with less than 1.5 kbyte of RAM. We comprehensively evaluate the
resource requirements (RAM, computational complexity, computing time) as well as image
quality of the fractional wavelet filter. We find that the fractional wavelet transform com-
puted with fixed-point arithmetic gives typically negligible degradations in image quality.
We also find that combining the fractional wavelet filter with a customized wavelet-based
image coding system achieves image compression competitive to the JPEG2000 standard.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The processing unit of low-complexity sensor nodes is
typically a 16-bit micro-controller, which has limited pro-
cessing power and random access memory (RAM) in the
range of 10 kbyte [1]. A multimedia sensor network can
be formed by equipping nodes with a small camera [2,3].
Imaging-oriented applications, however, often exceed the
resources of a typical low-cost sensor node. While it is pos-
sible to store an image on a low-complexity node using
cheap, fast, and large flash memory [4–6], the image trans-
mission over the network can consume too much band-
width and energy [7]. Therefore, image processing
techniques are required either (i) to compress the image
data, e.g., with wavelet-based techniques that exploit the
similarities in transformed versions of the image, or (ii)
. All rights reserved.

x: +1 480 965 8325.
n), reisslein@asu.edu
to extract the interesting features from the images and
transmit only image meta data.

A modern pre-processing technique to inspect or com-
press an image is the discrete wavelet transform, which
decorrelates the data. The decorrelation allows to extract
the interesting features or to apply tree coding algorithms
to summarize the typical patterns, e.g., the embedded
zerotree wavelet (EZW) [8] or the set partitioning in hier-
archical trees (SPIHT) scheme [9]. However, the memory
requirements of existing image wavelet transform tech-
niques exceed the limited resources on low-complexity
micro-controllers.

In order to overcome this limitation we introduce the
fractional wavelet filter, a novel computational method for
the image wavelet transform. The fractional wavelet filter
requires only random access memory (RAM) for three
image lines, as analyzed in detail in Section 4.1. In particu-
lar, less than 1.5 kbyte of RAM are required to transform an
image with 256 � 256 8-bit pixels using only 16-bit
integer calculations. Thus, the fractional wavelet filter
works well within the limitations of typical low-cost
sensor nodes [1]. The fractional wavelet filter achieves this

http://dx.doi.org/10.1016/j.adhoc.2010.08.004
mailto:rein@tkn.tu-berlin.de
mailto:reisslein@asu.edu
http://mre.faculty.asu.edu
http://dx.doi.org/10.1016/j.adhoc.2010.08.004
http://www.sciencedirect.com/science/journal/15708705
http://www.elsevier.com/locate/adhoc

S. Rein, M. Reisslein / Ad Hoc Networks 9 (2011) 482–496 483
performance through a novel step-wise computation of the
vertical wavelet coefficients.

We conduct a comprehensive performance evaluation
of the fractional wavelet filter. We first analyze the re-
quired random access memory and the computational ef-
fort for the fractional wavelet filter. We demonstrate how
the fractional wavelet filter trades slightly increased com-
putational effort for vastly reduced memory requirements
compared to the conventional convolution approach. We
further verify the functionality of the fractional wavelet fil-
ter and measure its timing requirements on a micro-con-
troller with 2 kbyte of RAM, which is extended with a
standard multimedia (flash memory, SD) card and a small
digital camera.

We evaluate the image quality of the fractional wavelet
filter, which is not lossless when computed with fixed-
point arithmetic. Comparing images that are forward
wavelet transformed using the fixed-point fractional
wavelet filter and subsequently backward transformed
with the original image, we find that the introduced image
degradation is typically negligible for appropriate integer
number formats. Employing the fractional wavelet filter
in conjunction with a low-memory wavelet-based image
coding system, we demonstrate equivalent compression
performance compared to state-of-the-art image compres-
sion methods for high compression ratios.

This article is organized as follows. Section 2 discusses
related work on low-memory wavelet transforms. Section
3 introduces the novel fractional wavelet filter. We evalu-
ate the resource requirements (memory, computations,
and time) of the fractional wavelet filter in Section 4. We
evaluate the image quality of the fractional wavelet filter
in Section 5. Section 6 concludes the article.
2. Related work

Implementations of the discrete two-dimensional image
wavelet transform on a personal computer (PC) generally
keep the entire source and/or destination image in memory
and separately apply horizontal and vertical filters. As this
approach is typically not possible on resource-limited plat-
forms, the recent literature has explored the following
memory-efficient implementations of the image wavelet
transform.

A large part of the literature focuses on the implemen-
tation of the wavelet transform on field programmable
gate arrays (FPGA), see for instance [10–13]. Similarly,
complexity reductions aimed at efficient VLSI hardware
implementations have been examined, e.g., [14–17]. The
FPGA-platforms and VLSI hardware implementations are
generally designed for one special purpose and are not an
appropriate candidate for a multimedia sensor node that
has to perform many tasks related to analysis of the sur-
rounding area as well as communication [1,18]. Our work
is different from the literature on FPGAs in that we con-
sider the 9/7 image wavelet transform for a generic mi-
cro-controller with a very small RAM.

The general approach to build a multimedia sensor
node has been to connect a second platform with a more
capable processor to the sensor node, see e.g., [19]. This
work is different from this traditional approach in that
we connect a small camera directly to the micro-controller
of the sensor node and perform the wavelet transform with
the micro-controller.

The distributed nature of sensor networks as well as the
correlation in the sensed data in neighboring sensors is
exploited in a number of data and image compression ap-
proaches that combine the computations across several
sensor nodes. For instance, partial wavelet coefficients
are calculated in [20,21] and refined as the data travels to-
ward the sink node. The approach in [22] employs lapped
biorthogonal transform and requires sensor nodes to hold
at least eight or 12 image rows in memory depending on
their role in the sensor network. The distributed image
compression approach in [23] employs the wavelet trans-
form and strives to minimize energy consumption by dis-
tributing the compression computations across the nodes
between a camera node and the sink node. In contrast,
we compute the wavelet transform at an individual node.

As we show in this work, the low-complexity fractional
wavelet transform can be combined with an image coding
system, e.g., [24], to give compression performance com-
petitive to the current JPEG2000 image compression sys-
tem. To our best knowledge, only the approach in [25]
compresses images directly on low-complexity hardware.
However, [25] employs the general JPEG technique which
gives significantly lower image compression performance
than wavelet-based compression.

Closer related to our work is the line-based version of
the image wavelet transform proposed in [26]. The line-
based approach [26] employs a system of buffers where
only a small subset of the coefficients is stored; thus, tre-
mendously reducing the memory requirements compared
to the traditional transform approach.

An efficient implementation of the line-based transform
using the lifting scheme and improved communication be-
tween the buffers is detailed for floating-point arithmetic
in [27] and implemented in C++ on a PC for demonstration.
(Fixed-point arithmetic is not considered in [27].) The line-
based approach [26,27], however, cannot run on a sensor
node with very small RAM, as it theoretically requires
memory for 12 image lines when lifting is employed (18
images lines without lifting) and, thus, uses approximately
26 kbyte of RAM for a six-level transform of a 512 � 512
image. In contrast, for a 512 � 512 image our fractional
wavelet filter approach would only require roughly
4.6 kbyte of RAM using floating-point arithmetic (with
fixed-point arithmetic only approximately 2.56 kbyte are
required). To the best of our best knowledge, a 9/7 image
wavelet transform for typical low-complexity sensor node
hardware is for the first time presented and evaluated in
this article.

A preliminary version of the fractional wavelet filter ap-
proach was presented in the conference paper [28]. This
article extends [28] in two important ways. First, this arti-
cle extends the fractional wavelet filter approach by incor-
porating the lifting scheme. The lifting scheme can compute
the wavelet transform in place; thus, saving memory while
significantly reducing the computational cost compared to
the classical convolution approach. Second, the conference
paper [28] presented only a preliminary performance

Table 1
9/7 Analysis wavelet filter coefficients in floating-point and Q15 fixed-point
format.

Index j Lowpass lj Highpass hj

Floating-point Q15 Floating-point Q15

0 0.852699 27,941 0.788486 25,837
±1 0.377403 12,367 �0.418092 �13,700
±2 �0.110624 �3625 �0.040689 �1333
±3 �0.023849 �781 0.064539 2115
±4 0.037828 1240 0 0

484 S. Rein, M. Reisslein / Ad Hoc Networks 9 (2011) 482–496
evaluation of the fractional wavelet filter, whereas we
present a comprehensive analysis of resource require-
ments as well as image quality evaluations for a range of
image dimensions and accuracy levels in the integer arith-
metic in this article. Moreover, the achievable compression
when combining the fractional wavelet filter with an im-
age coding system and the comparison with JPEG2000 is
for the first time presented in this article.

