
Interactive Video Streaming with Proxy Servers

Martin Reisslein Felix Hartanto Keith W. Ross

GMD FOKUS Institute Eurecom

freisslein, hartantog@fokus.gmd.de ross@eurecom.fr

www.fokus.gmd.de/usr/freisslein, hartantog www.eurecom.fr/~ross

Abstract|We study caching strategies for proxies that

cache VBR{encoded continuous media objects for highly

interactive streaming applications. First, we develop

a model for streaming VBR{encoded continuous media

objects. This model forms the basis for a stream admis-

sion control criterion and our study of caching strate-

gies. We �nd that unlike conventional web caches, proxy

caches for continuous media objects need to replicate

or stripe objects to achieve high hit rates. We develop

novel caching strategies that either implicitly or explic-

itly track the request pattern and cache (and replicate)

objects accordingly. Our numerical results indicate that

our caching strategies achieve signi�cantly higher hit

rates than conventional LRU or LFU based strategies.

Keywords| Caching, Continuous Media Object, Re-

placement Policy, Statistical QoS, Streaming, VBR

Video.

I. Introduction

T

HE dramatic growth of the World Wide Web has

spurred the deployment of proxy caches. These

store frequently requested objects close to the clients

in the hope of satisfying future client requests with-

out contacting the origin server. Highly localized

request patterns, which exhibit hot{spots, i.e., fre-

quent requests for a small number of popular objects,

have made caching highly successful in reducing server

load, network congestion, and client perceived latency.

While most of the caching research to date has focused

on caching of textual and image objects, web{based

streaming of continuous media, such as video and audio,

becomes increasingly popular. In fact, it is expected

that by 2003, continuous media will account for more

than 50 % of the data available on origin servers [1]. We

consider an architecture where the proxy servers cache

frequently requested continuous media objects in their

local storage, which is typically a disk array.

The contribution of this paper is twofold. First, we

develop a stream model for streaming VBR{encoded

continuous media objects from the proxy's disk array

over an access network to the clients. Based on the

stream model we design a scheme for admission control

and resource reservation that provides stringent statis-

tical Quality of Service (QoS) guarantees. Our second

contribution is to study caching strategies for continu-

ous media objects. Our study shows that unlike conven-

tional web caches, proxy caches for continuous media

should replicate or stripe objects to accommodate the

typically highly localized request patterns and to ensure

good stream quality. We develop natural extensions

of conventional replacement policies, such as LRU and

LFU, which implicitly track the client request pattern.

We then develop and evaluate a novel caching strategy

which explicitly tracks the client request pattern and

caches objects accordingly. Our numerical results indi-

cate that the hit rate achieved by our caching strategy

with explicit tracking is almost 20 % higher than the

hit rate of caching with implicit tracking. Caching with

implicit tracking in turn achieves typically 10 % higher

hit rates than conventional LRU or LFU replacement.

II. Architecture

In this section we describe the end{to{end architec-

ture for the delivery of continuous media objects with

proxy servers. The architecture is illustrated in Fig-

ure 1. The continuous media objects are stored on the

Wide Area Network

Origin Server
Origin Server

Local Access Network

Proxy Server

Client

Client

Client

Fig. 1. Architecture for continuous media streaming with proxy

server.

origin servers. The proxy server is located close to the

clients. It is connected to the origin servers via a wide

area network (e.g., the Internet). The proxy server is

connected to the clients via a local access network.

The client directs its request for a particular con-

tinuous media object to its assigned proxy server. If

the continuous media object is not cached in the proxy,

that is, in the case of a cache miss, the proxy forwards

the request to the appropriate origin server. The origin

server streams the continuous media object to the proxy



server. The proxy relays the stream to the requesting

client and at the same time caches the continuous media

stream in its local storage. If the local storage (typically

disk array) at the proxy is full the proxy decides accord-

ing to a replacement policy (see Section V) which con-

tinuous media object to remove from the cache to make

room for the new object. In the case of a cache hit,

that is, when the continuous media object requested by

the client is cached in the proxy's disk array, the ob-

ject is streamed from the proxy over the local access

network to the client. Before the streaming commences

the proxy conducts in both cases admission control tests

to verify whether the available disk bandwidth and the

bandwidth in the local access network are su�cient to

support the new stream.

