
1

Interactive Video Streaming with Proxy Servers

Martin Reisslein Felix Hartanto Keith W. Ross

GMD FOKUS Institute Eurecom

Kaiserin–Augusta–Allee 31 2229 Route des Cretes

10589 Berlin, Germany 06904 Sophia–Antipolis, France

freisslein, hartantog@fokus.gmd.de ross@eurecom.fr

www.fokus.gmd.de/usr/freisslein, hartantog www.eurecom.fr/˜ross

Abstract— We study caching strategies for proxies that

cache VBR–encoded continuous media objects for highly in-

teractive streaming applications. First, we develop a model

for streaming VBR–encoded continuous media objects. This

model forms the basis for a stream admission control crite-

rion and our study of caching strategies. We find that unlike

conventional web caches, proxy caches for continuous me-

dia objects need to replicate or stripe objects to achieve high

hit rates. We develop novel caching strategies that either im-

plicitly or explicitly track the request pattern and cache (and

replicate) objects accordingly. Our numerical results indi-

cate that our caching strategies achieve significantly higher

hit rates than conventional LRU or LFU based strategies.

Keywords—Caching, Continuous Media Object, Replace-

ment Policy, Statistical QoS, Streaming, VBR Video.

I. INTRODUCTION

T

HE dramatic growth of the World Wide Web has

spurred the deployment of proxy caches. These store

frequently requested objects close to the clients in the hope

of satisfying future client requests without contacting the

origin server. Highly localized request patterns, which ex-

hibit hot–spots, i.e., frequent requests for a small number

of popular objects, have made caching highly successful in

reducing server load, network congestion, and client per-

ceived latency. While most of the caching research to date

has focused on caching of textual and image objects, web–

based streaming of continuous media, such as video and

audio, becomes increasingly popular. In fact, it is expected

that by 2003, continuous media will account for more than

50 % of the data available on origin servers [1]. This trend

is reflected in a recent study [2], which found that the num-

ber of continuous media objects stored on web servers has

tripled in the first 9 months of 1998.

Caching and streaming of continuous media objects with

proxy servers poses many new challenges [3]. These are

due to the real–time constraints imposed by continuous me-

Corresponding Author: Martin Reisslein, GMD FOKUS, Kaiserin–

Augusta–Allee 31, 10589 Berlin, Ger-

many, reisslein@fokus.gmd.de, phone: +49–30–3463–7282, fax: +49–

30–3463–8000, http://www.fokus.gmd.de/usr/reisslein

dia traffic and the high degree of interactivity expected by

users. In this paper we focus on caching strategies for prox-

ies that cache VBR–encoded continuous media for highly

interactive streaming applications in disk arrays. We con-

sider an architecture where the proxy servers cache fre-

quently requested continuous media objects in their local

storage, which is typically a disk array. The clients direct

their streaming requests to their assigned proxy server. If

the proxy can satisfy the streaming request — a cache hit

— the object is streamed from the proxy to the client. If the

proxy can not satisfy the request — a cache miss — the ob-

ject is obtained from the appropriate origin server and the

proxy decides according to a caching strategy whether or

not to cache the object.

The contribution of this paper is twofold. First, we de-

velop a stream model for streaming VBR–encoded contin-

uous media objects from the proxy’s disk array over an ac-

cess network to the clients. Based on the stream model we

design a scheme for admission control and resource reser-

vation that provides stringent statistical Quality of Service

(QoS) guarantees.

Our second contribution is to study caching strategies

for continuous media objects. Our study shows that un-

like conventional web caches, proxy caches for continuous

media should replicate or stripe objects to accommodate

the typically highly localized request patterns and to en-

sure good stream quality. We develop natural extensions of

conventional replacement policies, such as LRU and LFU,

which implicitly track the client request pattern. We then

develop and evaluate a novel caching strategy which ex-

plicitly tracks the client request pattern and caches objects

accordingly. Our numerical results indicate that the hit rate

achieved by our caching strategy with explicit tracking is

almost 20 % higher than the hit rate of caching with implicit

tracking. Caching with implicit tracking in turn achieves

typically 10 % higher hit rates than conventional LRU or

LFU replacement.