Low-memory wavelet-based image coding (compres-
sion) that builds on wavelet transforms of images or inte-
grates wavelet transform and compression is a research
area related to the present study which focuses exclusively
on low-memory image wavelet transforms. For complete-
ness we briefly review this related research area, noting that
to the best of our knowledge all techniques in this area have
significantly higher memory requirements for the image
wavelet transform than our approach. Building on [26], a
strip based approached for low-memory image compres-
sion in proposed in [29]. In turn, building on [29], an ap-
proach for reducing the number of wavelet scales
(transform levels) and an new transform tree structure to
reduce the memory requirements for compression are pro-
posed in [30,31]. Block-based wavelet transforms, which re-
quire similar amounts of memory as [26], were developed
in [32,33] in support of block-based image coders. An en-
hanced cache memory management mechanism for the lift-
ing scheme in the context of the block-based approach from
[32] is developed in [34]. Low-memory on the fly computa-
tions of generic hierarchical transforms that do not need
any re-loading of image samples and a related image coder
are studied in [35]. The approach in [35] requires memory
on the order of several tens or hundreds of image lines. A
low-memory approach for set partitioning in hierarchical
trees (SPHIT) image coding, which requires close to
100 kbyte for a 512 � 512 image is proposed in [36], while
a low-memory image entropy coder employing zerotree
coding and Golomb–Rice codes is developed in [37].
3. Fractional wavelet filter

In this section we introduce the fractional wavelet filter.
We first give briefly preliminaries on wavelet transforms
and introduce our main notations. We refer to [38,39] for
more detailed background on the wavelet transform. We
then introduce the floating-point version of the fractional
wavelet filter, followed by the version for fixed-point num-
bers. Finally, we explain the lifting scheme for in-place
computation of the fractional wavelet filter.
3.1. Preliminaries on wavelet transform

A one-dimensional discrete wavelet transform can be
performed by low- and highpass filtering of an input signal
vector s with dimension N, i.e., s = [s0,s1, . . . ,sN�1], which
can be a single line of an image. The two resulting signals
are then sampled down, that is, each second value is dis-
carded, and form the approximations and details, which
are two sets of N/2 wavelet coefficients. We employ the
Daubechies biorthogonal 9/7 filter, which is part of the
JPEG2000 standard and is given by the filter coefficients
in Table 1. More formally, the approximation vector a (of
dimension N/2) is obtained by convolving the signal vector
s (of dimension N, with symmetrical extension at the
boundaries) with the vector of low pass filter coefficients
l = [l�4, l�3, . . . , l4], i.e.,

a ¼ convðs; lÞ: ð1Þ

In particular, the individual approximations are obtained
as

ai ¼ convpðs; l;2iÞ ¼
X4

j¼�4

s2iþj � lj; i ¼ 0;1; . . . ;
N
2
� 1: ð2Þ

Analogously, the detail vector d is obtained through the
convolution operation

d ¼ convðs;hÞ; ð3Þ

and the individual details are given by

di ¼ convpðs;h;2iþ 1Þ ¼
X3

j¼�3

s2iþ1þj � hj;

i ¼ 0;1; . . . ;
N
2
� 1: ð4Þ

A one-level image wavelet transform can be computed
by first performing a one-dimensional transform for each
line and then repeating this operation for all the columns
of the result, that is, applying the low- and the highpass
in the vertical direction. The horizontal transform results
in two matrices with N rows and N/2 columns, which we
denote by L and H for the approximations and details,
respectively. The second operation leads to four square
matrices of the dimension N/2 denoted by LL, HL, LH, and
HH, which are the so-called subbands. The two operations
can be repeated on the LL subband to obtain higher level
subbands, e.g., HL2 refers to the second level HL subband
that is computed by first horizontally filtering LL1 and then
vertically filtering the result.

3.2. Floating-point fractional wavelet filter

The fractional wavelet filter computes the image wave-
let transform on a sensor node with very small RAM mem-
ory and an attached flash memory (MMC card). The data on
the MMC card can only be accessed in blocks of 512 bytes,
thus a sample-by-sample access as easily executed with
RAM memory on personal computers is not feasible. The
fractional filter takes this restriction into account by read-
ing the image samples line-by-line from the MMC card.

Table 2
Pseudo code of fractional wavelet filter for the first level forward wavelet
transform.

1. For i = N/2 � 1, N/2 � 2, . . . ,0:
2. For m = 0,1, . . . ,N � 1: LL_HLm = 0, LH_HHm = 0
3. For j = �4, �3, . . . ,4:
4. Read line ‘ = 2i + j from flash memory into s
5. For k = 0,1, . . . ,N/2 � 1:
6. L = convp(s, l,2k)
7. LL_HLk + = lj � L // update LL
8. LH_HHk + = hj�1 � L // update LH
9. H = convp(s,h,2k + 1)
10. LL_HLk+N/2 + = lj � H // update HL
11. LH_HHk+N/2 + = hj�1 � H // update HH

Table 3
Lifting scheme for the forward wavelet transform.

se = [s0,s2,s4, . . . ,sN�2]
so = [s1,s3,s5, . . . ,sN�1]
so + = conv([se,sN�2], [a,a])
se + = conv([s1,so], [b,b])
so + = conv([se,sN�2], [c,c])
se + = conv([s1,so],[d,d])
se � = f
so/ = f

S. Rein, M. Reisslein / Ad Hoc Networks 9 (2011) 482–496 485
For the first transform level, the algorithm reads the im-
age samples line-by-line while it writes the subbands to a
different destination on the MMC card. The LL subband
contains the input data for the next transform level. Note
that the input samples for the first level are of the type un-
signed char (8 Bit), whereas the input for the higher level
are either of type float (floating-point filter) or INT16
(fixed-point filter) format. The filter does not work in place
on the MMC card and for each transform level a new des-
tination matrix is allocated on the MMC card. Since the
MMC card has abundant memory this approach does not
affect the sensor’s resources. This approach also allows
reconstruction of the image from any transform level,
which is useful for adaptive transmission mechanisms
similar to [40].

The floating-point wavelet filter computes the wavelet
transform with high precision, as it uses 32 bit floating-
point variables for the wavelet and filter coefficients as
well as for the intermediate operations. Thus, the images
can be reconstructed essentially without loss of informa-
tion. The fractional wavelet filter uses three buffers of the
dimension N, namely s for the current input line, LL_HL
for the LL/HL subband destination line, and LH_HH for
the LH/HH subband destination line.

The filter computes the horizontal wavelet transform
coefficients on the fly, while it computes a set of fractions
(whereby we refer to part of a sum as a fraction) toward
the vertical wavelet transform. More specifically, the input
area which is centered (vertically) at index i moves up by
two lines to achieve vertical down sampling, see Lines 1
and 4 in Table 2. For each position of the filter area, nine
lines of input (indexed by j) are read, see Lines 3 and 4.
The horizontal filtering is achieved on the fly through the
loop over index k in Lines 5–11. Importantly, in this loop
over k, the vertical filter index j stays constant as all sub-
band rows are updated by the fractions contributed by
the current horizontal filtering. Repeating this update pro-
cedure for the nine input lines (and the corresponding ver-
tical filter coefficients) gives the final transform results in
the subband rows LL_HL and LH_HH that are then written
to the flash memory.

3.3. Fixed-point fractional wavelet filter

Many low-cost micro-controllers do not provide hard-
ware support for floating-point operations. If floating-point
operations are coded, the compiler translates them to inte-
ger operations, which often results in very long computing
times, as illustrated in Section 4.3. Converting an algorithm
from floating- to fixed-point arithmetic typically results in
substantial time and energy savings at the expense of low-
er precision and thorough number range analysis. Thus,
using fixed-point arithmetic for the fractional wavelet fil-
ter can help to significantly reduce the computational
requirements and to reduce the RAM memory needed for
the destination subbands. We refer to [39] for tutorial
background on using fixed-point arithmetic for wavelet
transforms.

We employ the standard Qm.n notation, where m indi-
cates the number of bits allocated to the integer portion
and n the number of bits for the fractional portion of a
two’s complement number. For the fixed-point fractional
wavelet filter we transform the real wavelet coefficients
to the Q0.15 format, see Table 1. For all subsequent compu-
tations, the possible range of the results should be smaller
than the range of numbers that can be represented with
the employed Qm.n format. As the number range of the
wavelet transform (result) coefficients increases from level
to level, the output data format has to be enlarged, i.e., m
has to be incremented while n is decremented. We take
the results of the study [10], which found that Q10.5 is
appropriate for a one-level transform of an image with 8
bit integer samples, as a starting point for our own investi-
gations in Section 5.2. For the first wavelet transform level,
we use the input data format Q15.0 since the image sam-
ples are integer numbers.

3.4. Lifting scheme

For the lifting scheme the nine lowpass analysis filter
coefficients and the corresponding seven lowpass synthe-
sis coefficients [41] are factored into the parameters [42]

a ¼ �1:5861343420693648; ð5Þ
b ¼ �0:0529801185718856;
c ¼ 0:8829110755411875;
d ¼ 0:4435068520511142;
f ¼ 1:1496043988602418:

Table 3 details the computation scheme for the 9/7 lift-
ing scheme [43] using the operator notation where for in-
stance x + = y assigns x the value x + y. In summary, the
original signal is first separated into even and odd indexed
values. Then follow four update/predict steps where the
parameters a and c are convoluted with the odd part and
parameters b and d are convolved with the even part of
the signal (without signal extension at the boundaries).

486 S. Rein, M. Reisslein / Ad Hoc Networks 9 (2011) 482–496
4. Resource requirements

In this section we evaluate the resource requirements of
the fractional wavelet filter. We analyze the required ran-
dom access memory (RAM), measure the computation
times on an experimental sensor node, and analyze the
reduction in computational complexity achieved with the
lifting scheme.
4.1. Random access memory

We evaluate the memory requirements of the fractional
wavelet filter through analysis of the buffer structure de-
scribed in Section 3. For the first transform level lev = 1,
the input buffer s holds N original 1 byte image samples.
Furthermore, each of the buffers LL_HL and LH_HH holds
N wavelet transform coefficients. These transform coeffi-
cients are float values of 4 bytes each for the floating-point
filter and INT16 values of 2 bytes each for the fixed-point
filter. Thus, the first transform level requires a total of 9N
bytes for the floating-point filter and 5N bytes for the
fixed-point filter.

