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Low-Memory Wavelet Transforms for Wireless
Sensor Networks: A Tutorial

Stephan Rein and Martin Reisslein

Abstract—The computational and memory resources of wire-
less sensor nodes are typically very limited, as the employed
low-energy microcontrollers provide only hardware support for
16 bit integer operations and have very limited random access
memory (RAM). These limitations prevent the application of
modern signal processing techniques to pre-process the collected
sensor data for energy and bandwidth efficient transmission over
sensor networks. This tutorial introduces communication and
networking generalists without a background in wavelet signal
processing to low-memory wavelet transform techniques. We first
explain the one-dimensional wavelet transform (including the
lifting scheme for in-place computation), the two-dimensional
wavelet transform, as well as the evaluation of wavelet transforms
with fixed-point arithmetic. Then, we explain the fractional
wavelet filter technique which computes wavelet transforms
with 16 bit integers and requires less than 1.5 kByte of RAM
for a 256 × 256 gray scale image. We present case studies
illustrating the use of these low-memory wavelet techniques
in conjunction with image coding systems to achieve image
compression competitive to the JPEG2000 standard on resource-
constrained wireless sensor nodes. We make the C-code software
for the techniques introduced in this tutorial freely available.

Index Terms—Image sensor, sensor network, wavelet trans-
form.

I. INTRODUCTION

SENSOR networks consist of nodes equipped with sen-
sors, a processing unit, a short-range communication unit

with low data rates, and a battery. To allow these systems
to economically monitor the environment, the nodes have
to be low-cost and energy efficient. For these reasons, the
processing unit of the nodes is typically a low-complexity 16-
bit microcontroller, which has limited processing power and
random access memory (RAM) [1], [2]. A sensor node can
be equipped with a small camera to track an object of interest
or to monitor the environment; thus, forming a camera sensor
network [3], [4]. These imaging-oriented applications, how-
ever, exceed the resources of a typical low-cost sensor node.
Even if it is possible to store an image on a low-complexity
node using cheap, fast, and large flash memory [5]–[7],
the image transmission over the network can consume too
much bandwidth and energy [8]. Therefore, image processing
techniques are required either (i) to compress the image data,
e.g., with wavelet based techniques that exploit the similarities
in transformed versions of the image, or (ii) to extract the
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interesting features from the images and transmit only image
meta data.

Up to very recently these image processing techniques had
memory requirements that exceeded the resources on the low-
complexity microcontrollers. Hence, in practice more complex
and expensive platforms have been employed, as for example
the iMote2 sensor equipped with the Enalab camera [9]. The
iMote2 employs a 32 bit Intel XScale processing core with 256
kByte RAM and requires a battery board for system power.
Another example for a typical camera sensor node is the citric
platform [10], which consists of a camera daughter board
with the high-performance PXA270 processor connected to
a Tmote Sky board (a variant of the telos B node [11]). Both
of these platforms are examples of current image processing
sensor platforms [12] which are significantly more expensive
than a low-complexity sensor node with a 16 bit processor
and RAM in the range of 10 kByte [1].

With advanced data and signal processing techniques that
only require very small random access memory, low priced
camera sensor networks can be built by connecting small
cameras and external flash memory to low-complexity sensor
nodes, which can make use of the additional hardware by
a software update. A modern pre-processing technique to
inspect or compress an image is the discrete wavelet trans-
form. The wavelet transform decorrelates the data, allowing
for the extraction of interesting features. Also, the wavelet
transform decomposition allows for the application of tree
coding algorithms to summarize the typical patterns, e.g., the
embedded zerotree wavelet (EZW) [13] or the set partitioning
in hierarchical trees (SPIHT) scheme [14].

In this tutorial we introduce communications and network-
ing generalists without a background in signal processing
to a range of wavelet transform techniques culminating in
recently developed signal processing techniques that require
only very small memory for wavelet transforms. In particular,
the recently developed fractional wavelet filter [15] requires
less than 1.5 kByte of RAM to transform an image with
256 × 256 8-bit pixels using only 16-bit integer arithmetic,
as illustrated in Figure 1. Thus, the fractional wavelet filter
works well within the limitations of typical low-cost sensor
nodes [1], [2].

This tutorial is organized as follows. Section II gives back-
ground on the problem of low-memory wavelet transforms
in sensor networks. Section III provides a tutorial on the one-
and two-dimensional discrete wavelet transform, which can be
based on folding computations or on the more advanced lifting
scheme for in-place computation. Section IV explains how to
compute wavelet transforms with fixed-point arithmetic, which

1553-877X/11/$25.00 c© 2011 IEEE



292 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 13, NO. 2, SECOND QUARTER 2011

a) original image

HH2

HH1LH1

LL2 HL2 HL1

LH2

b) two-level transform of image

Fig. 1. Two-level wavelet transform computed on a low-cost 16 bit microcontroller using less than 1.5 kByte of memory with the fractional wavelet filter.
Each one-level transform results in four subbands denoted by LL, LH , HL, and HH . The contrast of each subband was adjusted to fill the entire intensity
range.

is the basis for the efficient integer-based computation of the
transform on a microcontroller. Section V gives a tutorial on
the fractional wavelet filter. Case studies illustrating the usage
and performance of the wavelet transform techniques covered
in this tutorial are presented in Section VI. In Section VII we
summarize this tutorial.

II. RELATED WORK

One major difficulty in applying the discrete two-
dimensional wavelet transform to a platform with scarce
resources is the need for large random access memory. Im-
plementations on a personal computer (PC) generally keep
the entire source and/or destination image in memory; also,
horizontal and vertical filters are applied separately. As this
is generally not possible on resource-limited platforms, re-
cent research efforts have examined memory-efficient wavelet
transform techniques.

Significant research efforts have gone into the implementa-
tion of the wavelet transform on field programmable gate ar-
rays (FPGA), see for instance [16]–[19]. The FPGA-platforms
are generally designed for one special purpose and are typ-
ically inappropriate for a sensor node that has to perform
a variety of tasks including communication and analysis of
the surrounding area [1], [2], [20]. This tutorial does not
cover FPGAs; instead we focus on image wavelet transform
techniques for a general microcontroller with very small RAM.

The traditional approach to build a camera sensor node has
been to connect a second platform with a more capable pro-
cessor to the sensor node [12]. Instead, this tutorial considers
a sensor node where a small camera is directly connected
to the microcontroller through the universal asynchronous re-
ceiver/transmitter (UART) interface and the wavelet transform

is performed on the microcontroller, which is extended by a
directly connected multimedia flash memory card [5].

The multi-hop transmission path from a sensor node to a
sink node in wireless sensor networks is exploited in a few
studies, e.g., [21], [22], for distributing the wavelet coefficient
computations over several nodes. We focus on the computation
of the wavelet transform at one given node in this tutorial.

As we demonstrate in the case studies in Section VI, a
low-memory wavelet transform can be combined with a low-
memory image coding system, e.g., [23], to achieve on a
microcontroller compression performance competitive to the
current JPEG2000 image compression system. An alternative
strategy that compresses images directly on low-complexity
hardware is studied in [24]. However, the strategy in [24]
employs the general JPEG technique which gives significantly
lower compression performance than wavelet-based compres-
sion.

We now proceed to briefly review the research on low-
memory wavelet transforms leading up to the fractional
wavelet filter technique. A line-based version of the wavelet
transform has been developed in [25]. The line-based trans-
form substantially reduces the memory requirements com-
pared to the traditional transform approach with a system of
buffers that only store a small subset of the wavelet transform
coefficients. An efficient computation methodology for the
line-based transform using the lifting scheme and improved
communication between the buffers has been developed in [26]
and implemented in C++ on a personal computer (PC) for
demonstration. The line-based approach [25], [26], however,
can not run on a sensor node with very small RAM, as it uses
in the ideal case 26 kByte of RAM for a six-level transform
of an 512× 512 image. A fractional wavelet filter performing
a step-wise computation of the vertical wavelet coefficients
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of a two-dimensional image was developed in [15], [27].
The fractional wavelet filter approach reduces the memory
requirements of the image wavelet transform significantly
compared to the line-based approach and enables the image
wavelet transform on microcontrollers with very small RAM.

While this brief review has focused on line-based low-
memory wavelet transform so far, we note for completeness
that an alternate approach is based on transforming image
blocks, see e.g., [28], [29]. These block-based approaches
have similar memory requirements as [25] and are often used
in conjunction with block-based wavelet image codecs. We
focus in this tutorial exclusively on the low-memory wavelet
transform, and more specifically on line-based approaches that
readily meet the flash memory constraint [5]–[7] of reading
contiguous 512 Byte blocks through line-by-line image data
access. We note that low-memory wavelet-based image coders
are studied in [23], [30].

III. TUTORIAL ON IMAGE WAVELET TRANSFORM

In this section the general computation of the image wavelet
transform is described. The section does not describe the
basics and foundations of the wavelet transform, as there is
extensive literature on wavelet theory, see for instance [31]–
[33]. The computational aspects of the wavelet transform,
however, are rarely discussed, as most of the published lit-
erature assumes the usage of wavelet toolboxes on personal
computers.

This section is organized as follows. In Subsection
III-A the convolution operation is applied to compute the
one-dimensional wavelet transform. The coefficients of the
Daubechies 9/7 wavelet are provided. To achieve a multi-level
transform the pyramidal algorithm is applied. Furthermore,
the advanced lifting scheme is outlined, which computes
the transform in place. Subsection III-C details how the
one-dimensional transform is applied to perform the two-
dimensional image wavelet transform.