2

A. Related Work

There are only few studies of caching and streaming of

continuous media objects with proxy servers which are

complementary to the issues studied in this paper. Re-

jaie et al. propose a proxy caching mechanism [4] in con-

junction with a congestion control mechanism [5], [6] for

layered–encoded video. With layered encoding the com-

pressed video stream is split into a base layer, which con-

tains low quality encoding information, and enhancement

layers, which improve the stream quality. The basic idea of

their caching mechanism is to cache layers according to the

objects’ popularities: the more popular an object, the more

layers are cached. When streaming an object to a client, the

layers that are not cached at the proxy are obtained from the

origin server. A related idea is explored by Wang et al. in

their study on video staging [7]. With video staging the part

of the VBR video stream, that exceeds a certain cut–off rate

(i.e., the bursts of the VBR stream) is cached at the proxy

while the lower (now smoother) part of the video stream

is stored at the origin server. Our work is complementary

to these studies on caching of video layers. Our focus is

on (1) developing a stream model and admission control

conditions that ensure statistical QoS for continuous media

streaming, and (2) object replication and striping to accom-

modate the typically highly localized client request pattern

while providing good stream quality.

Sen et al. [8] propose to cache a prefix (i.e., the ini-

tial frames) of video streams at the proxy and to employ

work–ahead smoothing while streaming the object from

the proxy to the client. The cached prefix hides the poten-

tially large initial start–up delay of the work–ahead trans-

mission schedule from the client. A major drawback of this

approach is that it is not suited for interactive video stream-

ing. The client experiences a potentially large delay after

invoking an interaction (such as a temporal jump) since the

work–ahead smoothing schedule has to build up a buffered

reserve at the client before playback can resume.

Tewari et al. [9] propose a Resource Based Caching

(RBC) scheme for Constant Bit Rate (CBR) encoded video

objects. They model the cache as a two resource (storage

space and bandwidth) constrained knapsack and study re-

placement policies that take the objects’ sizes as well as

CBR bandwidth into account. Our work differs from RBC

in that we consider VBR encoded video objects. Also, ob-

ject replication and striping as well as interactive streaming

are not addressed by Tewari et al.

There is a large body of literature on striping of video ob-

jects in the context of video servers. Most of these studies

assume that the videos are CBR encoded; see for instance

[10], [11], [12]. Striping for VBR encoded video objects is

studied by Shenoy and Vin [13]. They develop an analyt-

ical model for the most heavily loaded disk and study the

optimal striping placement. Sahu et al. [14] study round

based retrieval strategies for VBR video from disk. These

studies on striping and retrieval of VBR video assume that

the user request pattern is uniform and do not consider in-

teractive delays.

Birk [15] proposed an approach where the video blocks

are placed randomly on the disk array to overcome the hot–

spot problem. In his scheme interactive requests, which re-

sult from client interactions, are given priority over sequen-

tial retrievals to ensure short interactive delays. This ap-

proach appears promising in the context of proxy streaming

of interactive VBR video, although there are some issues

that require further research. Most importantly, a stream

admission control rule that ensures statistical QoS when re-

trieving randomly placed blocks of VBR video from the

disk array requires more research. Also, the performance

of the scheme when the proportion of interactive requests

is high needs to be examined.

II. ARCHITECTURE

In this section we describe the end–to–end architecture

for the delivery of continuous media objects using proxy

servers. The architecture is illustrated in Figure 1. The

Wide Area Network

Origin Server
Origin Server

Local Access Network

Proxy Server

Client

Client

Client

Fig. 1. Architecture for continuous media streaming with proxy

server.

continuous media objects are stored on the origin servers.