For the higher transform levels lev > 1, the input buffer s
has to hold the wavelet transform coefficient from the pre-
ceding LL subband. Note that the first-level transform of an
image with N � N samples results in an LL subband with N/
2 � N/2 transform coefficients, i.e., the input buffer of the
second-level transform has to hold N/2 transform coeffi-
cients. With each additional transform level, the number
of input values for the subsequent transform level are
halved. Further note that the coefficients are 4-byte float
values for the floating-point filter and 2-byte INT16 values
for the fixed-point filter. Thus, for a given transform level
lev, lev > 1, the floating-point filter requires 12N/lev bytes
and the fixed-point filter requires 6N/lev bytes of memory.

Overall, the maximum memory requirement for a mul-
ti-level transform of an N � N image is attained for the first
transform level and is 9N bytes for the floating-point filter,
and 5N bytes for the fixed-point filter. For instance, for
128 � 128 pixel images, the floating-point filter requires
1152 bytes, while the fixed-point filter requires 640 bytes.
For a 256 � 256 image these memory requirements in-
crease to 2304 bytes for the floating-point filter and 1280
bytes for the fixed-point filter.

The inclusion of the lifting scheme for in-place compu-
tation of the horizontal transform does not further reduce
the random access memory requirements because the frac-
tional wavelet filter still requires one input line buffer s
and two destination buffers. The lifting scheme performs
an in-place computation (in the buffer s) of the horizontal
transform coefficients of an entire line with one execution
of the lifting algorithm. This in-place computation requires
that the buffer s can hold the transform result coefficients,
which are in the INT16 format for fixed-point filter. Apply-
ing the lifting scheme for the first transform level would
thus require a total of 6N bytes of memory for the fixed-
point filter. Therefore, for the first transform level we do
not use the lifting scheme, and use an input buffer holding
N 1-byte image samples (for a total memory requirement
of 5N bytes). For the second transform level, the dimension
is N/2 and we employ the lifting scheme and utilize the in-
put buffer s to hold N/2 INT16 input values (and then the
corresponding result values). The lifting scheme, however,
reduces the computational complexity, as evaluated in
Section 4.3.

We note for comparison that the classical convolution
approach for the wavelet transform requires memory for
2N2 pixels (with four bytes per pixel for floating-point
and two bytes per pixel for fixed-point computation); with
the lifting scheme for in-place computation this memory
requirement is reduced to N2 pixels. The existing line-
based low-memory wavelet transform approaches [26,27]
require memory for 18N pixels without the lifting scheme,
and 12N pixels with the lifting scheme.
4.2. Computational requirements

In this section we give the computational requirements
for (1) the wavelet transform using convolution, (2) the
fractional wavelet filter, and (3) the lifting scheme. We re-
call from Section 3.1 that conv(s, l) and conv(s,h) denote
the operations for computing the approximations and the
details of the one-dimensional wavelet transform of a gi-
ven image line s with the dimension N, respectively. We
denote a, m, and d for the computational effort for an addi-
tion, multiplication, and division operation, with two oper-
ands in floating-point or fixed-point format (whereby the
required concomitant bit-shift operations for fixed-point
arithmetic are included). We denote Cl and Ch for the com-
putational effort (which we will express in terms of the
computational effort for elementary addition, multiplica-
tion, and division operations) of the conv(s, l) and conv(s,h)
operations. We further recall that convp(s, l, �) and con-
vp(s,h, �) denote the operations for computing a single
approximation coefficient and a single detail coefficient
and denote Cp,l and Cp,h for the computational effort of
these operations.

For the computation of an approximation coefficient
the convp(s, l, �) operation requires the scalar product of
two vectors with the dimension nine, i.e., l�4s1 + l�3s2 +
� � � + l4s9. Noting that the filter is symmetrical, the compu-
tation can be performed as l�4(s1 + s9) + l�3(s2 + s8) + � � �
+ l0s5. Hence, the convp(s, l, �) operation requires a compu-
tational effort of Cp,l = 8 a + 5m. Similarly, the convp(s,h, �)
operation which involves a symmetrical filter with seven
coefficients requires a computational effort of Cp,h =
6a + 4m. The computational effort for the conv(s, l) opera-
tion is thus

Cl ¼
N
2

8aþ 5mð Þ ð6Þ

while the effort for the conv(s,h) operation is

Ch ¼
N
2

6aþ 4mð Þ: ð7Þ

Note that throughout this section we consider the compu-
tational effort for a one-level wavelet transform of an im-
age with dimension N. For each higher wavelet level the
image dimension is halved.

S. Rein, M. Reisslein / Ad Hoc Networks 9 (2011) 482–496 487
4.2.1. Image wavelet transform using convolution
Recall that the image wavelet transform consists of the

four subbands LL, HL, LH, and HH. In the standard convolu-
tional approach, these subbands are computed by first
applying a one-dimensional transform on each image line
resulting in the L/H image, and then the L and the H sub-
bands are vertically filtered to obtain the four subbands.

The computational effort is thus given as

Cimg; convðNÞ ¼ N � Cl þ Chð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
compute L=H

þ N
2

Cl|{z}
LL

þ Ch|{z}
LH

þ Cl|{z}
HL

þ Ch|{z}
HH

0
@

1
A; ð8Þ

¼ 2N Cl þ Chð Þ; ð9Þ
¼ N2 14aþ 9mð Þ: ð10Þ
4.2.2. Fractional wavelet filter
We analyze the pseudo code of Table 2, to obtain the

computational effort required for the fractional wavelet fil-
ter as

Cimg; fracwaveðNÞ ¼
N
2

9
N
2|fflffl{zfflffl}

lines 1; 3; 5

� Cp;l|{z}
line 6

þ2 mþ a½ �|fflfflfflfflffl{zfflfflfflfflffl}
lines 7; 8

þCp;h þ 2 mþ a½ �

0
B@

1
CA;
ð11Þ

¼ N2 81
2

aþ 117
4

m
� �

: ð12Þ

The fractional filter thus requires 81
2 =14 � 2:89 times

more add operations and 117
4 =9 � 3:25 more multiplication

operations than the convolutional approach.
We provide additional insight into this relationship be-

tween the computational effort for the classical convolu-
tion approach and the fractional wavelet filter by
analyzing the differences between the two approaches.
For the convolutional approach, the computational effort
can be expressed in two products as

Cimg; convðNÞ ¼ N � Cl þ Chð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
compute L=H

þN � Cl þ Chð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
LL; LH; HL; HH

; ð13Þ

whereby the first product refers to the horizontal wavelet
transform and the second product to the vertical filter
operations. There are two contributions to the increased
computational effort of the fractional wavelet filter ap-
proach. First, the convolution approach exploits the sym-
metry of the filter coefficients, i.e., filtering with nine
filter coefficients requires only an effort of 4a for summing
the signal values that are filtered by the same filter coeffi-
cient, 5m for multiplying the signal values with the filter
coefficients, and 4a for summing the resulting products,
i.e., Cp,l = 8a + 5m. In contrast, the fractional filter approach
carries out these computations through update operations.
Therefore, the fractional wavelet filter cannot exploit the
symmetry of the wavelet filter coefficients. Instead, for
each set of two destination lines LL_HL and LH_HH, the
fractional filter reads nine input lines (see Line 3 in Table 2)
and computes the horizontal transforms (see Lines 6 and 9
in Table 2). Further, note that the fractional filter moves up
the filter area by two lines for each new set of two destina-
tion lines (see Line 4 in Table 2). Thus, there is overall a 9/
2-fold increase in computational effort for computing the
L/H image compared to the convolutional approach.

Second, for ease of readability and simplicity of the
pseudo code, the fractional filter in Table 2 implies that
there are nine highpass filter coefficients, i.e., that the high-
pass filter includes h�4 and h4. These coefficients do not ex-
ist, i.e., have zero values and do not result in an actual
update of the transform coefficients. We note that the com-
piler may take out the multiplication with zero coefficients;
however, for completeness we include these operations.
Therefore, the operations conv(s, l) and conv(s,h) require
a computational effort of N

2 ð9mþ 9aÞ in the fractional filter
approach. Overall, the computational effort given by Eq.
(13) for the convolution approach translates for the frac-
tional wavelet filter approach to a computational effort of

Cimg; fracwaveðNÞ ¼
9
2
� N � Cl þ Chð Þ

þ N
N
2

9mþ 9a½ � þ N
2

9mþ 9a½ �
� �

ð14Þ

¼ 9
2
� N � N

2
8aþ 5m½ � þ 6aþ 4m½ �ð Þ

þ N
N
2

18mþ 18að Þ ð15Þ

¼ 81
2

N2aþ 117
4

N2m; ð16Þ

which is the same result as previously computed in
Eq. (12).

4.2.3. Lifting scheme
We extract the required number of operations for the

lifting scheme from Table 3. The first update operation of
the lifting scheme is so + = conv([se,sN�2],[a,a]) which re-
quires N � 1 additions and N/2 multiplications for the con-
volution as well as N/2 additions for updating the vector
with dimension N, i.e., a total effort of ð3N

2 � 1Þaþ N
2 m.