III. Model for Continuous Media Streaming

from Proxy

In this section we model the streaming of continuous

media from the proxy. Our analysis applies to any type

of continuous media tra�c, however, to �x ideas we fo-

cus on streaming of video objects. We naturally assume

that the video objects are Variable Bit Rate (VBR) en-

coded. We �rst develop a disk model and derive the

e�ective disk bandwidth for the retrieval of continuous

media tra�c with tight interactive delay constraints. In

[2] we obtain the maximum streaming rate for lossless

service:

retr(I; T )

T

� r

�

1�

l

seek

+ Il

rot

T

�

=: C

disk

; (1)

where retr(I; T ) denotes the number of bits retrieved

for I ongoing streams in one round of length T . The

constant l

seek

is the maximum seek time of the disk and

the constant l

rot

is the per{stream latency, which in-

cludes the maximum rotation time of the disk and the

track{to{track seek time. We then develop a stream

model for the VBR{encoded continuous media tra�c

and design a scheme for admission control and resource

reservation that provides stringent statistical QoS. We

de�ne statistical QoS requirements. Speci�cally, we de-

�ne the loss probability as the long run average fraction

of information (bits) lost due to the limited bandwidth

(in disk array and local access network) and admit a

new stream only if the loss is less than some miniscule

�, such as � = 10

�6

. Formally, the loss probability due

to the limited disk bandwidth is given by

P

disk

loss

=

E[(X � C

disk

T )

+

]

E[X ]

; (2)

where X is a random variable which denotes the num-

ber of blocks retrieved for I ongoing streams in one

round. We evaluate the loss probability with the Large

Deviation approximation; see [2] for details.

IV. Replication and Striping of Video

Objects

In this section we study the impact of the placement

of video objects in the proxy's disk array on the proxy's

performance.

Throughout our performance study we assume that

the requests for continuous media objects follow the

Zipf distribution. For the numerical investigation in

this paper we use traces of MPEG encoded video ob-

jects. We obtained 10 MPEG{1 traces, which give the

number of bits in each encoded video frame, from the

public domain. The statistics of the traces are sum-

marized in Table I. To motivate the replication and

TABLE I

Trace statistics (average rate is 2 Mbps for all traces)

Frames Disk Cap.

Trace Peak/Mean Std. Dev. St. Mux Peak

bean 13.0 2.25 12 2

bond 10.1 2.03 15 3

lambs 18.3 2.94 11 1

oz 8.4 2.39 14 3

soccer 6.9 1.84 15 4

star wars 1 10.9 2.35 14 2

star wars 2 13.2 2.25 14 2

star wars 3 12.0 2.22 14 2

star wars 4 8.4 2.05 14 3

terminator 7.3 1.79 15 4

striping of video objects in the proxy's disk array, we

�rst consider a very simple caching scenario. Suppose

that the 10 video objects from Table I are cached in

the proxy's disk array. Furthermore, suppose, that

each video object is placed on its own disk. We im-

pose the statistical QoS requirement that the long run

average fraction of video information (bits) lost due

to the limited disk bandwidth be less than 10

�6

, i.e.

P

disk

loss

� 10

�6

. The results are reported in Table I (col-

umn \St Mux"). The table also gives the maximum

number of simultaneous streams that can be supported

when peak rate allocation is used. The video objects

have an average rate of 2 Mbps, thus the stability limit

is 19 streams. We observe from the table that the statis-

tical admission control criterion allows for signi�cantly

more streams than peak rate allocation.

Next, we study the total number of streams that the

proxy can typically support, when the requests for the

10 video objects are distributed according to a Zipf dis-

tribution with � = 1. We determine the typical num-

ber of streams, that the proxy can simultaneously sup-

port; see [2] for details of the evaluation procedure. We

�nd that the proxy can typically support 39 simultane-

ous streams. This, however, is only a small fraction of

the disk array's capacity of 138 simultaneous streams

(found by adding up the "St. Mux" column of Table I).