The continuous media objects are prerecorded audio and

video objects, such as CD–quality music clips, short video

clips (e.g., trailers or music videos) or full–length movies

or on–line lectures. The proxy server is located close to the



3

clients. It is connected to the origin servers via a wide area

network (e.g., the Internet). The proxy server is connected

to the clients via a local access network. The local access

network could be a LAN running over Ethernet, or a resi-

dential access network using xDSL or HFC technologies.

In the following we briefly outline the delivery proce-

dure for continuous media objects. The client directs its

request for a particular continuous media object to its as-

signed proxy server (for instance by using the Real Time

Streaming Protocol (RTSP) [16]). If the continuous me-

dia object is not cached in the proxy, that is, in the case

of a cache miss, the proxy forwards the request to the ap-

propriate origin server. The origin server streams the con-

tinuous media object to the proxy server. The proxy re-

lays the stream to the requesting client and at the same time

caches the continuous media stream in its local storage. If

the local storage (typically disk array) at the proxy is full

the proxy decides according to a replacement policy (see

Section V) which continuous media object to remove from

the cache to make room for the new object. If the replace-

ment algorithm fails to free up enough disk space for the

the new objects (this is the case when not enough objects

can be removed without interrupting ongoing streams; see

Section V) the object is streamed from the origin server di-

rectly to the client. In the case of a cache miss the proxy

server does not reduce the bandwidth usage in the wide area

network, neither does it improve the stream quality and the

level of interactivity offered to the client.

In the case of a cache hit, that is, when the continu-

ous media object requested by the client is cached in the

proxy’s disk array, the object is streamed from the proxy

over the local access network to the client.

Before the streaming commences the proxy conducts in

both cases admission control tests to verify whether the

available disk bandwidth and the bandwidth in the local ac-

cess network are sufficient to support the new stream. Only

if the admission tests are successful is the requested object

streamed from the origin server (in the case of a cache miss)

or from the proxy (in the case of a cache hit).

III. MODEL FOR CONTINUOUS MEDIA STREAMING

FROM PROXY

In this section we model the streaming of continuous me-

dia from the proxy. Our analysis applies to any type of

continuous media traffic, however, to fix ideas we focus on

streaming of video objects. We naturally assume that the

video objects are Variable Bit Rate (VBR) encoded. For

VBR encoding the quantization scale is kept constant to

maintain high video quality even for high action scenes.

For the same quality level the file size and average bit rate

of a Constant Bit Rate (CBR) encoded movie or sports clip

are typically two times or more than the file size and av-

erage bit rate of the VBR encoding [17], [18]. Our first

contribution is to develop a unified scheme for admission

control and resource reservation in the proxy server as well

as the local access network. Towards this end we first de-

velop a disk model and derive the effective disk bandwidth

for the retrieval of continuous media traffic with tight inter-

active delay constraints. We then develop a stream model

for the VBR–encoded continuous media traffic and design

a scheme for admission control and resource reservation

that provides stringent statistical QoS.

A. Disk Model

We assume that each disk in the proxy’s disk array con-

sists of single platter side and a single arm. We assume

that the proxy server retrieves data for the ongoing video

streams in constant–time rounds; we denote the round

length by T . We also assume that each disk in the disk

array uses the SCAN scheduling algorithm [19]. Specifi-

cally, in each round, each disk arm sweeps across its entire

platter exactly once with no back tracking. With the SCAN

scheduling algorithm, the overhead incurred within a round

for a given disk is

disk overhead = l

seek

+ Il

rot

;

where I is the number of streams that the disk is servic-

ing. The constant l
seek

is the maximum seek time of the

disk (i.e., the time to move the arm from the center to the

edge of the platter, which is equal to the time to move the

arm from the edge to the center of the platter). The constant

l

rot

is the per–stream latency, which includes the maximum

rotation time of the disk and the track–to–track seek time.

Table I summarizes our disk notation and the nominal val-

ues for the disk parameters. The nominal parameters reflect

the current performance of high–speed disks [20].