These update operations occur four times. Finally, the
two vectors se and so are multiplied by f and divided by
f, respectively, requiring N/2 multiplications and N/2 divi-
sions. Thus, the total computational effort for transforming
one image line is

Clift
lineðNÞ ¼ 4

3N
2
� 1

� �
aþ N

2
m

� �
þ N

2
mþ N

2
d; ð17Þ

¼ ð6N � 4Þaþ 5
2

Nmþ N
2

d: ð18Þ

With Eq. (8) we obtain the computational effort for
transforming a complete image with the convolutional ap-
proach as

Clift
imgðNÞ ¼ 2N ½6N � 4�aþ 5

2
Nmþ N

2
d

� �
: ð19Þ

Toward evaluating the computational effort for the frac-
tional wavelet filter with lifting for the horizontal trans-
form we note that (18) gives the effort of transforming

5000

6000

7000

8000

s
e
c
]

read
calc
write

488 S. Rein, M. Reisslein / Ad Hoc Networks 9 (2011) 482–496
one image line with dimension N using the lifting scheme.
We further note that in (11), the terms Cp,l and Cp,h ac-
count for the horizontal convolutional transform. Thus,
we replace these two terms with the effort for the lifting
scheme resulting in

Clift
img; fracwaveðNÞ ¼

N
2

9
N
2
ð2½mþ a� þ 2½mþ a�Þ

þ N
2

9Clift
lineðNÞ; ð20Þ

¼ 9
2

N ½8N � 4�aþ 9
2

Nmþ N
2

d
� �

: ð21Þ

Thus, for moderate to large N, the lifting scheme reduces
the number of additions to approximately 72/81 � 90%
and the number of multiplications to 81/117 � 70% of the
numbers required for the fractional wavelet filter without
lifting while requiring some additional divisions.

4.3. Time measurements

For measuring the time requirements of the fractional
wavelet filter, we built a sensor node from the Microchip
dsPIC30F4013, which is a 16 bit digital signal (micro) con-
troller with 2 kbyte of RAM. We attached the camera mod-
ule C328-7640 with a universal asynchronous receiver/
transmitter (UART) interface to the micro-controller. We
further attached an external 64 Mbyte multimedia card
(MMC) as flash memory (MMC card) and access the data
on the MMC card through the filesystem presented in [4].
Camera and MMC card both can be connected to any con-
troller with UART and SPI ports. The system is designed to
capture still images.

For the initial set of time measurements we considered
the forward fractional wavelet filter without lifting
scheme. The 2 kbytes of the sensor’s RAM allowed to trans-
form 128 � 128 images with the floating-point filter and
256 � 256 images with the fixed-point filter. We compute
a six-level forward wavelet transform and report means
from 20 independent measurements. Table 4 gives the
times needed for the transform classified by read and write
MMC card access times and processor computing times.
The time values for the different categories were nearly
constant across the different measurements with the
exception of the write access times, which experience var-
iability due to internal operations performed by the flash
memory media before a block of data can be written. The
floating-point transform takes 16.2 s for the 128 � 128 pix-
el image, whereas for the four times larger 256 � 256 pixel
Table 4
MMC card access and processor computing times for a six-level wavelet
transform of an 128 � 128 � 8 image with the floating-point filter and an
256 � 256 � 8 image with the fixed-point filter. The floating-point filter is
very slow because the compiler translates the computations to 16 bit
integer operations.

Time (s)

Tread Twrite Tcompute Ttotal

float128 1.421 0.5425 14.22 16.18
fix256 2.839 1.085 7.716 11.64
image the fixed-point transform takes 11.6 s. The floating-
point algorithm is very slow because the processor does
not support the required high-precision arithmetic. In-
stead, the operations are realized through heavy compiler
support. We furthermore observe from Table 4 that the
computing times make up the largest portion of the total
time. That is, the flash memory is not the bottleneck of
the fractional filter, even though there is large overhead
in the read process, as the rows are read repeatedly. In
most applications, the fixed-point algorithm will be prefer-
able as the floating-point algorithm is much slower even
for a four times smaller input image while it needs the
same amount of RAM.

For further insight into the time requirements of the
fixed-point filter, we examine the flash memory access
read and write times and computation times for the indi-
vidual transform levels 1–6 in Fig. 1. We observe from
Fig. 1 that the first transform level consumes by far the
most time. Each subsequent transform requires less than
half the time of the preceding level. This is because the
subsequent transform levels operate only on the transform
coefficients in the LL subband of the preceding level. Recall
that for an N � N input image, the first-level transform
gives an LL subband with N/2 � N/2 transform coefficients.
With each successive transform level, the number of coef-
ficients in the LL subband is reduced to a quarter of the
number of input LL subband coefficients.

We further observe from Fig. 1 that compute times
dominate for the first and second transform levels, but
shrink to negligible values compared to the read and write
times for transform levels 4–6. Nevertheless, aggregating
all six transform levels, the compute times dominate the
total time requirement, as also observed from Table 4. In
summary, these timing results corroborate the underlying
strategy of the fractional wavelet filter—to reduce the
memory requirements by introducing some replication in
the read process while ensuring that the write process
has no replication. This is an important feature as the read-
ing access on flash memory is generally very fast, whereas
0

1000

2000

3000

4000

lv1 lv2 lv3 lv4 lv5 lv6

t
i
m
e
[
m

Fig. 1. Mean values of 20 time measurements for performing a fixed-
point fractional wavelet filter transform of an 256 � 256 image for levels
1–6. The times are categorized by read and write access from the
multimedia card and by computing times. The largest proportion is taken
by the computing times.

S. Rein, M. Reisslein / Ad Hoc Networks 9 (2011) 482–496 489
writing times on flash memory fluctuate and repetitions in
the write process should therefore be avoided, see the
work on the filesystem [4]. Despite this ‘‘repetitive read”
strategy, the total time requirement for the wavelet trans-
form on memory constrained sensor nodes with attached
flash memory is dominated by the compute times.
5. Image quality

5.1. Overview

For the quality evaluation of the fixed-point wavelet fil-
ter, we have selected 24 test images from the Waterloo
Repertoire and the standard image data base (available at
http://links.uwaterloo.ca and http://sipi.usc.edu/database).
The images were converted to an integer data format with
the range of [�128, . . . ,127] using the convert command of
the software suite ImageMagick (available at http://www.
imagemagick.org) and the software Octave.

In the image quality evaluation we compare the original
N � N image f(j,k), j,k = 1, . . . ,N, with the reconstructed
image g(j,k), j,k = 1, . . . ,N. The reconstructed image is gen-
erated through a forward wavelet transform using the frac-
tional fixed-point wavelet filter of the original image
followed by an inverse wavelet transform (using the stan-
dard floating-point inverse transform). We compute the
46

48

50

52

54

56

58

60

G
i
r
l
E

G
i
r
l
T

b
a
r
b
.

b
o
a
t
.

b
r
i
d
g

c
o
u
p
l

g
o
l
d
h

h
o
u
s
e

l
e
n
a
.

p
e
p
p
e

s
a
i
l
b

z
e
l
d
a

P
S
N
R

[
d
B
]

lev1
lev2

lev3
lev4

lev5
lev6

(a) N =

46

48

50

52

54

56

58

60

G
i
r
l
E

G
i
r
l
T

b
a
r
b
a

b
o
a
t
.

b
r
i
d
g

c
o
u
p
l

g
o
l
d
h

h
o
u
s
e

l
e
n
a
.

p
e
p
p
e

s
a
i
l
b

z
e
l
d
a

P
S
N
R

[
d
B
]

lev1
lev2

lev3
lev4

lev5
lev6

(b) N =

Fig. 2. PSNR image quality without lifting using the fractional fixed-point wavele
transform and a standard floating-point inverse transform. Even if there was no q
very high PSNR values as the transform input values are integers. The quality loss
significant bits.
mean squared error (MSE) for the compared monochrome
image matrices f and g:

MSE ¼ 1
N2

X
8j;k

f ðj; kÞ � gðj; kÞð Þ2: ð22Þ

The PSNR in decibels (dB) is calculated as

PSNR ¼ 10 � log10
2552

MSE
: ð23Þ

Image degradations with a PSNR of 40 dB or higher are typ-
ically nearly invisible for human observers [44].