A. Wavelet Transform for One Dimension Using Convolution

1) Haar-Wavelet: To simplify the readability, we refer to
the fast dyadic wavelet transform as the wavelet transform.
Other transforms are not covered in this tutorial. A wavelet
transform can be computed by convolution filter operations.
Convolution is an elementary signal processing operation,
where a flipped filter vector is shifted step-wise over a signal
vector while for each position the scalar product between the
overlapping values is computed. The boundaries of a signal
can be linearly (zero-padding), circularly, or symmetrically
extended. For the wavelet transform we use here a symmetrical
extension, as it is reasonable to obtain a smooth signal change.
If h = [h0, h1, h2] denotes a filter vector of length L = 3 and
s = [s0, s1, s2, s3] denotes a signal vector of length N = 4,
the symmetrical convolution conv(s,h) can be illustrated as

h2 h1 h0 →
s2 s1 s0 s1 s2 s3 s2 s1

(1)

The vector h is shifted over the signal vector s and for
each position the scalar product of the overlapping values is
computed, giving a result vector of length N + L− 1.

A one-dimensional wavelet transform is typically performed
by separately applying two different filters, namely a lowpass
and a highpass filter to the original signal, as illustrated in
Figure 2a). The lowpass and highpass filter are also referred
to as scaling filter and wavelet filter, respectively; we employ
the term wavelet filter for both filter types. The filtered signals
are sampled down by leaving out each second value such that
the odd indexed values (1, 3, 5, . . .) are kept from the lowpass
filtering (i.e., the first value is kept, the second one discarded,
and so on) and the even indexed values (2, 4, 6, . . .) are kept
from the highpass filtering (i.e., the first value is discarded, the
second one is kept, and so on). The thus obtained values are
the wavelet coefficients and are referred to as approximations
and details. As observed in Fig. 2a), the aggregate number
of approximation and detail coefficients equals the signal
dimension.

To reconstruct the original signal the coefficients have to
be sampled up by inserting zeros between each second value.
Upsampling of the vector s = [1, 2, 3, 4] thus results in
[1, 0, 2, 0, 3, 0, 4, 0]. The up-sampled versions of the approxi-
mations and details are filtered by the synthesis lowpass and
highpass filters. (The analysis and synthesis wavelet filters are
employed for the forward and backward transform, respec-
tively.) Both filtered arrays of values are summed up. Such a
wavelet transform can be performed multiple times to achieve
a multi-level transform, as illustrated in Figure 2b). This
scheme, where only the approximations are further processed,
is called the pyramidal algorithm.

We now apply the Haar-Wavelet filter to the example signal
s = [4, 9, 7, 3, 2, 0, 6, 5]. The Haar-filter coefficients for the
lowpass are given as l = [0.5, 0.5], and for the highpass as h =
[1,−1]. The detail coefficients for the first level are computed
by shifting the flipped version of the highpass filter over the
signal, resulting in

d = conv(s,h) = [4, 5,−2,−4,−1,−2, 6,−1,−5]. (2)

After down sampling the details are given as dd =
[5,−4,−2,−1]. All the other coefficients are computed simi-
larly. Noting that each second convolution value is discarded,
the filter coefficients can be shifted by two sample steps
instead of one step, as illustrated for the first two values:

−1 1 →
4 9 7 3 2 0 6 5

−1 1 →
4 9 7 3 2 0 6 5

(3)

These convolution values are computed as −1 · 4 + 1 · 9 = 5
and −1 · 7+1 · 3 = −4. The three-level wavelet transform for
this signal is given as:

4 9 7 3 2 0 6 5 signal
6.5 5 1 5.5 5 −4 −2 −1 level 1
5.75 3.25 −1 4.5 level 2
4.5 -2.5 level 3
4.5 −2.5 −1 4.5 5 −4 −2 −1 result

Note that the result vector contains all the detail coefficients
of the previous levels, which are not further processed.

Generally, instead of the filters l = [0.5, 0.5] and h =
[1,−1] which we used for ease of illustration, the normalized



294 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 13, NO. 2, SECOND QUARTER 2011

signal

details

approximations’ details’

signal’

thresholding

addsample up,

approximations

analysis   highpass,
sample     down sample    down 

analysis   lowpass,

synthesis lowpass synthesis highpass
sample up,

signal

details

details level 1

details level 1

level 2
details

details
level 2

level 1

appr. det.
lev 3lev 3

level 2
approximations

approximations level 1

a) b)
Fig. 2. Figure a) shows a one-level forward (analysis) wavelet transform, and the corresponding backward (synthesis) wavelet transform that reconstructs the
original signal. The thresholding operation deletes very small coefficients and is a general data compression technique. These small coefficients are expected
to not contain meaningful information. Figure b) illustrates a 3-level forward wavelet transform. The approximations of a given level form the input for the
next level. The details are not further processed and are copied to the next transform levels.

TABLE I
FILTER COEFFICIENTS OF THE DAUBECHIES 9/7 WAVELET. THESE

COEFFICIENTS ARE EMPLOYED IN THIS ARTICLE AS THEY GIVE
STATE-OF-THE-ART IMAGE COMPRESSION. THEY ARE PART OF THE

JPEG2000 IMAGE COMPRESSION STANDARD. COMPUTATIONALLY, THE
9/7 WAVELET IS NOT AN IDEAL CHOICE, AS IT REQUIRES FLOATING POINT
COMPUTATIONS AND A RELATIVELY LARGE NUMBER OF COEFFICIENTS. A
COMPUTATIONAL SCHEME THAT APPLIES A 9/7 IMAGE TRANSFORM ON A

LIMITED PLATFORM WITH LESS THAN 1.5 KBYTE OF RAM IS
INTRODUCED IN THIS TUTORIAL.

analysis analysis synthesis synthesis
j lowpass lj highpass hj lowpass lj highpass hj

−4 0.037828 0.037828
−3 −0.023849 0.064539 −0.064539 0.023849
−2 −0.110624 −0.040689 −0.040689 −0.110624
−1 0.377403 −0.418092 0.418092 −0.377403

0 0.852699 0.788486 0.788486 0.852699
1 0.377403 −0.418092 0.418092 −0.377403
2 −0.110624 −0.040689 −0.040689 −0.110624
3 −0.023849 0.064539 −0.064539 0.023849
4 0.037828 0.037828

filter coefficients l = [ 1√
2
, 1√

2
] and h = [ 1√

2
, −1√

2
] are used.

The normalized coefficients make the transform orthonormal;
thus, conserving the signal energy.

In Section III-C, the two-dimensional wavelet transform is
outlined, which in contrast to the one-dimensional transform,
only computes one level for each input line. In the next
subsection, a more advanced wavelet, the Daubechies 9/7
Wavelet, will be discussed. The Daubechies 9/7 Wavelet has
more coefficients while the principles of the Haar-Wavelet
continue to hold.

2) Daubechies 9/7 Wavelet: The biorthogonal Daubechies
9/7 wavelet [31] (also called FBI-fingerprint wavelet or Cohen-
Daubechies-Feveau wavelet) is used in many wavelet com-
pression algorithms, including the embedded zerotree wavelet
(EZW) [13], the set partitioning in hierarchical trees (SPIHT)
algorithm [14], [33], and the JPEG2000 compression standard
for lossy compression [34]. It is given by its filter coefficients
in Table I [33]. We note that for fulfilling the requirements
for perfect signal reconstruction, the synthesis lowpass is
generally generated by the flipped version of the analysis

highpass, whereby the sign is changed in an alternating way.
Similarly, the synthesis highpass is generated from the analysis
lowpass.

A wavelet transform with the filter coefficients in Table I
is computed as in the case of the Haar-wavelet by low- and
highpass filtering of the input signal. The input signal can
be a single line s = [s0, s1, . . . , sN−1] of an image with
the dimension N . The two resulting signals are then down-
sampled, that is, each second value is discarded to form the
approximations and details, which are two sets of N/2 wavelet
coefficients.

More specifically, the approximations ai are computed as

ai = convp(s, l, i) =
4∑

j=−4

si+j · lj , i = 0, 1, . . . , N − 1

(4)
where we introduce the notation convp(s, l, i) to denote the
wavelet coefficient at position i obtained by convolving signal
s with filter l. Note that the filter coefficients lj are the analysis
lowpass filter coefficients given in Table I. Analogously, using
the highpass analysis filter coefficients hj in Table I we obtain
the details di as

di = convp(s,h, i) =
3∑

j=−3

si+j ·hj , i = 0, 1, . . . , N − 1.

(5)
Note that due to the symmetry of the lowpass and the highpass
filters, the sign of the filter index j (which runs from −4 to
+4) in the subscript of the signal s in (4) and (5) is arbitrary
(i.e., +j could be replaced by −j).

Downsampling to [a0, a2, . . . , aN−2] gives N/2 approxi-
mations and downsampling to [d1, d3, . . . , dN−1] gives N/2
details. The down-sampling can be incorporated into the
convolution by only computing the coefficients remaining after
the downsampling. In particular, to obtain the approximations
the center of the lowpass filter shifts over the even signal
samples s0, s2, . . . , sN/2−2 and to obtain the details the center
of the highpass filter moves over the odd signal samples
s1, s3, . . . , sN/2−1. Intuitively, by aligning the center of the
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lowpass filter with the even signal samples and the center of
the highpass filter with the odd samples, each filter “takes in”
a different half of the input signal. Taken together, both filters
“take in” the complete input signal.