TABLE I

NOMINAL VALUES OF DISK PARAMETERS

Parameters Notation Nominal value

disk size X 13 Gbytes

disk transfer rate r 8.5 Mbytes/sec

maximum seek time l

seek

18 msec

rotational latency l

rot

5 msec

The initial start–up delay as well as the responsiveness to

an interactive request (pause/resume or a temporal jump) is

typically modeled to be twice the round length, 2T , when

the SCAN algorithm is used. This delay model is based

on the worst–case assumption that the request of the user



4

arrives just after the start of a round, say round k, and ar-

rives too late to be scheduled by the SCAN algorithm for

round k. The request has to wait for the start of the next

round. The request is included in the disk read schedule

of round k + 1 and the requested video data is read into

the disk buffer during round k + 1. The disk buffer of

round k + 1 becomes the network buffer of round k + 2

and the transmission of the requested video data out of the

network buffer starts at the beginning of round k+2. Thus,

the disk–subsystem introduces a maximum delay of two

rounds, i.e., 2T . We shall assume that the maximum disk–

subsystem delay is constrained to 0.5 sec. Therefore, we

use a round length of T = 0.25 sec. Note that the total in-

teractive delay also includes transmission delays as well

as client de–smoothing and decoding delays. These addi-

tional delays add another 0.25 sec to 0.5 sec to the 0.5 sec

disk–subsystem delay, giving a total delay on the order of

.75 sec to 1.0 sec. Thus, with a round length of 0.25 sec the

system is able to give the user a pleasurable interactive ex-

perience with less than 1 second delay for all interactions.

For the development of the disk model we assume for

now that the video objects are placed in the proxy’s disk

array using the localized placement strategy. With the lo-

calized placement strategy each video file is placed con-

tiguously on a single disk. We shall later study a number

of more complex striping placement strategies, whereby

each video file is striped across a subset of the disks in the

proxy’s disk array.

Now consider one of the disks in the proxy’s disk ar-

ray and suppose that this disk is servicing I streams. Let

retr(I; T ) denote the number of bits retrieved for the I

streams in one round of length T . The disk transfers this

video data at the disk transfer rate r. Thus the total disk

transfer time within a round is retr(I; T )=r. The total disk

overhead within a round is l
seek

+ Il

rot

. Thus the amount

of time the disk requires to service the I ongoing streams in

a round is retr(I; T )=r+ l

seek

+Il

rot

. For lossless service

the time required to service the I streams in a round must

be no greater than the round length itself:

retr(I; T )

r

+ l

seek

+ Il

rot

+ � T:

Rearranging the terms in the above inequality, we obtain

the maximum streaming rate for lossless service:

retr(I; T )

T

� r

�

1�

l

seek

+ Il

rot

T

�

=: C

disk

; (1)

which we refer to as disk bandwidth. With the disk param-

eters from Table I the disk bandwidth is (63:1 � 1:36 � I)

Mbps. The disk bandwidth is obviously upper bounded

by the disk transfer rate. Note that the disk bandwidth in-

creases for increasing round length T . We therefore use a

round length of T = 0:25 sec, the largest round length that

guarantees a maximum interactive delay of 1 second. Note

furthermore that the disk bandwidth decreases as the num-

ber of ongoing streams I increases. This is because the disk

wastes a larger fraction of the round with seeks and rota-

tions when the number of ongoing streams increases.

B. Stream Model

We now develop a model for the VBR video streams that

are retrieved from the proxy’s disk array and sent over the

local access network to the clients. We assume in the ba-

sic stream model that the video objects are retrieved from

a single disk, that is, we assume localized placement in the

proxy’s disk array. We shall consider streaming from a disk

array with striping placement later.

Consider a single disk in the proxy’s disk array and sup-

pose that this disk is streaming I video objects. For sim-

plicity we assume that each video object has N frames and

a frame rate of F frames per second. Let f
n

(i) denote the

number of bits in the nth encoded frame of video object

i; i = 1; : : : ; I . We assume that all video objects are

cached in the proxy; the frame size trace ff
n

(i); 1 � n �

Ng for video object i is therefore a sequence of known inte-

gers. As pointed out above the video frames are retrieved

from disk in rounds of length T . For each ongoing video

stream let K denote the number of frames retrieved in one

round; clearly K = T � F . (In our numerical work we

use a round length of T = 0:25 sec and a frame rate of F

= 24 frames/sec, thus K = 6 in our numerical examples.)