We denote the Qm.n format for the wavelet transform
(result) coefficients of the first transform level by n1 (as a
short-hand for Qm.n1). For instance, n1 = 5 means that the
result coefficients of the first transform level are in the
Q10.5 format, which requires a division by 25 to obtain
the coefficients in the Q15.0 format. Throughout, following
[10], for each higher transform level, we switch the format
to the next larger range.
5.2. Fixed-point filter without lifting scheme

We initially employ the fractional fixed-point wavelet
filter without the lifting scheme and six wavelet transform
levels for each image. We did not observe any visible qual-
46

48

50

52

54

56

58

60

S
a
n
F
r

a
e
r
i
a

a
i
r
p
l

a
i
r
p
o

g
r
a
y
2

h
e
x
a
.

m
a
n
5
.

m
a
n
d
r

n
u
m
b
e

r
u
l
e
r

t
e
s
t
p

t
r
u
c
k

P
S
N
R

[
d
B
]

lev1
lev2

lev3
lev4

lev5
lev6

256

46

48

50

52

54

56

58

60

S
a
n
F
r

a
e
r
i
a

a
i
r
p
l

a
i
r
p
o

g
r
a
y
2

h
e
x
a
.

m
a
n
5
.

m
a
n
d
r

n
u
m
b
e

r
u
l
e
r

t
e
s
t
p

t
r
u
c
k

P
S
N
R

[
d
B
]

lev1
lev2

lev3
lev4

lev5
lev6

512

t filter with n1 = 5. The evaluation uses the fractional filter for the forward
uality degradation visible, the transform is not lossless. The first level gives
is typically negligible for a lossy compression algorithm that removes least

http://links.uwaterloo.ca
http://sipi.usc.edu/database
http://www.imagemagick.org
http://www.imagemagick.org

46

48

50

52

54

56

58

60

G
i
r
l
E

G
i
r
l
T

b
a
r
b
.

b
o
a
t
.

b
r
i
d
g

c
o
u
p
l

g
o
l
d
h

h
o
u
s
e

l
e
n
a
.

p
e
p
p
e

s
a
i
l
b

z
e
l
d
a

P
S
N
R

[
d
B
]

lev1
lev2

lev3
lev4

lev5
lev6

46

48

50

52

54

56

58

60

S
a
n
F
r

a
e
r
i
a

a
i
r
p
l

a
i
r
p
o

g
r
a
y
2

h
e
x
a
.

m
a
n
5
.

m
a
n
d
r

n
u
m
b
e

r
u
l
e
r

t
e
s
t
p

t
r
u
c
k

P
S
N
R

[
d
B
]

lev1
lev2

lev3
lev4

lev5
lev6

(a) N = 256

46

48

50

52

54

56

58

60

G
i
r
l
E

G
i
r
l
T

b
a
r
b
a

b
o
a
t
.

b
r
i
d
g

c
o
u
p
l

g
o
l
d
h

h
o
u
s
e

l
e
n
a
.

p
e
p
p
e

s
a
i
l
b

z
e
l
d
a

P
S
N
R

[
d
B
]

lev1
lev2

lev3
lev4

lev5
lev6

46

48

50

52

54

56

58

60

S
a
n
F
r

a
e
r
i
a

a
i
r
p
l

a
i
r
p
o

g
r
a
y
2

h
e
x
a
.

m
a
n
5
.

m
a
n
d
r

n
u
m
b
e

r
u
l
e
r

t
e
s
t
p

t
r
u
c
k

P
S
N
R

[
d
B
]

lev1
lev2

lev3
lev4

lev5
lev6

(b) N = 512

Fig. 3. PSNR image quality without lifting using the fractional fixed-point wavelet filter with n1 = 6.

490 S. Rein, M. Reisslein / Ad Hoc Networks 9 (2011) 482–496
ity degradation. However, the forward wavelet transform
with the fractional wavelet filter is not lossless. Figs. 2
and 3 give the PSNR values for each of the maximum wave-
let levels lev1 through lev6 for both 256 � 256 pixel
images and 512 � 512 pixel images for n1 = 5 and n1 = 6,
respectively. We observe from the comparison of Figs. 2
and 3 that the n1 = 6 data format for the first transform le-
vel performs significantly better than the n1 = 5 data for-
mat. This is due to the higher precision of the n1 = 6 data
format; however, the range of the wavelet transformed
values is more limited with this format, which is not a
problem for the considered test images. For the different
image sizes there is only a small PSNR quality difference
visible.

In additional evaluations for which we do not include
plots due to space constraints, we have considered the data
formats n1 = 4 and n1 = 7 for the first transform level. We
found that n1 = 4 consistently gives image qualities be-
tween 42 and 50 dB for transform levels one through five.
For n1 = 7, the image quality is very high (54–58 dB for all
six transform levels) for images with relatively ‘‘soft” edges
(e.g., SanFr, aeria, and mandr), while the image quality
drops to values between 10 dB and 20 dB for images with
sharp edges and ‘‘artificial” content (e.g., numbers, ruler,
and test pattern). For the images with soft edges the
wavelet transform (result) coefficients can be accommo-
dated by the small number ranges with n1 = 7, giving high
image quality due to the large number of bits representing
fractional values with fine resolution. For the images with
sharp edges the wavelet coefficients overflow the number
ranges with n1 = 7, leading to large errors.

Overall, we find that for the computational methodol-
ogy of the fractional wavelet filter, the n1 = 5 format [10],
which uses formats Q10.5 for the first transform level
through Q15.0 for the sixth transform level robustly gives
high image quality. The n1 = 6 format achieves higher im-
age quality for the considered test images which represent
a wide range of image characteristics. However, the smal-
ler number ranges of the n1 = 6 format may lead to over-
flows for images with extreme characteristics and before
use in specific application areas with extreme image char-
acteristics should be tested for the application area.

5.3. Fixed-point filter with lifting scheme

We next evaluate the image quality obtained when
including the lifting scheme for in-place computation in
the fixed-point filter. In Figs. 4 and 5 we plot the image
qualities for transform levels one through six when the for-
ward wavelet transform uses the fixed-point filter with the
lifting scheme for n1 = 5 and n1 = 6, respectively. From
comparisons of Figs. 2 and 3 with Figs. 4 and 5 we observe
that the fixed-point filter with the lifting scheme gives
generally the same or very slightly higher PSNR image
qualities than the fixed-point filter without the lifting
scheme.

An exception occurs for the test pattern image in
Fig. 5a) and for the numbers, ruler, and test pattern

46

48

50

52

54

56

58

60

G
i
r
l
E

G
i
r
l
T

b
a
r
b
.

b
o
a
t
.

b
r
i
d
g

c
o
u
p
l

g
o
l
d
h

h
o
u
s
e

l
e
n
a
.

p
e
p
p
e

s
a
i
l
b

z
e
l
d
a

P
S
N
R

[
d
B
]

lev1
lev2

lev3
lev4

lev5
lev6

46

48

50

52

54

56

58

60

S
a
n
F
r

a
e
r
i
a

a
i
r
p
l

a
i
r
p
o

g
r
a
y
2

h
e
x
a
.

m
a
n
5
.

m
a
n
d
r

n
u
m
b
e

r
u
l
e
r

t
e
s
t
p

t
r
u
c
k

P
S
N
R

[
d
B
]

lev1
lev2

lev3
lev4

lev5
lev6

(a) N = 256

46

48

50

52

54

56

58

60

G
i
r
l
E

G
i
r
l
T

b
a
r
b
a

b
o
a
t
.

b
r
i
d
g

c
o
u
p
l

g
o
l
d
h

h
o
u
s
e

l
e
n
a
.

p
e
p
p
e

s
a
i
l
b

z
e
l
d
a

P
S
N
R

[
d
B
]

lev1
lev2

lev3
lev4

lev5
lev6

46

48

50

52

54

56

58

60

S
a
n
F
r

a
e
r
i
a

a
i
r
p
l

a
i
r
p
o

g
r
a
y
2

h
e
x
a
.

m
a
n
5
.

m
a
n
d
r

n
u
m
b
e

r
u
l
e
r

t
e
s
t
p

t
r
u
c
k

P
S
N
R

[
d
B
]

lev1
lev2

lev3
lev4

lev5
lev6

(b) N = 512

Fig. 4. PSNR image qualities for the fixed-point fractional wavelet filter with n1 = 5 with incorporated lifting scheme, which is applied for the horizontal
transform in levels 2–6. While the lifting scheme saves computation, the image qualities are nearly the same or slightly higher than with the fixed-point
filter without the lifting scheme.

S. Rein, M. Reisslein / Ad Hoc Networks 9 (2011) 482–496 491
images in Fig. 5b) that have very sharp edges. For instance,
in the numbers image, typed numbers are superimposed
on the underlying lena image. For N = 512, n1 = 6 for the
numbers image the PSNR qualities are between 41.3 and
41.0 dB for transform levels 2–6; for the test pattern

image they are between 44.6 and 43.9 dB. The sharp edges
in these images give large coefficient values that result in a
few overflows of the number range of the n1 = 6 format
during the lifting computations, as studied in detail in
Appendix A. The n1 = 5 format avoids these overflow prob-
lems and consistently achieves PSNR values above 46 dB
for the six-level wavelet transform with lifting for these
images.

Additional evaluations for n1 = 4 gave very similar re-
sults as for the fractional wavelet filter without the lifting
scheme, as summarized in Section 5.2. For n1 = 7, in con-
trast to the results without lifting in Section 5.2, some
overflows in the lifting computations caused the image
quality to drop to values around 40 dB for most images
with soft edges.

Overall, we conclude that the lifting scheme works ro-
bustly and achieves image qualities above 46 dB for
n1 = 5 for the considered wide range of image characteris-
tics. With n1 = 6, some overflows occur resulting in image
qualities as low as 40 dB for sharp-edged images. The cost
of the lifting scheme is the more complex and longer
source code (which we provide). The longer source code
adds on to the required program memory of the micro-
controller (which was not bottleneck in our set-up as we
did not run an operating system). Time savings are
achieved through reductions of the computation steps for
transform levels 2–6, as analyzed in Section 4.3.

5.4. Image compression performance

In this section we combine the fractional wavelet filter
with a low-memory version of the SPIHT coder [24]. We
demonstrate that the reductions in image quality observed
in Sections 5.2 and 5.3 are negligible when the transformed
image is compressed with a lossy wavelet compression
algorithm.