In order to avoid border effects we generally perform
a point-symmetrical extension at the signal boundaries,
i.e., the signal s = [s0, s1, . . . , sN−1] is extended for
the highpass filtering to [s3, s2, s1, s0, s1, . . . , sN−2,
sN−1, sN−2, sN−3, sN−4]. Thus, as an illustration of
the extension, the detail coefficient d1 = convp(s,h, 1) is
obtained by aligning the center of the high pass filter with
signal sample s1:
h−3 h−2 h−1 h0 h1 h2 h3

s2 s1 s0 s1 s2 s3 s4.

Re-numbering the approximations [a0, a2, . . . , aN−2] to
[a0, a1, . . . , aN/2−1] and the details [d1, d3, . . . , dN−1] to
[d0, d1, . . . , dN/2−1] gives the approximations and details with
consecutive indices. Incorporating the downsampling and re-
numbering, the approximations are given as

ai = convp(s, l, 2i) =
4∑

j=−4

s2i+j ·lj , i = 0, 1, . . . ,
N

2
−1
(6)

and the details as

di = convp(s,h, 2i+ 1) =
3∑

j=−3

s2i+1+j · hj ,

i = 0, 1, . . . ,
N

2
− 1. (7)

To achieve multiple transform levels this process can be
repeated.

B. Wavelet Transform for One Dimension with the Lifting
Scheme

In this section the lifting scheme [35], [36] is described,
which computes the wavelet transform in-place. For a general
introduction on the theory behind the lifting scheme see [37].

1) Lifting Scheme for the Haar-Wavelet: In Section III-A1
the Haar-wavelet transform is computed over sets of two
consecutive signal samples. To calculate the details, the filter
vector [1,−1] is shifted over the signal:

−1 1 →
+4 9 7 3 2 0 6 5

(8)

We now focus on the first set of signal samples. The detail
coefficient is calculated as

d = s1 − s0 = 9− 4 = 5, (9)

and the approximation coefficient is calculated as

a =
s0 + s1

2
=

4 + 9

2
= 6.5. (10)

This computation can be performed in place if we compute

s1 = s1 − s0 = 9− 4 = 5 (11)

s0 = s0 +
s1
2

= 4 +
5

2
= 6.5.

In summary, the in-place computation steps are:

4 9 → 4 5 → 6.5 5 (12)

6.5

split

{4,9}

5
detail

approx

−1 0.5
predict update

even

odd

s_1=9

s_0=4

Fig. 3. Basic lifting scheme, i.e., a forward transform with order zero moment.
The split operation separates the signal in even and odd samples. The predict
and update operations simply multiply the input.

This forward transform can be performed using the so-called
lifting scheme, as illustrated in Figure 3. The lifting scheme
first conducts a lazy wavelet transform, that is, it separates the
signal in even and odd samples. Then, the detail coefficient
is predicted using its left neighbor sample. The even sample
predicts the odd coefficient. Note that the sample indices start
with zero, e.g., s = [s0, s1, s2, . . .]; thus, the even set is
given by se = [s0, s2, s4, . . .] and the odd set is given by
so = [s1, s3, s5, . . .]. The update stage ensures that the coarser
approximation signal has the same average as the original
signal.

For the inverse transform the stages have to be reversed, as
illustrated in Figure 4. The original samples are recovered by
first reversing the update stage:

s0 = 6.5− 5/2 = 4. (13)

The odd sample is recovered as

s1 = 5− (−1 · 4) = 9. (14)

Both operations can again be computed in place:

6.5 5 → 4 5 → 4 9 (15)

The merge operation merges the even and the odd samples.
2) Linear Interpolation Wavelet: The predict filter of the

lifting scheme provides polynomial cancelation, while the
update filter preserves the moments. (A moment here refers
to the wavelet transform in that the wavelet coefficients are
part of a polynomial representation of the input signal.) This
means for the Haar wavelet that the predict filter eliminates the
relationship between two samples (zero order correlation). The
update filter preserves the sample average of the coefficients.
The predict and update filters both have order one, as they use
either one past or one future sample.

If correlations over more than two samples shall be ad-
dressed, as it is, for instance, needed for image compression,
higher filter orders can be employed. The linear wavelet
transform uses filters of order two. To explain the linear
wavelet transform, let s2k, k = 0, 1, . . ., denote the even
samples, and s2k+1, k = 0, 1, . . ., denote the odd samples.
The detail coefficient dk is then computed as

dk = s2k+1 − s2k + s2k+2

2
, k = 0, 1, . . . (16)

This is a type of prediction where the detail gives the differ-
ence to the linear approximation using the left and the right
sample. The approximation coefficient ak is given as

ak = s2k +
dk−1 + dk

4
, k = 1, 2, . . . (17)
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Fig. 4. Forward and inverse transform using the lifting scheme. The inverse transform implements the scheme backwards thus recovering the original samples.

index
sample

0 1 2 3 4

d0
d1

1

2

signal
value

Fig. 5. Numerical Example of Linear Wavelet Transform. The bold line gives
the signal samples and the dotted line the prediction. Even samples are used
to calculate the details as the difference between the prediction and the actual
values.

These steps are reversible, analogous to the Haar-wavelet.
For the example signal s = [s0, s1, s2, s3, s4] =

[1.5, 2, 0.5, 2, 2], the details d0 and d1 are computed as
d0 = s1 − s0+s2

2 = 2− (1.5+0.5)
2 = 1 and

d1 = s3 − s2+s4
2 = 2− (0.5+2)

2 = 0.75,
as illustrated in Figure 5. The approximation a1 is computed
as
a1 = s2 +

d0+d1

4 = 0.5 + (1.75)
4 = 0.9375.

The illustrated linear transform corresponds to the biorthogo-
nal (2,2) wavelet transform [35], [38].

Now, we examine the predict and update operations from a
digital filter perspective. The predict operation uses a current
and a future sample; therefore, the z-transform of its filter
is given as p(z) = − 1

2 (z
0 + z1). The update filter uses a

current and a past sample: u(z) = 1
4 (z

0 + z−1). For signal
samples sn, n = 0, 1, 2, . . ., these equations can be written as
pn = −0.5(sn + sn+1) and un = 1

4 (sn + sn−1). In the next
section, the lifting scheme for the 9/7 wavelet is reviewed,
which similarly employs update and predict operations.

3) Lifting Scheme for the 9/7 Wavelet: Figure 6 illus-
trates the lifting scheme structure for the 9/7 wavelet. From
Section III-A2 we know that the lowpass analysis filter has
nine coefficients and the lowpass synthesis filter has seven
coefficients. From these coefficients the parameters α, β, γ,
δ, and ζ can be derived through a factoring algorithm [35]
giving

α = −1.5861343420693648 (18)
β = −0.0529801185718856
γ = 0.8829110755411875

δ = 0.4435068520511142

ζ = 1.1496043988602418.

These parameters form the filters that are applied in the so-
called update and predict steps:

Pα = [α, α] (19)
Uβ = [β, β]

Pγ = [γ, γ]

Uδ = [δ, δ].

Similarly, the lifting operations can be partitioned to recon-
struct the original signal, as illustrated in Figure 7.

Table II details the computation scheme for the 9/7 lifting
scheme. First the original signal is separated into even and
odd values. Then follow four update and predict steps where
the parameters α and γ are convoluted with the odd part and
parameters β and δ are convolved with the even part of the
signal. Note that the conv() operation is a convolution without
signal extension at the boundaries, as the signal extension is
implied by the given data vector.

For example, consider a signal s = [3, 4] and a filter
h = [2, 1]. The convolution with point-symmetrical extension
would be computed as [1 ·4+2 ·3, 1 ·3+2 ·4, 1 ·4+2 ·3]. In
Table II, the computation is only [1 · 3 + 2 · 4], so there is no
boundary computation; and, the result dimension is smaller by
one. The signal value in the convolution is extended by one
value. Thus, the result of the convolution has exactly half of
the original signal dimension N , so it can be added to se or
so.

The operator notation in Table II follows the conventions of
the C programming language. For instance, the “+=” operator
means that the vector on the left-hand side is updated by
(assigned) its value plus the result of the right-hand side. For
instance, a+ = 7 assigns a the value a+ 7, i.e., a← a+ 7.

C. Two-dimensional Wavelet Transform

For the one-level wavelet transform we computed all
wavelet levels for one input line and stored the result in a
second line with the same dimension. For the two-dimensional
transform, we perform a one-level transform on all rows of an
image, as illustrated in Figure 8. Specifically, for each row
the approximations and details are computed by lowpass and
highpass filtering. This results in two matrices L and H , each
with half of the original image dimension. These matrices are
similarly low- and highpass filtered to result in the four sub-
matrices LL, LH , HL, HH , which are called subbands: LL is
the all-lowpass subband (coarse approximation image), HL is
the vertical subband, LH is the horizontal subband, and HH is
the diagonal subband. To achieve a second wavelet transform
level, only the LL-submatrix is processed, as illustrated in
Figure 9, and similarly for further levels. The operations can be
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Fig. 6. Lifting scheme structure for the Daubechies 9/7 wavelet. The parameters α, β, γ, and δ refer to predict and update filters that are similar to the Haar
wavelet lifting filters. The ζ parameter scales the output.
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Fig. 7. Inverse wavelet transform for the 9/7 wavelet using the lifting scheme. The predict, update, and scaling steps from the forward transform are undone
using the same operators.