The reason for this is that due to the limited disk

bandwidth the proxy cannot satisfy many of the re-

quests for the most popular objects. This phenomenon

is commonly referred to as hot{spot problem. In [2] we

study two strategies to overcome the hot{spot problem:

� Object replication: The proxy stores more than

one copy of the popular video objects. The goal

is to overcome the hot{spot problem by roughly

matching the replication distribution (i.e., the dis-

tribution of the number of copies of the objects) to

the request distribution.

� Striping placement: The video objects are striped

over W (W � D) disks in the proxy's disk ar-

ray. This allows the proxy to use the aggregate

disk bandwidth of the W disks to stream the video

objects. If the video objects are striped over the

entire disk array (W = D) then the hot{spot prob-

lem vanishes and all request distributions can be

equally accommodated.

We have conducted a numerical study of object repli-

cation and striping placement. In the numerical study

we consider a proxy with a disk array consisting of D

= 100 disks. We use the M = 10 video objects from

Table I. In the numerical study we vary the param-

eter of the Zipf distribution from which the requests

are generated. Throughout this experiment the video

objects are replicated according to a Zipf distribution

with �xed parameter � = 1. Figure 2 shows the typi-

cal number of simultaneous streams that the proxy can

support as a function of the Zipf parameter of the re-

quest distribution. We see from the �gure that uniform

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

1400
Uniform (W=1)
Uniform (W=2)
Zipf, zeta=1 (W=1)
Zipf, zeta=1 (W=2)

Zipf parameter of request distribution

N
u

m
b

er
 o

f 
st

re
am

s

Fig. 2. Robustness of replication strategies.

object replication gives good performance only when

the client request pattern is fairly uniform. Striping

placement with object replication according to an es-

timate of the client request pattern thus performs well

even when this estimate di�ers signi�cantly from the

actual request pattern. However, with a good estimate

of the request pattern, localized placement (W = 1)

with object replication according the estimate outper-

forms striping placement. Because of its simplicity and

potential for improved performance we focus on local-

ized placement (W = 1) in the next section on caching

strategies.

V. Caching Strategies

In the previous section, which served to motivate ob-

ject replication and striping in the proxy, we assumed

that (i) the requests for video objects follow a known

distribution, and (ii) all available objects are cached

in the proxy. In this section we consider a more re-

alistic scenario, where (i) the client request pattern is

unknown, and (ii) only a subset of the available ob-

jects can be cached in the proxy. We propose and

evaluate caching and replacement policies that either

implicitly or explicitly track the client request pattern.

The caching policy determines which object (and how

many copies thereof) to cache while the replacement

policy determines which objects to evict from the cache

to free up storage space for new objects.

A. Implicit Tracking

With implicit tracking the caching policy is invoked

whenever the proxy can not satisfy a client's stream-

ing request. This is the case when either (1) the re-

quested object is not cached, or (2) the requested ob-

ject is cached but the additional stream can not be sup-

ported by the cached copy without violating the QoS

requirement P

disk

loss

� �. The basic caching policy is to

always try to cache the requested object in case (1). In

case (2) we distinguish two policies: caching with ob-

ject replication and caching without object replication.

Caching with object replication attempts to cache an

additional copy of the requested object (which is gener-

ated internally from the already cached copy). Caching

without object replication, on the other hand, leaves

the cache contents unchanged and the requested object

is streamed from the origin server directly to the client.

If there is not enough free disk space to store the new

object (or additional copy when caching with replica-

tion is employed) we invoke a replacement policy. In [2]

we study two replacement policies, which are based on

Least Recently Used (LRU) and Least Frequently Used

(LFU) replacement. Figure 3 shows the hit rate

as a function of the number of disks in the proxy for

LRU replacement and LFU replacement, both with and

without object replication (ignore the \Explicit track-

ing" curves for now). The Zipf parameter of the client

request distribution is set to � = 1 for this experiment.

The average length of the video objects is set to L =

20,000 frames, corresponding to roughly 14 minutes.