We evaluate the compression performance for a wide
set of 256 � 256 pixel images. We employ the fixed-point
fractional wavelet filter with n1 = 6 without the lifting
scheme for the forward wavelet transform. In order to pro-
vide insight into the effects of the fractional wavelet filter
and the low-memory image coder, we first plot in Fig. 6,
analogous to the evaluation approach in Section 5.2, the
image PSNR quality for fractional wavelet filter forward
transform followed by conventional backward transform.

We next evaluate the combined fractional wavelet filter
and low-memory wavelet transform in terms of the PSNR

46

48

50

52

54

56

58

60

G
i
r
l
E

G
i
r
l
T

b
a
r
b
.

b
o
a
t
.

b
r
i
d
g

c
o
u
p
l

g
o
l
d
h

h
o
u
s
e

l
e
n
a
.

p
e
p
p
e

s
a
i
l
b

z
e
l
d
a

P
S
N
R

[
d
B
]

lev1
lev2

lev3
lev4

lev5
lev6

46

48

50

52

54

56

58

60

S
a
n
F
r

a
e
r
i
a

a
i
r
p
l

a
i
r
p
o

g
r
a
y
2

h
e
x
a
.

m
a
n
5
.

m
a
n
d
r

n
u
m
b
e

r
u
l
e
r

t
e
s
t
p

t
r
u
c
k

P
S
N
R

[
d
B
]

lev1
lev2

lev3
lev4

lev5
lev6

(a) N = 256

46

48

50

52

54

56

58

60

G
i
r
l
E

G
i
r
l
T

b
a
r
b
a

b
o
a
t
.

b
r
i
d
g

c
o
u
p
l

g
o
l
d
h

h
o
u
s
e

l
e
n
a
.

p
e
p
p
e

s
a
i
l
b

z
e
l
d
a

P
S
N
R

[
d
B
]

lev1
lev2

lev3
lev4

lev5
lev6

46

48

50

52

54

56

58

60

S
a
n
F
r

a
e
r
i
a

a
i
r
p
l

a
i
r
p
o

g
r
a
y
2

h
e
x
a
.

m
a
n
5
.

m
a
n
d
r

n
u
m
b
e

r
u
l
e
r

t
e
s
t
p

t
r
u
c
k

P
S
N
R

[
d
B
]

lev1
lev2

lev3
lev4

lev5
lev6

(b) N = 512

Fig. 5. PSNR image quality with lifting using the fractional fixed-point wavelet filter with n1 = 6.

46

48

50

52

54

56

58

60

b
i
r
d
.

b
r
i
d
g

c
a
m
e
r

c
i
r
c
l

c
r
o
s
s

g
o
l
d
h

h
o
r
i
z

l
e
n
a
.

m
o
n
t
a

s
l
o
p
e

s
q
u
a
r

t
e
x
t
.

P
S
N
R

[
d
B
]

lev1
lev2

lev3
lev4

lev5
lev6

Fig. 6. PSNR image quality for fixed-point fractional wavelet filter
forward transform with n1 = 6 and no lifting and subsequent conventional
backward transform. These 256 � 256 images are considered in the image
compression evaluation in Fig. 7.

492 S. Rein, M. Reisslein / Ad Hoc Networks 9 (2011) 482–496
as a function of the compression ratio in bits per byte (i.e.,
per input pixel) denoted by bpb in Fig. 7. The PSNR is for
the comparison between (i) the forward wavelet trans-
formed, compressed, and subsequently uncompressed
and backward transformed image compared with (ii) the
original image. We denote the PSNR results obtained with
the fixed-point fractional wavelet filter with n1 = 6 without
the lifting scheme for the forward transform in conjunction
with the Wi2l image coder [24] by Wi2l in Fig. 7 We com-
pare with state-of-the-art compression schemes, namely
Spiht [9] obtained with the Windows implementation
from Said et al. http://www.cipr.rpi.edu/research/SPIHT/
spiht3.html, as well as jpeg and jpeg2000 obtained with
the JPEG and JPEG2000 implementations from the jasper
project http://www.ece.uvic.ca/mdadams/jasper. These
comparison benchmarks combine the image transform
and image coding and are designed to run on personal
computers with abundant memory.

We observe from Fig. 7 that the wavelet techniques Spiht,
JPEG2000, and our fractional wavelet filter/Wi2l coder based
scheme generally outperform the JPEG standard mainly be-
cause it is based on the discrete cosine transform. Especially
for high compression rates, the wavelet techniques achieve
significantly higher compression performance.

Importantly, we observe from Fig. 7 that the fractional
wavelet filter/Wi2l coder based approach achieves state-
of-the-art image compression that gives essentially the
same PSNR image quality as JPEG2000 and SPIHT for the
high compression rates (i.e., small bpb values). For the
low compression rates (large bpb values), the fractional
wavelet filter approach gives slightly lower image quality
due to the loss in precision from the fixed-point arithmetic.
However, the fractional wavelet filter/Wi2l approach
achieves image qualities above 45 dB in the instances
where it markedly drops below the other approaches
(circles, crosses, horizon, and squares images) for
low compression ratios. We observe from Fig. 6 that the
fractional wavelet filter in isolation gives high image qual-
ities for these images. This result suggests that these

http://www.cipr.rpi.edu/research/SPIHT/spiht3.html
http://www.cipr.rpi.edu/research/SPIHT/spiht3.html
http://www.ece.uvic.ca/mdadams/jasper

20

25

30

35

40

45

50

55

60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

P
S
N
R

[
d
B
]

bpb

Spiht
jpeg2000

Wi2l
jpeg

20

25

30

35

40

45

50

55

60

0 1 2 3 4 5 6 7

P
S
N
R

[
d
B
]

bpb

Spiht
jpeg2000

Wi2l
jpeg

20

25

30

35

40

45

50

55

60

0 1 2 3 4 5 6

P
S
N
R

[
d
B
]

bpb

Spiht
jpeg2000

Wi2l
jpeg

camerabird

20

25

30

35

40

45

50

55

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

P
S
N
R

[
d
B
]

bpb

Spiht
jpeg2000

Wi2l
jpeg

20

25

30

35

40

45

50

55

60

0 0.5 1 1.5 2 2.5

P
S
N
R

[
d
B
]

bpb

Spiht
jpeg2000

Wi2l
jpeg

20

25

30

35

40

45

50

55

60

0 1 2 3 4 5 6

P
S
N
R

[
d
B
]

bpb

Spiht
jpeg2000

Wi2l
jpeg

crossescircles

20

25

30

35

40

45

50

55

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
S
N
R

[
d
B
]

bpb

Spiht
jpeg2000

Wi2l
jpeg

20

25

30

35

40

45

50

55

60

0 1 2 3 4 5 6

P
S
N
R

[
d
B
]

bpb

Spiht
jpeg2000

Wi2l
jpeg

20

25

30

35

40

45

50

55

60

0 0.5 1 1.5 2 2.5 3 3.5

P
S
N
R

[
d
B
]

bpb

Spiht
jpeg2000

Wi2l
jpeg

montagelenahorizon

20

25

30

35

40

45

50

55

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

P
S
N
R

[
d
B
]

bpb

Spiht
jpeg2000

Wi2l
jpeg

20

25

30

35

40

45

50

55

60

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
S
N
R

[
d
B
]

bpb

Spiht
jpeg2000

Wi2l
jpeg

20

25

30

35

40

45

50

55

60

0 1 2 3 4 5 6 7

P
S
N
R

[
d
B
]

bpb

Spiht
jpeg2000

Wi2l
jpeg

goldhill

bridge

textsquaresslope

Fig. 7. The introduced wavelet filter combined with a low-memory image coder Wi2l gives nearly the same performance as JPEG2000, which reflects the
state-of-the-art in image compression. While most implementations of JPEG2000 require a personal computer, the combination of fractional wavelet filter
and image coder runs on a small 16 bit micro-controller with less than 2 kbyte of random access memory. Small wireless sensor nodes can thus perform
image compression when extended with a flash memory, a small camera with serial interface, and a software update.

S. Rein, M. Reisslein / Ad Hoc Networks 9 (2011) 482–496 493
images may present unique challenges to the low-memory
wavelet encoder. A more detailed evaluation of the low-
memory wavelet coder is the topic of future research.
Overall, we conclude from Figs. 6 and 7 that the combina-
tion of fractional wavelet filter and low-memory wavelet
image coder [24] are well suited for sensor networks,
which generally require a high compression (small bpb)
due to the limited transmission energy and bandwidth.
6. Conclusions

We introduced and evaluated the fractional wavelet fil-
ter for computing the image wavelet transform on sensor
nodes with small random access memory. The fractional
wavelet filter computes the horizontal wavelet transform
on the fly and computes the vertical wavelet transform
through a novel iterative approach of computing and

-700

-600

-500

-400

-300

-200

-100

0

100

200

300

400

50 100 150 200 250

sample index

without lift
lift

-300

-200

-100

0

100

200

300

400

500

600

80 90 100 110 120 130 140

sample index

input (even/odd)
diff

(a) (b)

Fig. 8. (a) Comparison of fixed-point fractional wavelet filter without lifting, which has been verified to be correct, and with lifting. (b) Error in the result
line (difference between correct results and results with lifting scheme) and the input samples sorted by even (lowpass values at left-hand side) and odd
values (highpass values at right-hand side). The border line between even and odd values is at sample position 128.