TABLE II
COMPUTATION OF THE LIFTING SCHEME FOR THE FORWARD (FIGURE A)) AND BACKWARD (FIGURE B)) WAVELET TRANSFORM.

a) forward:

se = [s0, s2, s4, . . . , sN−2] (20)
so = [s1, s3, s5, . . . , sN−1] (21)
so + = conv([se, sN−2], [α,α]) (22)
se + = conv([s1, so], [β, β]) (23)
so + = conv([se, sN−2], [γ, γ]) (24)
se + = conv([s1, so], [δ, δ]) (25)
se · = ζ (26)
so / = ζ (27)

b) backward:

so · = ζ (28)
se / = ζ (29)
se − = conv([s1, so], [δ, δ]) (30)
so − = conv([se, sN−2], [γ, γ]) (31)
se − = conv([s1, so], [β, β]) (32)
so − = conv([se, sN−2], [α,α]) (33)
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Fig. 8. One-level image wavelet transform. The wavelet-image is partitioned
in four regions that are called subbands. The image is first filtered row-by-row,
resulting in the L and H matrix, which both have half the dimension of the
original image. Then, these matrices are filtered column-by-column, resulting
in the four subbands. It is also possible to first filter column-by-column and
then line-by-line. The HL subband, for instance, denotes that first the highpass
and then the lowpass filter was applied. In the literature, the subband HL is
sometimes denoted by LH. Therefore, the position of these subbands in the
destination matrix is sometimes interchanged.

repeated on each of the LL subbands to obtain the higher level
subbands. Note that LL represents a smaller and smoothed
version of the original image. LH intensifies the horizontal
elements, HL the vertical, and HH the diagonal elements.
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Fig. 9. Three-level image wavelet transform. Figure a) illustrates the
subbands of each level. For computation of a level the LL-subband of the
previous wavelet level is retrieved. In Figure b) the areas of each level are
hatched.

The reconstruction of the original image can be performed
similarly. An example of a two-level wavelet transform was
given in Fig1b).

IV. WAVELET TRANSFORM WITH FIXED-POINT NUMBERS

A. Introduction

This section gives a short tutorial on fixed-point arithmetic,
which is needed to perform real (floating-point) number calcu-
lations with integer numbers. Fixed-point numbers differ from
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floating-point numbers in that the decimal point is fixed (the
position is known at compile time and the programmer has to
adjust the position). Many low-cost microprocessors provide
only hardware support for 16 bit integer numbers, and floating
point operations have to be implemented by the compiler.
The 16 bit fixed-point arithmetic speeds up computations with
real numbers at the expense of lower precision and more
detailed algorithm analysis (including an estimation of the
possible range of the results). In the following subsections we
provide the necessary background for fixed-point evaluations
of wavelet transforms.

B. Number Representation

A number is represented as a sequence of bits, i.e.,
a binary word, in a personal computer or microcomputer.
A binary word with M = 16 bits can be given as
b15b14b13b12b11b10 . . . b1b0. If this word is interpreted as an
unsigned integer, its numerical value is computed as

B =
M−1∑
n=0

2nbn. (34)

The internal binary word is also called the mantissa. The most
significant bit is located on the left hand side.

To introduce the fixed-point notation we take an 8 bit num-
ber as an example: 01000011. If we interpret this word as an
unsigned integer, it would take the value 67. It is also possible
to interpret this word as a fixed-point number. For instance,
we can imply a binary point as follows: 010000.11. Now, the
value of this word is calculated as 24 + 2−1 + 2−2 = 16.750,
or generally as

B =
1

2exp(b)

M−1∑
n=0

2nbn, (35)

where exp(b) (here exp(b) = 2) denotes the number of binary
positions that follow the binary point (i.e., note that exp(·)
does not refer to the exponential function). The number range
for an unsigned fixed-point number B is [0, 2M−1

2exp(b)
]. Note that

in the internal representation there is no point in the word.
The number is declared as an unsigned integer number and
the debugger probably will show the value 67. The correct
interpretation of the number depending on the context is the
programmer’s responsibility.

Generally, the numerical value B (as interpreted by the user)
of a fixed-point number b is thus given by the integer value
of the internal binary word divided by 2exp(b), i.e.,

B = b · 2− exp(b). (36)

We denote b for the integer value of the internal binary word
and exp(b) for the exponent of b. Throughout this tutorial, a
capital letter will be used for the number as interpreted by the
user, and the correspondent lower case letter for the integer
value of the internal binary word.

1) Negative Numbers: For representing negative numbers,
the MSB bit of the internal representation is reserved for the
sign. If the MSB is zero, the number is positive. If the MSB is
one, the number is negative. Generally, the two’s complement
is used for the internal representation of signed numbers. The

two’s complement representation has the advantage that the
number zero has only one representation and that addition
and subtraction are same operations as for unsigned numbers.
The two’s complement represents positive numbers in the
same way as in the ordinary unsigned notation with the
exception that the MSB must be zero. A negative number
is formed by inverting all bits and adding one to the result,
e.g., −2 = inv(0010) + 1 = 1101 + 1 = 1110. To obtain the
integer number of the binary word, all bits are inverted and
one is added. Generally, the interpreted value A of a two’s
complement is given as

A = 2− exp(a)[−2M−1aM−1 +

M−2∑
n=0

2nan].

An M -bit variable for unsigned integers can represent num-
bers from 0 to 2M−1. Using the two’s complement, the integer
range is given as

[−2M−1, 2M−1 − 1],

and the fixed-point number range is thus given as

[−2M−1−exp(a), 2M−1−exp(a) − 2− exp(a)].

2) Q-format: We use the Q-format to denote the fixed-point
number format. The Q-format assumes the two’s complement
representation; therefore, an M -binary word always has M −
1 bits for the absolute numerical value. The Qm.n format
denotes that m bits are used to designate the two’s complement
integer portion of the number, not including the MSB bit (sign
bit), and that n bits are used to designate the two’s complement
fractional portion of the number, that is, the number of bits to
the right of the radix point. Thus, a Qm.n number requires
M = m+n+1 bits. (Some tutorials, e.g., [39] include the sign
bit in m.) The range of a Qm.n number is [−2m, 2m− 2−n]
and the resolution is given by 2−n. The value m in Qm,n
is optional; if m is omitted, it is assumed to be zero. The
special case of arithmetic with m = 0 is commonly referred
to fractional arithmetic and operates in the range [−1, 1]. In
this tutorial we employ the general fixed-point arithmetic since
our computations require larger number ranges.

C. Basic Operations in Fixed-Point Arithmetic

This section gives a tutorial on computing basic arithmetic
operations with fixed-point arithmetic. In this tutorial we
build on the computational strategies of [40]. An alternative
computation approach [41] includes fixed-point data-types for
compiler optimization. The presented arithmetic works for
both signed and unsigned numbers.

Throughout this section, a conversion of a fixed-point
number to a different format is performed by multiplying
the number with 2exp(·), whereby exp(·) refers to a given
exponent. This operation performs a bit-shift operation. There
exist two definitions for the shift operation, the logical and the
arithmetic shift. Logical and arithmetic left shift both shift
out the MSB bit, that is, the MSB bit is discarded, and a
zero bit is shifted in. However, there is a difference between
logical and arithmetic right shift: The logical right shift is
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performed on unsigned binary numbers and inserts a zero bit.
The arithmetic right shift relevant in this tutorial is performed
on signed numbers and inserts a copy of the sign bit (i.e., the
MSB bit). Logical and arithmetic shift are both called literal
shift, as they are shifts on the binary word. A virtual shift
does not change the binary word but the exponent.

1) Changing the Exponent (Virtual Shift): For some opera-
tions the operands are required to have the same exponent. To
change the exponent exp(a) of a number a to the exponent
exp(b), note that

a · 2− exp(a) = a · 2exp(b)−exp(a) · 2− exp(b). (37)

Thus, if exp(b) ≥ exp(a) we shift the bits of a to the left by
exp(b)− exp(a) positions. Whereas, if exp(b) < exp(a), we
shift the bits of a to the right by exp(a)− exp(b) positions.

2) Addition and Subtraction: For addition and subtraction
the two numbers a and b have to be converted to the exponent
of the result number c. Then,

c = a · 2− exp(c) + b · 2− exp(c) = (a+ b) · 2− exp(c). (38)

If the exponents of a and b are equal, the two numbers can
simply be added. In case of an overflow, the sum of two binary
numbers requires one more integer bit in the result, that is, if
the numbers are in the form Qa.b, the result requires the form
Q(a+ 1).b.

3) Multiplication: The product of two binary words a and
b can be computed with an integer multiplication as

A·B = a·2− exp(a) ·b·2− exp(b) = a·b·2−(exp(a)+exp(b)). (39)

The exponent of the result is the sum of the input exponents.
If the numbers are in the form Qa.b and Qc.d, the result is in
the form Q(a+c).(b+d) for unsigned numbers, or in the form
Q(a+ c+ 1).(b+ d) for signed numbers, whereby (a+ c) is
the maximum number of integer bits and (b+ d) the required
number of fractional bits (in order to not lose precision).

Note that in order to compute the product of two numbers A
and B with the exponents exp(a) and exp(b) and the desired
result exponent exp(c), the product a · b has to be converted
from the exponent exp(a)+exp(b) to the exponent exp(c). In
the special case of two numbers A and B both with exponent
exp(a), the product is computed as a · b · 2−2 exp(a). In the
special case of a fixed-point number in format Qa.b being
multiplied with an integer number, the result is a fixed-point
number in format Qa.b.