Following the terminology of the file server literature [21]

we refer to the K frames retrieved in one round as block.

Let x
m

(i) denote the size of the block (in bits) retrieved

for video stream i in round m. Assuming that the frames

of the video object are retrieved strictly sequentially, that

is, the first K frames are retrieved in round 1, the next K

frames are retrieved in round 2, and so on; in other words

by excluding client interactions, we have

x

m

(i) =

mK

X

n=(m�1)K+1

f

n

(i); m = 1; : : : ;

N

K

:

We refer to the sequence fx
m

(i); 1 � m � N=Kg as

block size trace for stream i. Following [22] we model the

random start times of the video streams and the client in-

teractions by assigning to video object i the random phase

�

i

. (These client interactions such as pause/resume and for-

ward/backward temporal jumps can be communicated to

the proxy using the Real Time Streaming Protocol (RTSP)

[16]; we assume in our model that the temporal jumps have

the granularity of blocks, i.e., K frames.) It is natural to

assume that the random phases �
i

; i = 1; : : : ; I , are in-



5

dependent and uniformly distributed over [0; N � 1]. In

our model the amount of data retrieved from disk for video

stream i in round m is

X

m

(i) = x

m+�

i

(i);

where the index m + �

i

is wrapped around if it exceeds

the number of blocks N=K of the video object. The to-

tal amount of data retrieved in round m for the I ongoing

video streams is

X

m

=

I

X

i=1

X

m

(i) =

I

X

i=1

x

m+�

i

(i): (2)

We now briefly summarize the main implications of our

stream model:

1. For each fixed round index m, X
m

(1); : : : ;X

m

(I)

are independent random variables.

2. The probability mass function of X
m

(i) can be ob-

tained directly from the block size trace of the cached

video object:

P (X

m

(i) = l) =

K

N

N=K

X

m=1

1(x

m

(i) = l):

Note that the distribution of X
m

(i) does not depend

on the round index m. To simplify notation we write

henceforth X(i) for X
m

(i) and X for X
m

.

We now proceed to develop stream admission rules that

ensure a high user perceived quality of the streamed con-

tinuous media while efficiently utilizing the bandwidth re-

sources in the proxy’s disk array and the local access net-

work. Towards this end we define statistical QoS require-

ments. Specifically, we define the loss probability as the

long run average fraction of information (bits) lost due to

the limited bandwidth (in disk array and local access net-

work) and admit a new stream only if the loss is less than

some miniscule �, such as � = 10

�6. Formally, the loss

probability due to the limited disk bandwidth is given by

P

disk

loss

=

E[(X � C

disk

T )

+

]

E[X]

; (3)

where the expectation is over all possible phase profiles.

Note that up to this point we have considered a single disk

in the proxy’s disk array. To formally define the loss prob-

ability due to the limited bandwidth in the local access net-

work we consider the aggregate streaming rate from the

proxy’s disk array (resulting from cache hits) as well as

the streaming from the origin servers (resulting from cache

misses). Let D denote the number of disks in the proxy’s

disk array and let Xd be the random variable denoting the

amount of data retrieved in one round from disk d; d =

1; : : : ;D. The aggregate amount of data retrieved from the

proxy’sD disks in one round is
P

D

d=1

X

d. Furthermore, let

X

o be the random variable denoting the amount of data fed

into the local access network in one round from the origin

servers. The total amount of data fed into the local access

network in one round is

Y =

D

X

d=1

X

d

+X

o

: (4)

The network loss probability is

P

net

loss

=

E[(Y � C

net

T )

+

]

E[Y ]

; (5)

where C

net

denotes the bandwidth available for stream-

ing continuous media objects into the local access network.