-1500

-1000

-500

0

500

1000

1500

1 32 64 96 128 160 192 224

1 32 64 96 1 32 64 96 128

sample index

octave
fixed-point

-800

-600

-400

-200

0

200

400

1 32 64 96 128 160 192 224

1 32 64 96 1 32 64 96 128

sample index

octave
fixed-point -700

-600
-500
-400
-300
-200
-100

0
100
200
300
400

1 32 64 96 128 160 192 224

1 32 64 96 1 32 64 96 128

sample index

octave
fixed-point

-2500

-2000

-1500

-1000

-500

0

500

1 32 64 96 128 160 192 224

1 32 64 96 1 32 64 96 128

sample index

d1 -50
0
50
100
150
200
250
300
350
400
450
500

1 32 64 96 128 160 192 224

1 32 64 96 1 32 64 96 128

sample index

d2
-100

0

100

200

300

400

500

600

1 32 64 96 128 160 192 224

1 32 64 96 1 32 64 96 128

sample index

d3

(a) First and second filtering update (b) Third and fourth filtering update (c) Multiplication and division

Fig. 9. Comparison of intermediate result values (top) and corresponding differences (bottom) between floating-point computation of lifting and fixed-
point computation of lifting.

494 S. Rein, M. Reisslein / Ad Hoc Networks 9 (2011) 482–496
summing the fractional contributions made by the individ-
ual image lines. Only three image lines need to be kept in
memory at any point during these computations. As a re-
sult, less than 1.5 kbyte of random access memory are re-
quired to transform a grayscale N � N = 256 � 256 image.
A conventional data sensor node can thus be upgraded to
a multimedia sensor node by adding some (external) flash
memory, a small camera, and a software update. Upgrade
costs and programming efforts are limited as the extension
only requires a standard MMC card (flash memory card), a
camera module, and a software update.

Aside from analyzing in detail the memory require-
ments, we have analyzed the computational complexity
of the fractional wavelet filter. We have found that the
reduction in memory from 2N images lines with the classi-
cal convolution approach to three image lines with the
fractional wavelet filter comes at the expense of 2.89 more
additions and 3.25 more multiplications. We demonstrate
how this computational effort is substantially reduced
with the lifting scheme for in-place computations. We also
measured the time required for evaluating the fractional
wavelet filter transform on a 16-bit micro-controller with
integer arithmetic and detailed the contributions of com-
putations as well as reading and writing from/to the flash
memory to the total time.

The fractional wavelet filter is not lossless when evalu-
ated with integer (fixed-point) arithmetic. However, our
image quality evaluations indicate that the loss is not vis-
ible, as high PSNR values are obtained for appropriate inte-
ger number formats. In particular, we found that the Q10.5
format (with 5 bits for the fractional values) for the first
transform level and one bit less for the fractional values
for each successive transform level gives image qualities
above 46 dB both without and with the lifting scheme.

S. Rein, M. Reisslein / Ad Hoc Networks 9 (2011) 482–496 495
We further combined the fractional wavelet filter with a
customized low-memory image coder [24]. We found that
for high compression ratios, this combined approach
achieves image compression competitive with the state-
of-the-art JPEG2000 compression.

One interesting direction for future research is to fur-
ther reduce the memory requirements of the image wave-
let transform by combining the fractional wavelet filter for
the computation of the vertical transform with a partition-
ing of the horizontal transform. In particular, an image in-
put line could be partitioned into two (or more) segments
with appropriate overlap to avoid boundary effects. The
fractional wavelet filter could then operate on these hori-
zontal line segments.
Appendix A. Analysis of errors due to lifting scheme

In this appendix we analyze in detail the lifting scheme
computations that lead to the lower image quality for the
numbers, rulers, and test pattern images in Fig. 5
compared to the transform without lifting scheme in
Fig. 3. We select the numbers image for our analysis. Since
we employ the lifting scheme only for the horizontal wave-
let transform of the second and higher transform levels we
analyzed the result of the second level wavelet transform.
Specifically, we examined the intermediate result after the
horizontal second level wavelet transform is complete
(which is then fed into the second level vertical transform),
i.e., the L/H image of the second transform level. A compar-
ison of this intermediate L/H transform result computed
without the lifting scheme with the corresponding result
computed with the lifting scheme revealed errors in line
248. As the vertical fractional filter computations did not
introduce quality degradation for the fractional filter with-
out lifting scheme, these errors must result from an incor-
rect lifting scheme calculation of the L and the H subband.

We extracted line 248 and computed the transform for
this line using a conventional floating-point wavelet tool
(Octave program) and compared with the fractional wave-
let filter without the lifting scheme. Both approaches gave
the same result, confirming that the fractional filter works
correctly even for this ‘‘artificial” image with sharp edges.

We next compare in Fig. 8a) the correct values from the
fractional filter without lifting scheme with the results
from the fractional filter with the lifting scheme. The line
has 256 wavelet coefficient values (samples), whereby
the leftmost 128 samples are from the lowpass calcula-
tions and the rightmost 128 samples from the highpass
calculations. We observe that incorrect values are com-
puted with the lifting scheme as more clearly illustrated
in Fig. 8b). In Fig. 8b) we plot the difference between the
fractional filter with and without lifting as well as the ori-
ginal input samples. Interestingly, the first error occurs
around sample 92, exactly at a very high input sample of
the sample value 320. Clearly, the incorrect calculations re-
sult from overflow in the fixed-point format, as they ap-
pear after peaks of input data.

As the result coefficients of the lifting scheme are com-
puted by several update iterations (see Section 3.4), we
examine the intermediate results in Fig. 9. We compare
verifying floating-point computations of the lifting scheme
(with the Octave program) with the corresponding fixed-
point computations in the top plots in Fig. 9; the bottom
plots give the differences between both computations. Part
(a) of Fig. 9 considers the first two filtering update opera-
tions, where the first operation gives the first intermediate
highpass filtered result (128 rightmost samples), and the
second update operation gives the first intermediate low-
pass filtered result (128 leftmost samples). The horizontal
scale on top of the plots refers to each of these filtering re-
sults. The four right-hand peaks in the lower plot in Fig. 9a
result from the very large input peaks at positions 94, 101,
109, and 125, in Fig. 8b. This is due to the first filter update
operation which is a convolution of the even values. The
result of this convolution is not correct due to overflow.
The incorrect result is carried over to the second filter up-
date operation and results in the four smaller peaks on the
left-hand side. The error is now propagated to the result of
the next two filter update operations, as illustrated in
Fig. 9b). Finally, the error is still visible after the multipli-
cation and division with f, see Fig. 9c).

This error analysis illustrates that the few calculation
(overflow) errors in the first update operation of the lifting
scheme propagate to all following updates. Such an error
propagation is not possible with the classical convolutional
scheme for computation of the wavelet transform. The
classical convolution separately computes each lowpass
and highpass value. While the lifting scheme is an elegant
computing methodology for the wavelet transform, com-
putation (overflow) errors due to a few very large input
values propagate and can result in an additional degrada-
tion of image quality, especially for artificial images with
sharp edges.
References

[1] H. Karl, A. Willig, Protocols and Architectures for Wireless Sensor
Networks, John Wiley & Sons, 2005.

[2] I.F. Akyildiz, T. Melodia, K.R. Chowdhury, A survey on wireless
multimedia sensor networks, Computer Networks 51 (4) (2007)
921–960.

[3] S. Misra, M. Reisslein, G. Xue, A survey of multimedia streaming in
wireless sensor networks, IEEE Communications Surveys and
Tutorials 10 (4) (2008) 18–39. Fourth Quarter.

[4] S. Lehmann, S. Rein, C. Gühmann, External flash filesystem for sensor
nodes with sparse resourcesg, in: Proceedings of the ACM Mobile
Multimedia Communications Conference (Mobimedia), July 2008.

[5] A. Leventhal, Flash storage memory, Communications of the ACM 51
(7) (2008) 47–51.

[6] G. Mathur, P. Desnoyers, D. Ganesan, P. Shenoy, Ultra-low power
data storage for sensor networks, in: Proceedings of the International
IEEE/ACM Syposium on Information Processing in Sensor Networks
(IPSN), 2006, pp. 374–381.

[7] D. Lee, S. Dey, Adaptive and energy efficient wavelet image
compression for mobile multimedia data services, in: Proceedings
of IEEE International Conference on Communications (ICC), 2002.

[8] J. Shapiro, Embedded image coding using zerotrees of wavelet
coefficients, IEEE Transactions on Signal Processing 41 (12) (1993)
3445–3462.

[9] A. Said, W. Pearlman, A new, fast, and efficient image codec based on
set partitioning in hierarchical trees, IEEE Transactions on Circuits
and Systems for Video Technology 6 (3) (1996) 243–250.

[10] T. Fry, S. Hauck, SPIHT image compression on FPGAs, IEEE
Transactions on Circuits and Systems for Video Technology 15 (9)
(2005) 1138–1147.

[11] K.-C. Hung, Y.-J. Huang, T.-K. Truong, C.-M. Wang, FPGA
implementation for 2D discrete wavelet transform, Electronics
Letters 34 (7) (1998) 639–640.

496 S. Rein, M. Reisslein / Ad Hoc Networks 9 (2011) 482–496
[12] J. Chilo, T. Lindblad, Hardware implementation of 1D wavelet
transform on an FPGA for infrasound signal classification, IEEE
Transactions on Nuclear Science 55 (1) (2008) 9–13.

[13] S. Ismail, A. Salama, M. Abu-ElYazeed, FPGA implementation of an
efficient 3D-WT temporal decomposition algorithm for video
compression, in: Proceedings of the IEEE International Symposium
on Signal Processing and Information Technology, December 2007,
pp. 154–159.