Two examples are now given to 1) illustrate the required
numbers of integer bits and 2) to explain the required numbers
of fractional bits. Two signed input numbers with M bits
(recall that M includes the sign bit) require a result with
2M bits. Consider an example with two signed M = 8 bit
input numbers. We consider the extreme ends of the input
number range [−27 = −128, 27− 1 = 127], and evaluate the
product (−128) · (−128) = 16384. The output now requires
16 bits, because the number range of M = 15 bits would only
include the interval [−214 = −16384, 214 − 1 = 16383]. In
the unsigned case, M = 15 bits are sufficient.

In the second example, the product of two binary numbers
is considered:

11.75︷ ︸︸ ︷
01011.110 ·

27.625︷ ︸︸ ︷
11011.101 =

324.59375︷ ︸︸ ︷
101000100.100110

Internally, the integer calculation 94 · 221 = 20774 is per-
formed, resulting in the binary sequence 101000100100110.
The 3 + 3 = 6 last digits of this number are fractional digits,
as each input number has 3 binary digits. The input number
format Q5.3 does not influence the calculation, but sets the
position of the radix point. Note that the result only requires
9 binary integer digits in this example. In general, 5+5 = 10
is the maximum number of required integer digits.

The intermediate results of such operations may exceed the
format of the final result. Many 16 bit microcontrollers, such
as the dsPIC [42], have a 16 × 16 bit multiplier that can
calculate 32 bit intermediate integer results, which then have
to be right shifted to obtain 16 bit results.

4) Division: We consider a division of A by B, where the
exponents of A, B, and the result C are equal, i.e., exp(a) =
exp(b) = exp(c). The result can thus be evaluated as

C =
A

B
=

a

b
=

a

b
· 2exp(a) · 2− exp(a) (40)

=
a · 2exp(a)

b
· 2− exp(a) (41)

= c · 2− exp(c), (42)

whereby only c = a · 2exp(a)/b has to be computed. To mini-
mize rounding errors, we first compute the product a · 2exp(a)
and then the division by b. The special case of a fixed
point number A divided by an integer number B requires no
conversion, and the result is given in the format of A. The
format of a signed division for two operands in format Qa.b
and Qc.d is given in format Q(a+ d+ 1).(c+ b) [43].

D. Implementation Notes

Building on [40], we implemented the fixed-point arithmetic
macros required for low-memory wavelet transforms in the C
programming language and make our source code freely avail-
able at http://mre.faculty.asu.edu/fwf code. Note that the data
types differ on a personal computer (PC) and a microcontroller
in that a different number of bits may be allocated for a data
type on each of the systems. For instance, the integer data
type defined by int allocates 32 bits on a PC while it only
allocates 16 bits on the microcontroller. For consistency, we
represent fixed-point numbers using a custom-defined data-
type INT16 that represents integers with 16 bits. We do
not consider code improvements, such as, using assembly
language for selected calculations or taking advantage of
specific features of the employed micro-controller to ensure
that our C source code is compatible with a wide range of
embedded C-compilers.

E. Example for One-dimensional Discrete 9/7 Wavelet Trans-
form

We now give an example of a fixed-point wavelet filter
implementation. We filter an input line of an image with N
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TABLE III
DAUBECHIES 9/7 A) ANALYSIS AND B) SYNTHESIS WAVELET FILTER COEFFICIENTS IN REAL AND Q15 DATA FORMAT. THE Q15 DATA FORMAT IS A

FIXED-POINT REPRESENTATION OF REAL NUMBERS IN THE RANGE OF [−1, 1− 2−15] WHICH REQUIRES 16 BITS.

a) Analysis filter coefficients b) Synthesis filter coefficients
analysis lowpass lj analysis highpass hj

j real Q15 real Q15
0 0.852699 27941 0.788486 25837
±1 0.377403 12367 −0.418092 −13700
±2 −0.110624 −3625 −0.040689 −1333
±3 −0.023849 −781 0.064539 2115
±4 0.037828 1240 0 0

synthesis lowpass lj synthesis highpass hj

j real Q15 real Q15
0 0.788486 25837 0.852699 27941
±1 0.418092 13700 −0.377403 −12367
±2 −0.040689 −1333 −0.110624 −3625
±3 −0.064539 −2115 0.023849 781
±4 0 0 0.037828 1240

samples using the Daubechies 9/7 one-dimensional forward
wavelet transform. The original input line is then reconstructed
by an inverse (backward) wavelet transform. Our focus is on
the considerations for converting an algorithm from floating-
point to fixed-point representation.

1) Overview: A one-level wavelet transform calculates the
approximations through lowpass-filtering of the signal and the
details through highpass-filtering of the signal. Each of the two
filtered signals is sampled down, that is, each second value is
discarded. Thus, there will be N/2 approximation coefficients
ai and N/2 detail coefficients di which are computed as

ai = convp(s, l, 2i) =
4∑

j=−4

s2i+j · lj,

i = 0, 1, . . . ,
N

2
− 1 (43)

di = convp(s,h, 2i+ 1) =

3∑
j=−3

s2i+1+j · hj ,

i = 0, 1, . . . ,
N

2
− 1, (44)

whereby lj and hj denote the filter coefficients given in
Table IIIa). Note that we extend the signal symmetrically at
its boundaries.

For the inverse wavelet transform the approximations and
details are sampled up, that is, zeros are inserted between
each second value. Then, the synthesis lowpass and highpass
filters with the coefficients from Table IIIb) are applied. The
two resulting signals of dimension N are added to form the
reconstructed signal with dimension N .

2) Selecting Appropriate Fixed-Point Q-Format: To com-
pute the filter operation with fixed-point arithmetic, the filter
coefficients first have to be converted to the Q-format. We
determine the appropriate Q-format for the filter coefficients
by comparing their number range, which is [−0.42, 0.85],
with the Q-format number ranges in Table IV. Clearly, a
larger number range implies coarser resolution, i.e., lower
precision. Therefore, the Q-format with the smallest number
range (finest resolution) that accommodates the number range
of the transform coefficients should be selected. We therefore
select the Q0.15 format. (Selecting a format with a larger
number range, e.g., the Q1.14 would unnecessarily reduce
precision.) Table III gives the integer coefficients that result
from multiplying the real filter coefficients by 215. These
integer filter coefficients are employed for the fixed-point filter
functions.

TABLE IV
NUMBER RANGE FOR THE TEXAS INSTRUMENTS Qm.n FORMAT. USING
16 BITS, THERE ARE 16 POSSIBILITIES TO PLACE THE RADIX POINT WITH
m DENOTING THE NUMBER OF INTEGER BITS AND n THE NUMBER OF
FRACTIONAL BITS. ONE OF THE INTEGER BITS IS RESERVED FOR THE

NEGATIVE REPRESENTATION, THEREFORE ONLY 15 BITS ARE DENOTED
BY THE Q-FORMAT FOR 16 BIT VARIABLES.

Qm.n range resolution
Q0.15 −1 0.999969482421875 0.000031
Q1.14 −2 1.99993896484375 0.000061
Q2.13 −4 3.99987792968750 0.000122
Q3.12 −8 7.99975585937500 0.000244
Q4.11 −16 15.9995117187500 0.000488
Q5.10 −32 31.999023437500 0.000977
Q6.9 −64 63.9980468750000 0.001953
Q7.8 −128 127.996093750000 0.003906
Q8.7 −256 255.992187500000 0.007812
Q9.6 −512 511.984375000000 0.015625
Q10.5 −1024 1023.96875000000 0.031250
Q11.4 −2048 2047.93750000000 0.062500
Q12.3 −4096 4095.87500000000 0.125000
Q13.2 −8192 8191.75000000000 0.250000
Q14.1 −16384 16383.5000000000 0.500000
Q15.0 −32768 32767 1.000000

Similarly, we need to determine an appropriate Q-format
for the result coefficients of the wavelet transform, i.e., the
approximations and details. Generally, one can first obtain an
estimate by calculating bounds on the number range of the
result coefficients. Through pre-computing the coefficients on
a personal computer for a large set of representative sample
images one can next check whether a Q format with a smaller
number range and correspondingly higher precision can be
used [16].

For 8-bit image samples with a number range [−128, 127],
we can bound the range of the transform result coefficients by
summing the magnitudes of the filter coefficients, e.g., for the
lowpass filter

∑4
j=−4 |lj | ≈ 1.953 and multiplying with the

maximum magnitude of the input samples, i.e., 1.953 · 128 ≈
249.98. Comparing with the ranges in Table IV we find that
the Q8.7 format has a sufficiently large number range for the
result coefficients of the one-dimensional wavelet transform
of 8-bit input values.

Next, we pre-compute the wavelet transform result coeffi-
cients for our specific input values in the first line of Table V
on a personal computer with a high-level computing language,
such as Octave which we provide with the software for the
fractional wavelet filter. (Comparing the pre-computed values
with the values obtained with the fixed-point transform will
also illustrate the minor inaccuracies introduced by the fixed-
point transform.) From the pre-computed transform coeffi-
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cients in Line 2 of Table V we observe that the format Q7.8
has a sufficiently large number range for this example.