This bandwidth could, for instance, be the bandwidth of the

link connecting the proxy to an xDSL central office, or the

bandwidth of the cable trunk that the proxy feeds into.

The overall streaming loss probability is bounded by the

sum of the disk and network loss probabilities. Our statis-

tical QoS requirement is that the streaming loss probability

be less than some miniscule �:

P

disk

loss

+ P

net

loss

� �: (6)

Before granting a new streaming request we verify whether

(6) continues to hold when including the new stream in (2)

(for the appropriate disk; recall we are assuming localized

placement) and (4).

Evaluating the probabilities in (6) involves the convolu-

tion of independent random variables, which often leads to

numerical problems. We therefore apply the Large Devi-

ation approximation, which is known to be accurate and

computationally efficient [23]. Let �
X

(s) denote the log-

arithmic moment generating function of X , the amount of

data retrieved from a given disk in one round,

�

X

(s) = lnE[e

sX

]:

Clearly,

�

X

(s) =

I

X

i=1

�

X(i)

(s);

by the independence of the X(i)’s. The individual

�

X(i)

(s)’s are easily obtained from the respective round

size traces. The Large Deviation approximation for the

disk loss probability is [23]:

P

disk

loss

�

1

E[X]s

?

2

q

2��

00

X

(s

?

)

e

�s

?

C

disk

T+�

X

(s

?

)

; (7)



6

where s? satisfies

�

0

X

(s

?

) = C

disk

T:

Assuming that the streams retrieved from theD disks in the

proxy’s disk array are mutually independent it is straight-

forward to write out the corresponding Large Deviation ap-

proximation for P net

loss

.

C. Striping Placement

In this section we study streaming from a proxy that

uses striping placement of video objects in its disk ar-

ray. Recall that D denotes the number of disks in the

proxy’s disk array. We shall at first focus on full striping,

whereby each video object is striped over all D disks in

the proxy. There are essentially two different striping tech-

niques: Fine Grained Striping (FGS) and Coarse Grained

Striping (CGS) [24], [25]. With Fine Grained Striping each

block (consisting ofK frames) is segmented into D equal–

sized parts, called stripes, and each of the disks stores one

of the block’s stripes. When retrieving a block from the

disk array, the server reads all D stripes in parallel. With

Coarse Grained Striping (also referred to as Data Interleav-

ing in [26]) each block is stored on a separate disk. The

blocks are typically assigned to the disks in a round robin

manner, When the proxy retrieves a block from its disk ar-

ray it reads the entire block from one disk. Therefore, CGS

has less overhead than FGS (since the proxy has to access

D disks to retrieve one block with FGS). The drawback of

CGS, however, is its large interactive delay, which is due

to the large scheduling delay for disk accesses in disk ar-

rays with CGS [24], [25], [27]. The large scheduling delay

with CGS severely limits the number of streams that a disk

array with CGS can support when a tight interactive delay

constraint is imposed. In fact, it is shown in [27] that given

a tight interactive delay constraint of 1 second CGS typi-

cally supports fewer streams than FGS. We are interested

in continuous media streaming with a high degree of inter-

activity and focus therefore on FGS in this paper.

We now proceed to develop a model for streaming from

a disk array with FGS placement. For that purpose we

adapt the disk model (Section III-A) and stream model

(Section III-B) for localized placement. First, we consider

the disk model. Suppose that the proxy’s disk array con-

sists of D disks. Suppose that the proxy is servicing J

streams. Consider one of the D disks. The disk will trans-

fer J stripes in one round. With J disk accesses the disk

overhead incurred in one round is

disk overhead = l

seek

+ Jl

rot

:

With a derivation that parallels the development of the disk

model for localized placement in Section III-A we obtain

for the disk bandwidth with FGS:

C

FGS

disk

= r

�

1�

l

seek

+ Jl

rot

T

�

:

We now adapt the stream model of Section III-B to FGS.