[14] C.-H. Hsia, J.-M. Guo, J.-S. Chiang, Improved low-complexity
algorithm for 2-D integer lifting-based discrete wavelet transform
using symmetric mask-based scheme, IEEE Transactions on Circuits
and Systems for Video Technology 19 (8) (2009) 1202–1208.

[15] W. Li, C. Hsia, J.-S. Chiang, Memory-efficient architecture of 2-D
dual-mode discrete wavelet transform using lifting scheme for
motion-JPEG2000, in: Proceedings of IEEE ISCAS, 2009, pp. 750–753.

[16] M. Vishwanath, The recursive pyramid algorithm for the discrete
wavelet transform, IEEE Transactions on Signal Processing 42 (3)
(1994) 673–676.

[17] B.-F. Wu, C.-F. Lin, A high-performance and memory-efficient
pipeline architecture for the 5/3 and 9/7 discrete wavelet
transform of JPEG2000 codec, IEEE Transactions on Circuits and
Systems for Video Technology 15 (12) (2005) 1615–1628.

[18] S. Rein, C. Gühmann, F. Fitzek, Sensor networks for distributive
computing, in: F. Fitzek, F. Reichert (Eds.), Mobile Phone
Programming, Springer, 2007, pp. 397–409.

[19] B. Rinner, W. Wolf, Toward pervasive smart camera networks, in: H.
Aghajan, A. Cavallaro (Eds.), Multi-Camera Networks: Principles and
Applications, Academic Press, 2009, pp. 483–496.

[20] A. Ciancio, A. Ortega, A distributed wavelet compression algorithm
for wireless multihop sensor networks using lifting, in: Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2005, pp. 825–828.

[21] A. Ciancio, S. Pattem, A. Ortega, B. Krishnamachari, Energy-efficient
data representation and routing for wireless sensor networks based
on a distributed wavelet compression algorithm, in: Proceedings of
the International Conference on Information Processing in Sensor
Networks (IPSN), 2006, pp. 309–316.

[22] Q. Lu, W. Luo, J. Wang, B. Chen, Low-complexity and energy efficient
image compression scheme for wireless sensor networks, Computer
Networks 52 (13) (2008) 2594–2603.

[23] H. Wu, A. Abouzeid, Energy efficient distributed image compression
in resource-constrained multihop wireless networks, Computer
Communications 28 (14) (2005) 1658–1668.

[24] S. Rein, S. Lehmann, C. Gühmann, Wavelet image two line coder for
wireless sensor node with extremely little RAM, in: Proceedings of
the IEEE Data Compression Conference (DCC), Snowbird, UT, March
2009, pp. 252–261.

[25] D.-U. Lee, H. Kim, M. Rahimi, D. Estrin, D. Villasenor, Energy-efficient
image compression for resource-constrained platforms, IEEE
Transactions on Image Processing 18 (9) (2009) 2100–2113.

[26] C. Chrysafis, A. Ortega, Line-based, reduced memory, wavelet image
compression, IEEE Transactions on Image Processing 9 (3) (2000)
378–389.

[27] J. Oliver, M. Malumbres, On the design of fast wavelet transform
algorithms with low memory requirements, IEEE Transactions on
Circuits and Systems for Video Technology 18 (2) (2008) 237–248.

[28] S. Rein, S. Lehmann, C. Gühmann, Fractional wavelet filter for camera
sensor node with external flash and extremely little RAM, in:
Proceedings of the ACM Mobile Multimedia Communications
Conference (Mobimedia ’08), July 2008.

[29] R.K. Bhattar, K.R. Ramakrishnan, K.S. Dasgupta, Strip based coding
for large images using wavelets, Signal Processing: Image
Communication 17 (6) (2002) 441–456.

[30] L. Chew, L.-M. Ang, K. Seng, New virtual Spiht tree structures for very
low memory strip-based image compression, IEEE Signal Processing
Letters 15 (2008) 389–392.

[31] L.W. Chew, L.-M. Ang, K.P. Seng, Low memory strip-based image
compression for color images, in: Proceedings of IEEE International
Conference on Intelligent Human-Machine Systems and Cybernetics
(IHMSC), 2009, pp. 363–366.

[32] Y. Bao, C. Kuo, Design of wavelet-based image codec in memory-
constrained environment, IEEE Transactions on Circuits and Systems
for Video Technology 11 (5) (2001) 642–650.

[33] V. Ratnakar, TROBIC: two-row buffer image compression, in:
Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 1999, pp. 3133–3136.

[34] C.-K. Hu, W.-M. Yan, K.-L. Chung, Efficient cache-based spatial
combinative lifting algorithm for wavelet transform, Signal
Processing 84 (9) (2004) 1689–1699.
[35] X. Zhang, L. Cheng, H. Lu, Low memory implementation of generic
hierarchical transforms for parentchildren tree (PCT) production and
its application in image compression, Signal Processing: Image
Communication 24 (5) (2009) 384–396.

[36] H. Pan, W.-C. Siu, N.-F. Law, A fast and low memory image coding
algorithm based on lifting wavelet transform and modified SPIHT,
Signal Processing: Image Communication 23 (3) (2008) 146–161.

[37] D. Zhao, Y. Chan, W. Gao, Low-complexity and low-memory entropy
coder for image compression, IEEE Transactions on Circuits and
Systems for Video Technology 11 (10) (2001) 1140–1145.

[38] B. Usevitch, A tutorial on modern lossy wavelet image compression:
foundations of JPEG2000, IEEE Signal Processing Magazine 18 (5)
(2001) 22–35.

[39] S. Rein, M. Reisslein, Low-memory wavelet transforms for wireless
sensor networks: a tutorial, IEEE Communications Surveys and
Tutorials (2010), in press. Preprint <http://mre.faculty.asu.edu/
fwftut.pdf>.

[40] V. Lecuire, C. Duran-Faundez, N. Krommenacker, Energy-efficient
transmission of wavelet-based images in wireless sensor networks,
EURASIP Journal on Image and Video Processing 2007 (47345)
(2007) 1–11.

[41] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.
[42] I. Daubechies, W. Sweldens, Factoring wavelet transforms into lifting

steps, Journal of Fourier Analysis and Applications 4 (3) (1998) 247–
269.

[43] W. Sweldens, The lifting scheme: a construction of second
generation wavelets, The SIAM Journal on Mathematical Analysis
29 (2) (1997) 511–546.

[44] K. Rao, P. Yip (Eds.), The Transform and Data Compression
Handbook, CRC Press, 2001.

Stephan Rein studied electrical and tele-
communications engineering at RWTH
Aachen University and Technical University
(TU) Berlin, where he received the Dipl.-Ing.
degree in December 2003 and the Ph.D.
degree in January 2010. He was a research
scholar at Arizona University in 2003, where
he conducted research on voice quality eval-
uation and developed an audio content search
machine. From February 2004 to March 2009
he was with the Wavelet Application Group at
TU Berlin developing text and image com-

pression algorithms for mobile phones and sensor networks. Since July
2009 he is with the Telecommunication Networks Group at TU Berlin,
where he is currently working on multimedia delivery to mobile devices.
Martin Reisslein is an Associate Professor in
the School of Electrical, Computer, and Energy
Engineering at Arizona State University (ASU),
Tempe. He received the Dipl.-Ing. (FH) degree
from the Fachhochschule Dieburg, Germany,
in 1994, and the M.S.E. degree from the Uni-
versity of Pennsylvania, Philadelphia, in 1996.
Both in electrical engineering. He received his
Ph.D. in systems engineering from the Uni-
versity of Pennsylvania in 1998. During the
academic year 1994–1995 he visited the
University of Pennsylvania as a Fulbright

scholar. From July 1998 through October 2000 he was a scientist with the
German National Research Center for Information Technology (GMD
FOKUS), Berlin and lecturer at the Technical University Berlin. From

October 2000 through August 2005 he was an Assistant Professor at ASU.
From January 2003 through February 2007 he served as Editor-in-Chief of
the IEEE Communications Surveys and Tutorials. He currently serves as
Associate Editor-in-Chief of the IEEE Communications Surveys and Tutorials
and as Associate Editor for the IEEE/ACM Transactions on Networking and
for Computer Networks. He has served on the Technical Program Com-
mittees of leading networking conferences, such as IEEE Infocom. He
maintains an extensive library of video traces for network performance
evaluation, including frame size traces of MPEG-4 and H.264 encoded
video, at http://trace.eas.asu.edu. His research interests are in the areas of
video traffic characterization, wireless networking, optical networking,
and engineering education.

http://mre.faculty.asu.edu/fwftut.pdf
http://mre.faculty.asu.edu/fwftut.pdf
http://trace.eas.asu.edu

	Performance evaluation of the fractional wavelet filter: A low-memory image wavelet transform for multimedia sensor networks
	Introduction
	Related work
	Fractional wavelet filter
	Preliminaries on wavelet transform
	Floating-point fractional wavelet filter
	Fixed-point fractional wavelet filter
	Lifting scheme

	Resource requirements
	Random access memory
	Computational requirements
	Image wavelet transform using convolution
	Fractional wavelet filter
	Lifting scheme

	Time measurements

	Image quality
	Overview
	Fixed-point filter without lifting scheme
	Fixed-point filter with lifting scheme
	Image compression performance

	Conclusions
	Analysis of errors due to lifting scheme
	References