3) Forward (Analysis) Wavelet Transform: To illustrate
the computation required for the fixed-point wavelet
transform, we compute the first detail wavelet coefficient,
i.e., d0. In particular, we compute the scalar product of the
symmetrically extended input and the analysis highpass filter
with the coefficients from Table III. We align the center of
the filter with signal sample s1 = 58:

50 58 31 58 50 44 47
2115 −1333 −13700 25837 −13700 −1333 2115

The scalar product is computed as (50 + 47) · 2115 + (58 +
44) · (−1333)+ (31+ 50) · (−13700)+ 58 · 25837 = 458035.
Note that this result is in the Q0.15 format, as the input
values are in the Q15.0 format and the filter coefficients
in the Q0.15 format (cf. Eqn. (39)). The computed number
is an intermediate result that can exceed the 32 bits. We
transform this intermediate result in the Q0.15 format to the
Q7.8 format by right shifting by 7 bits. In particular, the
intermediate result 458035 is right shifted by 7 bits to obtain
the number 3578 in the Q7.8 format, as given Line 3, 5th
column in Table V.

We obtain the first detail coefficient d0 in the Q15.0 format
by right shifting the binary representation of 3578 by 8 bits
(i.e., dividing by 28 and retaining only the integer result),
resulting in 13, see Line 4. Note that Line 4 gives the
computed result of the wavelet transform using only integer
calculations to illustrate the loss in precision if the format
Q15.0 would be required by the user.

4) Backward (Synthesis) Wavelet Transform: To reconstruct
the original values from the approximations and details in
Line 3 of Table V in the Q7.8 format, the integer wavelet
synthesis filter coefficients are applied in a similar way.
For instance, for the first reconstructed signal value s0, the
approximations and the details are filtered by the synthesis
coefficients and the two results are added, recall Figure 2a).
We first apply the synthesis lowpass on the zero-padded
approximations from Line 3, which are symmetrically
extended on the left side:

0 18916 0 15516 0 18916 0
−2115 −1333 13700 25837 13700 −1333 −2115

The scalar product is computed as 2 · (18916 · (−1333)) +
15516 · 25837 = 350456836. Right shifting this intermediate
result by 15 bits gives 10695 in the Q7.8 format.

These operations are repeated for the detail coefficients
from Line 3, which have to be filtered by the high-pass
synthesis filter:

0 −1208 0 3578 0 3578 0 −1208 0
1240 781 −3625 −12367 27941 −12367 −3625 781 1240

The scalar product results in −90385148, which is −2758
in the Q7.8 format. To obtain the final reconstructed signal
value, we add the two results 10695 + (−)2758 = 7937. To
obtain the original number format we compute a right shift
on 7937 by 8 bits to obtain the reconstructed signal value 31.

Note that the reconstructed signal values in Line 6 of
Table V obtained through the fixed-point arithmetic forward
wavelet transform (Line 1 to Line 3) followed by the fixed-
point arithmetic backward wavelet transform (Line 3 to Line 6)
are slightly different from the original signal values. Generally,

the signal values reconstructed from wavelet coefficients com-
puted with fixed-point arithmetic may lead to slight deviations
from the original signal samples, as evaluated in Section VI.

V. TUTORIAL ON FRACTIONAL WAVELET FILTER

This section explains the fractional wavelet filter as a tech-
nique to compute fractional values of each wavelet subband,
thus allowing a low-cost camera sensor node with less than
2 kByte of RAM to perform a multi-level 9/7 image wavelet
transform. With 2 kByte of RAM, the image dimension can
be up to 256 × 256 using fixed-point arithmetic and up to
128 × 128 using floating-point arithmetic. In Section VI we
apply the technique on a typical sensor node platform that
consists of a 16 bit microcontroller extended with external
flash memory (MMC card).

A. Overview

In this subsection we give an overview of the fractional
wavelet filter. We first note that the data on the MMC-card
can only be accessed in blocks of 512 Bytes; thus, sample by
sample access, as easily executed with RAM memory on PCs,
is not feasible. Even if it is possible to access a smaller number
of samples of a block, the read/write time would significantly
slow down the algorithm, as the time to load a few samples
is the same as for a complete block. The fractional filter takes
this restriction into account by reading complete horizontal
lines of the image data.

Throughout this section we consider the forward (analysis)
wavelet transform. We explain two versions of the fractional
wavelet filter, namely a floating-point version and a fixed-
point version. The floating point version in Section V-B uses
floating-point arithmetic and achieves high precision, i.e., an
essentially lossless transform for most practical purposes.

The fixed point version in Section V-C uses fixed-point
arithmetic and needs less memory while being computation-
ally more suitable for a 16 bit controller. The fixed-point
version introduces minor image degradations that are evaluated
in Section VI.

As illustrated in Fig. 10, for the first transform level, the
algorithm reads the image samples line by line from the
MMC-card while it writes the subbands line by line to a
different destination on the MMC-card (SD-card). For the
next transform level the LL subband contains the input data.
Note that the input samples for the first level are of the type
unsigned char (8 bit), whereas the input for the higher level
is either of type float (floating point filter) or INT16 (fixed-
point filter) format. The filter does not work in place and for
each level a new destination matrix is allocated on the MMC-
card. However, as the MMC-card has plenty of memory, this
allocation strategy does not affect the sensor’s resources. This
allocation strategy allows reconstruction of the image from any
transform level (and not necessarily from the highest level, as
it would be necessary for the standard transform outlined in
Section III).

B. Floating-Point Filter

The floating point wavelet filter computes the wavelet
transform with a high precision using 32 bit floating point
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TABLE V
EXAMPLE OF AN ONE-DIMENSIONAL FIXED-POINT WAVELET TRANSFORM FOR AN IMAGE INPUT LINE (FIRST LINE). THE SECOND LINE GIVES THE

APPROXIMATIONS AND DETAILS COMPUTED ON A PC WITH A HIGH-LEVEL LANGUAGE (WE USED Octave) FOR SELECTING THE APPROPRIATEQ FORMAT
FOR THE APPROXIMATIONS AND DETAILS. THE THIRD LINE GIVES THE FIXED-POINT VERSION OF THE TRANSFORM IN THE Q7.8 FORMAT. THESE

NUMBERS ARE INTERPRETED IN LINE 4 BY DIVIDING THE FIXED-POINT NUMBERS BY 28 . THE RECONSTRUCTED FIXED-POINT SIGNAL VALUES ARE
GIVEN IN LINE 5. THESE VALUES CAN BE TRANSFORMED TO THE ORIGINAL DATA FORMAT BY DIVIDING BY 28 .

input signal
s0 s1 s2 s3 s4 s5 s6 s7

1. orig (char) 31 58 50 44 47 52 56 62
approximations details

a0 a1 a2 a3 d0 d1 d2 d3
2. T (Octave) 60.60714 73.88776 65.01055 80.76063 13.97674 −4.72244 0.46590 3.89484
3. T (Q7.8) 15516 18916 16643 20675 3578 −1208 119 997
4. T (Q7.8)/28 60 73 65 80 13 −4 0 3

reconstructed signal
s0 s1 s2 s3 s4 s5 s6 s7

5. R(Q7.8) 7937 14847 12800 11265 12032 13310 14336 15871
6. R(Q7.8)/28 31 57 50 44 47 51 56 61

SD−card

vertical filter area

FLOAT/INT16

FLOAT/INT16

UCHAR
FLOAT/INT16 LL HL

LH HH

LL HL

HHLH

update

read
line

destinationpic

current input row

horizontal filter l  / hj j

Fig. 10. Illustration of fractional image wavelet transform. The horizontal
wavelet coefficients are computed on the fly and employed to compute the
fractional wavelet coefficients that update the subbands. For each wavelet
level, a different destination object is written to the SD-card. Thus, the image
can be reconstructed from any level.

variables for the wavelet and filter coefficients as well as
for the intermediate operations. Thus, the images can be
reconstructed essentially without loss of information. For the
considered image of dimension N×N , the wavelet filter uses
three buffers of dimension N , one buffer for the current input
line and two buffers for two destination lines, as illustrated in
the bottom part of Fig. 10. One destination (output) line forms
a row of the LL/HL subbands and the other destination line
forms a row of the LH/HH subbands.

The fractional wavelet filter approach shifts an input (verti-
cal filter) area across the image in the vertical direction. The
input area extends over the full horizontal width of the image.
The vertical height of the input area is equal to the number
of wavelet filter coefficients; for the considered Daubechies
9/7 filter, see Table I, the input area has a height of nine
lines to accommodate the nine lowpass filter coefficients.
The filter computes the horizontal wavelet coefficients on

the fly. The vertical wavelet coefficients for each subband
are computed iteratively through a set of fractional subband
wavelet coefficients (fractions) ll(i, j, k), lh(i, j, k), hl(i, j, k),
and hh(i, j, k). These fractions are later summed over the
vertical filter index j to obtain the final wavelet coefficients.
More specifically, the indices i, j, and k have the following
meanings:

i with i = 0, 1, . . . , N/2− 1, gives the vertical position of
the input (vertical filter) area as 2i. For each vertical filter
area, i.e., each value of i, nine input lines are read for
lowpass filtering with nine filter coefficients. The filter
moves up by two lines to achieve implicit vertical down
sampling; thus, a total of N/2 · 9 lines have to be read.
Note that there have to be N/2 sets of final results, each
set consisting of an LL, an HL, an LH, and an HH
subband row.

j with j = −4,−3, . . . ,+4, specifies the current input
line as � = 2i + j, that is, j specifies the current line
within the nine lines of the current input area. From the
perspective of the filtering, j specifies the vertical wavelet
filter coefficient.

k with k = 0, 1, . . . , N/2− 1, gives the horizontal position
of the center of the wavelet filter as 2k for the horizontal
lowpass filtering and 2k + 1 for the horizontal highpass
filtering. That is, k specifies the current position of the
horizontal fractional filter within the current input area.