We observe from the plots that caching with object

replication clearly outperforms caching without repli-



0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

Explicit tracking
LRURep
LFURep
LRU
LFU

Number of disks

H
it

 R
at

e

Fig. 3. Impact of proxy server resources.

cation. Interestingly, we see from Figure 3 that the

replacement policy (LRU or LFU) has no impact on

the proxy performance.

In Figure 4 we plot the hit rate as a function of

the average length of the video objects. We consider

0 2000 4000 6000 8000 10000
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Explicit tracking
LRURep
LFURep
LRU
LFU

0.7

Average Object Length

H
it

 R
at

e

Fig. 4. Impact of average object length.

a proxy with 100 disks and a Zipf request pattern with

� = 1 in this experiment. The �gure reveals that for

short{lived streams (< 2000 video frames, correspond-

ing to roughly 1.3 minutes) LFU replacement outper-

forms LRU replacement. We also see that the caching

policy (caching with or without object replication) has

no impact on the proxy performance. As the streams

become longer lived, however, the replacement policy

looses its impact on the proxy performance and the

caching policy becomes dominant. The main conclu-

sion from this experiment is that object replication is

not needed for caching of text and image objects (which

can be thought of as having a lifetime of zero). How-

ever, for caching of continuous media objects, replica-

tion is crucial for good proxy performance.

B. Explicit Tracking

Our explicit tracking approach uses an exponential

weighted moving average to estimate the client request

pattern. Based on the estimated request pattern we de-

termine which objects (and how many copies thereof)

to cache in the proxy. Our caching policy strives

to match the distribution of the number of copies of

the cached objects to the estimated popularities. Let

^

C

m

;m = 1; : : : ;M , denote the number of copies of ob-

ject m required to match the estimated popularities.

Furthermore, let C

m

; m = 1; : : : ;M , denote the num-

ber of copies of objectm that are currently in the cache.

The caching policy for explicit tracking is invoked

when either (1) the requested object j

�

is not cached

(i.e., C

j

�

= 0), or (2) the requested object j

�

is cached

but the additional stream can not be supported by the

cached copies C

j

�

� 1 without violating the QoS re-

quirement P

disk

loss

� �. Our caching policy with ex-

plicit tracking works as follows. First, we execute a

replication algorithm to determine the current popu-

larity estimates q̂

m

and the matching object replication

^

C

m

; m = 1; : : : ;M . If

^

C

j

�

� C

j

�

we do not attempt to

cache object j

�

and it is streamed from the origin server

directly to the client. Otherwise, i.e., if

^

C

j

�

> C

j

�

, we

attempt to store a copy of object j

�

in the disk array.

In case (1) this is the �rst copy of object j

�

, which

is obtained via the wide area network from the appro-

priate origin server. In case (2) this is an additional

copy of object j

�

, which is generated internally from

the other already cached copy. If there is not enough

empty disk space in the proxy we invoke a replacement

policy, which tries to remove one copy of an object that

has more copies in the cache than are required to match

its popularity; see [2] for details.

The results of our simulation study of the explicit

tracking scheme are given in Figures 3 and 4. The

plots show that the explicit tracking scheme consis-

tently outperforms the LRU/LFU based implicit track-

ing schemes. We observe from Figure 4 that the gap

in performance widens as the average object length in-

creases; explicit tracking achieves roughly 18 % higher

hit rates than the implicit tracking schemes when the

average object length exceeds 2000 video frames. In

summary, we �nd that explicit tracking is a very at-

tractive caching strategy for continuous media objects.

References

[1] G. A. Gibson, J. S. Vitter, and J. Wilkes, \Storage and I/O

Issues in Large{Scale Computing ," in ACM Workshop on

Strategic Directions in Computing Research, ACM Comput-

ing Surveys, 1996,

http://www.medg.lcs.mit.edu/doyle/sdcr.

[2] M. Reisslein, F. Hartanto, and K. W. Ross, \In-

teractive video streaming with proxy servers (extended

version)," Tech. Rep., GMD FOKUS, Oct. 1999,

Available at http://www.fokus.gmd.de/usr/reisslein or

http://www.eurecom.fr/~ross.