For a given set of indices i, j, and k, and with s containing
the current input line � = 2i+ j, the fractional coefficients are
computed as:

ll(i, j, k) = lj · convp(s, l, 2k)

= lj ·
4∑

m=−4

s2k+m · lm (45)

lh(i, j, k) = hj · convp(s, l, 2k)

= hj ·
4∑

m=−4

s2k+m · lm (46)

hl(i, j, k) = lj · convp(s,h, 2k + 1)
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TABLE VI
PSEUDO CODE OF FRACTIONAL WAVELET FILTER FOR THE FIRST LEVEL

FORWARD WAVELET TRANSFORM.

1. Allocate destination buffer LL HL with N elements
2. Allocate destination buffer LH HH with N elements
3. Allocate input buffer s with N elements
4. For i = N/2 − 1, N/2− 2, . . . , 0:
5. Initialize destination buffers:
6. For m = 0, 1, . . . , N − 1: LL HLm = 0, LH HHm = 0
7. For j = −4,−3, . . . , 4:
8. line index � = 2i+ j
9. Symmetric extension:

10. If � < 0: �← −�
11. else, if � > N − 1: �← 2N − 2− �
12. Read N values starting at position � ·N
13. from flash memory into input buffer s
14. For k = 0, 1, . . . , N/2 − 1:
15. L = convp(s, l, 2k)
16. LL HLk+ = lj · L // update LL
17. LH HHk+ = hj−1 · L // update LH
18. H = convp(s,h, 2k + 1)
19. LL HLk+N/2+ = lj ·H // update HL
20. LH HHk+N/2+ = hj−1 ·H // update HH
21. Write N elements of buffer LL HL
22. to flash memory starting at position i ·N
23. Write N elements of buffer LH HH
24. to flash memory starting at position (i+N/2) ·N

= lj ·
3∑

m=−3

s2k+1+m · hm (47)

hh(i, j, k) = hj · convp(s,h, 2k + 1)

= hj ·
3∑

m=−3

s2k+1+m · hm. (48)

Note that the fractional approximations are computed through
the convolutions with the analysis lowpass filter with the filter
coefficients from Table IIIa) in Eqns. (45) and (46). The
fractional details are obtained in Eqns. (47) and (48) through
convolution with the analysis highpass filter.

Note that these fractional coefficients are intermediate re-
sults for the computation of two output lines. Only a single
line of the input image is read at a time to keep the memory
requirements low. All the lines of a given input area are
read consecutively to achieve the final result. Throughout, the
horizontal index k and vertical index i refer to the position
of the wavelet filter coefficient in the final transformed image,
i.e., the result image.

Recall from Section III-C that the image transform first
requires to filter all pixels horizontally, and then to filter
the intermediate result vertically. In summary, the horizontal
coefficients are computed immediately, whereas the vertical
coefficients are computed through successive updates, thereby
achieving the significant memory savings.

The final coefficients are computed by iteratively summing
the fractions over the vertical filter lines j = −4,−3, . . . , 4.
Specifically, we first initialize LL(i, k) = LH(i, k) =
HL(i, k) = HH(i, k) = 0 |∀i,k. For j = −4,−3, . . . , 4, the
summing proceeds as:

LL(i, k) + = ll(i, j, k) (49)
LH(i, k) + = lh(i, j, k) (50)
HL(i, k) + = hl(i, j, k) (51)
HH(i, k) + = hh(i, j, k). (52)

TABLE VII
RAM MEMORY REQUIRED FOR THE FRACTIONAL WAVELET FILTER. THE

NUMBER OF REQUIRED BYTES OF MEMORY ARE GIVEN FOR EACH
WAVELET LEVEL lev FOR A 128 × 128 IMAGE FOR THE FLOATING-POINT

FILTER AND FOR A 256 × 256 IMAGE FOR FIXED-POINT FILTER. THE DATA
FORMAT FOR FIXED-POINT CALCULATION IS GIVEN IN THE TEXAS

INSTRUMENTS Qm.n NOTATION.

floating-point fixed-point
N lev Bytes lev Bytes Format

256 - 1 1280 Q10.5
128 1 1152 2 768 Q11.4
64 2 640 3 640 Q12.3
32 3 320 4 512 Q13.2
16 4 160 5 384 Q14.1

We summarize the computations for the floating-point
version of the fractional wavelet filter for the first wavelet
transform level in the pseudocode in Table VI. The evaluations
of the fractions, i.e., Eqns (45)–(48), and final coefficients,
i.e., Eqns. (49)–(52) take place in Lines 15–20. Notice that
the subscript of the lowpass filter is j in Lines 16 and 19,
whereas the subscript is j−1 for the highpass filter coefficient
in Lines 17 and 20. This vertical displacement of the filter
coefficients by one line in conjunction with advancing the
filter area in steps of two lines (Lines 4 and 8) ensures that the
centers of the lowpass and highpass filters align with alternate
lines of the input image. Intuitively, each filter “takes in” one
half of the input image, and they jointly “take in” the complete
image.

Note that in the pseudocode of the fractional wavelet filter
in Table VI, in Lines 8–20 the vertical filter coefficient j
stays constant for updating all subband rows. The process
of updating the destination lines in Lines 16, 17, 19, and
20 is repeated until the final subband coefficients have been
computed.

Observe that when the filter input area moves up (Line 4 in
Table VI), the last input line of the preceding filter area could
be used as the first input line for the new filter area. Based
on this observation we could slightly reduce the number of
repetitive readings. For an N ×N image, the number of line
readings would reduce to 8 · N/2. For simplicity, we do not
consider this slight optimization.

For evaluating the memory requirements, note that for the
first transform level lev = 1, the input buffer s holds N
original one Byte image samples, while each of the buffers
LL HL and LH HH holds N float values of four Bytes
each. For the higher transform levels lev > 1, the input buffer
s has to hold float values from the preceding LL subband.
In summary, the number of Bytes required for a wavelet
transform with lev levels of an image with the dimension
N ×N pixels is

Bytesfloat =

{
9 ·N, lev =1
12 · N

lev , lev > 1.

Table VII gives the required memory in Bytes for the floating
point transform of an 128 × 128 input image with 8 bit
grayscale info per pixel for different transform levels.

C. Fixed-Point Filter
The fractional fixed-point filter can be realized by first

transforming the real wavelet coefficients to the Q0.15 format,
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see Table III. The second requirement is that for all add
and multiply operations the exponent has to be taken into
account. For an add operation, both operands must have
the same exponent. A multiply operation requires a result
exponent given by the sum of the input exponents. Both
operations can be supported by an exponent change function
that corresponds to a left or right bit-shift. Aside from these
special considerations, the fixed-point filter works similarly as
the floating-point filter.

As the number range of the wavelet coefficients increases
from level to level, the output data format has to be enlarged
from level to level. The study [16] on the required range
reports that the data formats in Table VII are sufficient.
(Note that there is a general difference when the usage of
fixed-point numbers for wavelet transforms is discussed in
the literature. Sometimes, the fixed-point numbers are only
used for the representation of the wavelet coefficients, as is
done in [16]. In this work, when we discuss a fixed-point
algorithm, we include the coefficient representation as well
as the internal calculations.) For the first wavelet transform
level, the input data format is Q15.0, as the image samples are
integer numbers. Note that the wavelet coefficients L and H
computed in Lines 15 and 18 in Table VI are already computed
in the data format of the final level (even if they may need a
smaller range than the subband coefficients).

For lev = 1, each original image sample in buffer s
has one Byte, while each INT16 value in the LL HL and
LH HH buffers has two Bytes. For the subsequent transform
levels lev > 1, the input buffer s holds the two Byte
INT16 coefficients from the preceding LL subband. Thus,
the memory requirements for the fixed-point filter are

Bytesfixed =

{
5 ·N, lev = 1
6 · N

lev , lev > 1

and are given in Table VII for the levels 1–5 for an 256 ×
256 image.

D. Inclusion of the lifting scheme
The computing time for the fractional wavelet filter can

be reduced by incorporating the lifting scheme, which was
outlined in Section III-B. The lifting scheme cannot be applied
to the vertical filtering technique of the fractional filter and
also not to the horizontal transform of the first level, as the
input lines of this level have to use an integer buffer array
to avoid exceeding the memory. The lifting scheme allows to
compute the one-dimensional transform in place, that is, there
is only one buffer for the input and output values, whereby
the buffer must have the appropriate size to contain the final
wavelet coefficients. It thus can be applied to the higher levels
of the horizontal transform, as the input lines for these levels
take variables with the larger data format (and not only 8 bit
unsigned char as for the first level input). More specifically,
the lifting scheme is employed for the computation of the
convolution in Lines 15 and 18 in Table VI.

VI. CASE STUDIES: PERFORMANCE EVALUATION OF
FRACTIONAL WAVELET FILTER

In this section we report two case studies that employ the
fractional wavelet filter and shed light on its performance

characteristics. In the first study we emulated the 16-bit fixed-
point arithmetic of a microcontroller on a PC to assess the
image quality. In the second study, we built a sensor node and
conducted time measurements of the fractional wavelet filter.
For a detailed performance evaluation that comprehensively
evaluates the resource requirements for the fractional wavelet
filter and its image quality we refer to [27].

A. Image Quality

For the quality evaluation of the fixed-point wavelet filter,
we have selected twelve test images from the Waterloo Reper-
toire (http://links.uwaterloo.ca) and the standard image data
base (http://sipi.usc.edu/database). The images were converted
to an integer data format with the range of [−128, 127]
(corresponding to 8 bits = 1 Byte per pixel) using the convert
command of the software suite ImageMagick (available at
http://www.imagemagick.org) and the software Octave.

In the image quality evaluation we compare the original
N×N image f(j, k), j, k = 1, . . . , N , with the reconstructed
image g(j, k), j, k = 1, . . . , N . The reconstructed image is
generated through a forward wavelet transform using the frac-
tional fixed-point wavelet filter of the original image followed
by an inverse wavelet transform (using the standard floating
point inverse transform). We compute the mean squared error
(MSE) for the compared monochrome image matrices f and
g:

MSE =
1

N2

∑
∀j,k

(f(j, k)− g(j, k))
2
. (53)

The PSNR in decibels (dB) is calculated as

PSNR = 10 · log10
2552

MSE
. (54)

Image degradations with a PSNR of 40 dB or higher are
typically nearly invisible for human observers [44].

For each image we computed six wavelet levels. We did
not observe any visible quality degradation. However, the
forward wavelet transform with the fractional wavelet filter
is not lossless. In Figure 11 we plot the PSNR values for
each of the maximum wavelet levels lev1 through lev6 for
256× 256 pixel grayscale images. The computed data format
of the wavelet coefficients at the first level is in the Q10.5 data
format, which requires a division by 25 to obtain the original
data. For each higher level, the format switches to the next
larger range, which here would be the Q11.4 format.

For an improved version of the fractional wavelet filter we
integrated the lifting scheme. Figure 11b) illustrates that the
lifting scheme gives the same or even slightly better image
qualities. The cost of the lifting scheme is the more complex
and longer source code (which we freely provide), which adds
on to the required program memory of the microcontroller.
Computation time savings are achieved for the levels 2–6.
The very slight improvements in image quality are due to the
reduced number of computations, which lead to less loss of
precision.

The reduction in image quality observed in Fig. 11 is
negligible when the transformed image is compressed with
a lossy wavelet compression algorithm. For demonstration
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a) without lifting scheme b) with lifting scheme
Fig. 11. PSNR image quality a) without lifting and b) with lifting using the fractional fixed-point wavelet filter. The first level gives very high PSNR values
as the transform input values are integers. The quality loss is negligible when the fractional wavelet filter is employed in conjunction with a lossy compression
algorithm which neglects the least significant bits. While the lifting scheme gives substantial savings in the computation, the qualities are nearly the same or
even slightly better than with the standard convolution technique.

Fig. 12. The introduced wavelet filter combined with a low-memory image
coder gives nearly the same performance as JPEG2000, which reflects the state
of the art in image compression. While most implementations of JPEG2000
require a personal computer, the combination of fractional wavelet filter and
image coder runs on a small 16 bit micro controller with less than 2 kByte of
random access memory. Small wireless sensor nodes can thus perform image
compression when extended with a flash memory, a small camera with serial
interface, and a software update.

we combine the fractional wavelet filter with a low-memory
version of the SPIHT coder [23]. We evaluate the compression
performance for the bridge image in terms of the PSNR as
a function of the compression ratio in bits per byte (i.e.,
per input pixel) denoted by bpb. The PSNR is for the
forward wavelet transformed, compressed, and subsequently
uncompressed and backward transformed image compared to
the original image and is denoted by fracwave filter
in Fig. 12. We compare with state-of-the-art compression
schemes, namely Spiht [14] obtained with the Windows im-
plementation from Said et al. http://www.cipr.rpi.edu/research/
SPIHT/spiht3.html, as well as jpeg and jpeg2000 ob-
tained with the JPEG and JPEG2000 implementations from
the jasper project http://www.ece.uvic.ca/∼mdadams/jasper.
These comparison benchmarks combine the image transform

and image coding and are designed to run on personal com-
puters with abundant memory.

We observe from the figure that the wavelet techniques
Spiht, JPEG2000, and our fractional wavelet filter based
scheme outperform the general JPEG standard. Importantly,
we observe that the fractional wavelet filter based approach
achieves state-of-the-art image compression that gives essen-
tially the same PSNR image quality as JPEG2000 and SPIHT
for the higher compression rates (i.e., smaller bpb values). For
the lower compression rates (larger bpb values), the fractional
wavelet filter approach gives slightly lower image quality
due to the loss in precision from the fixed-point arithmetic.
However, for sensor networks, generally a high compression
(small bpb) is required due to the limited transmission energy
and bandwidth.

B. Time Measurements
For timing measurements of the fractional wavelet filter, we

built a sensor node from the Microchip dsPIC30F4013, i.e., a
16 bit digital signal (micro) controller with 2 kByte of RAM,
the camera module C328-7640 with an universal asynchronous
receiver/transmitter (UART) interface (available at http://www.
comedia.com.hk), and an external 64 MByte multimedia card
(MMC) as flash memory, connected to the controller through
a serial peripheral interface (SPI) bus. The data of the MMC-
card is accessed through the filesystem [5]. Camera and MMC-
card both can be connected to any controller with UART and
SPI ports. The system is designed to capture still images.

For the time measurements the forward fractional wavelet
filter without lifting scheme was employed on the camera sen-
sor to perform a six-level transform for a 256×256×8 image.
The reported times reflect the means of 20 measurements,
whereby the values are nearly constant across the different
measurements with the exception of the write access times.
The variability in the write time is due to the flash memory
media, which has to perform internal operations before a block
of data can be written.

In additional time measurements, we computed a six-level
transform of an 128× 128× 8 image using the floating point
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TABLE VIII
READ AND WRITE ACCESS TIMES FOR THE MULTIMEDIA (FLASH

MEMORY) CARD AND COMPUTATION TIMES IN SECONDS FOR
PERFORMING THE FRACTIONAL WAVELET FILTER TRANSFORM FOR SIX

LEVELS FOR AN 256× 256× 8 IMAGE ON A 16-BIT MICROCONTROLLER.
THE LARGEST TIME PROPORTION IS NEEDED FOR COMPUTATION.

Tread Twrite Tcompute Ttotal

2.84 1.09 7.72 11.64

version of the fractional wavelet filter. The compute times were
about Tcompute = 14.2 s, i.e., roughly twice the compute
times with fixed-point arithmetic for the four times larger
256 × 256 image in Table VIII. This result indicates that
fixed-point arithmetic (see Section IV) achieves significantly
faster image transforms than floating point arithmetic, which
is implemented through heavy compiler support on the micro-
controller.

Interestingly, the flash memory is not the bottleneck of the
fractional wavelet filter, even if there is large redundancy in
the read process, as the rows are read repetitively by the
fractional filter. More specifically, for computing the final
coefficients of two output lines a “filter area” spanning nine
lines is read. For the computation of the next two output lines,
this filter area moves up by two positions. Thus, there is a
large overlap with the previous filter area. Nevertheless, this
underlying strategy of the fractional wavelet filter—to reduce
the memory requirements by introducing some replication
in the read process—is well suited for memory constrained
sensor nodes with attached flash memory.

We briefly note that a detailed computational complexity
analysis [27] revealed that the fractional wavelet filter without
the lifting scheme requires about 2.9 times more add op-
erations and 3.25 times more multiply operations than the
classical convolution approach (which requires memory for
2N2 pixels with four Bytes per pixel for floating-point and two
Bytes per pixel for fixed-point computations). The fractional
wavelet filter thus achieves the dramatic reduction in required
memory at the expense of somewhat increased number of
computations, which in turn affect computation times and
energy consumption.

VII. SUMMARY

This tutorial introduced communications and networking
generalists without specific background in image signal pro-
cessing to low-memory wavelet transform techniques. The
image wavelet transform is highly useful in wireless sensor
networks for preprocessing the image data gathered by the
single nodes for compression or feature extraction. However,
traditionally the wavelet transform has not been employed on
the typical low-complexity sensor nodes, as the required com-
putations and memory exceeded the sensor node resources.
This tutorial presented techniques that allow for transforming
images on in-network sensors with very small random access
memory (RAM).

This tutorial first introduced elementary one-dimensional
and two-dimensional wavelet transforms. Then, the compu-
tation of the wavelet transform with fixed-point arithmetic
on microcontrollers was explained. Building on these founda-
tions, the tutorial explained the fractional wavelet transform

which required only 1.5 kByte of RAM to transform a
grayscale 256 × 256 image. The techniques taught in this
tutorial, thus make the image wavelet transform feasible for
sensor networks formed from low-complexity sensor nodes.

The low-memory transform techniques are not lossless.
However, the performance evaluation illustrated that the loss
is typically not visible, as PSNR values higher than 40 dB
are obtained. Combining the low-memory wavelet transform
techniques with a low-memory image wavelet coder achieved
image compression competitive with state of the art JPEG2000
compression.

This tutorial and the accompanying freely available C-code
provide a starting point for communications and networking
researchers and practitioners to employ modern wavelet tech-
niques in sensor networks. With the techniques covered in this
tutorial, a typical sensor node can be upgraded to a camera
sensor node by attaching a standard flash memory (standard
SD card), a small low-cost camera, and a software update.
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