Consider again one of the D disks. Let XFGS

(j) be the

random variable denoting the amount of data (i.e., the size

of the stripe in bits) retrieved for stream j; j = 1; : : : ; J ,

in a given round. Recall that the stripes are obtained by di-

viding each block of a video object intoD equal–sized seg-

ments. With our stream model the probability mass func-

tion of XFGS

(j) can thus be directly obtained from the

block size trace of the cached video object:

P (X

FGS

(j) = l) =

K

N

N=K

X

m=1

1(

x

m

(j)

D

= l):

The total amount of data retrieved from the disk in a given

round is

X

FGS

=

J

X

j=1

X

FGS

(j);

and the aggregate amount of data retrieved from the entire

disk array is Y FGS

= DX

FGS. It is now straightforward

to compute the loss probabilities P disk

loss

and P net

loss

using the

Large Deviation approximation.

We finally consider group striping. With group striping

the video objects are striped over W � D disks. We refer

to W as the striping width. Localized placement (W = 1)

and full striping (W = D) are special cases of group strip-

ing. With group striping the proxy’s disk array is typically

segmented into striping groups, which consist of W disks

each. Each cached video object is striped within a striping

group. With FGS each block of a video object is segmented

into W equal–sized stripes and each disk in the striping

group stores one of the block’s stripes. The disk model and

stream model for streaming from a proxy with group strip-

ing are straightforward extensions of the models for full

striping.

IV. REPLICATION AND STRIPING OF VIDEO OBJECTS

In this section we study the impact of the placement of

video objects in the proxy’s disk array on the proxy’s per-

formance. We show that replication and striping of popular

objects in the proxy significantly improve the hit rate and

throughput of the proxy as well as the user–perceived me-

dia quality.

Throughout our performance study we assume that the

requests for continuous media objects follow the Zipf dis-

tribution [28]. Specifically, if there areM objects, with ob-

ject 1 being the most popular and object M being the least



7

popular, then the probability that the mth most popular ob-

ject is requested is

q

m

= K=m

�

; m = 1; : : : ;M;

where

K =

1

1 + 1=2

�

+ � � �+ 1=M

�

:

The Zipf distribution, which is characterized by the param-

eter � � 0, corresponds to a highly localized request pat-

tern. It has been observed that the requests for movies in

video rental stores and Video on Demand systems follow

a Zipf distribution with � around one [29]. Furthermore,

studies of web caches have shown that requests for images

and HTML documents are well described by a Zipf distri-

bution with a � of roughly one [30]. We expect therefore

that requests for on–line continuous media objects will also

follow a Zipf distribution.

For the numerical investigation in this paper we use

traces of MPEG encoded video objects. We obtained 7

MPEG–1 traces, which give the number of bits in each en-

coded video frame, from the public domain [31], [32], [33].

The 7 video traces were used to create 10 pseudo traces

each 40,000 frames long. The statistics of the resulting

traces are summarized in Table II.

TABLE II

TRACE STATISTICS

Frames

Trace Peak in Mbit/sec Peak/Mean Std. Dev.

bean 24.9 13.0 2.25

bond 19.3 10.1 2.03

lambs 35.2 18.3 2.94

oz 16.1 8.4 2.39

soccer 13.2 6.9 1.84

star wars 1 20.9 10.9 2.35

star wars 2 25.3 13.2 2.25

star wars 3 23.0 12.0 2.22

star wars 4 16.2 8.4 2.05

terminator 14.0 7.3 1.79

The bean, bond, lambs, soccer, and terminator traces

were created by multiplying the frame sizes of the video

traces from [33] by a constant to bring their average bit

rates to 2 Mbps. The oz trace was created by taking the

first 40,000 frames of the MPEG encoding from [32] and

multiplying the frame sizes by a constant to raise the av-

erage bit rate to 2 Mbps. Finally, the four star wars traces

were obtained by dividing the MPEG encoding from [31]

into four segments of 40,000 frames each and then raising

the average bit rate of the segments to 2 Mbps. Although

the ten pseudo traces are not traces of actual videos objects,

we believe that they reflect the characteristics of MPEG–

2 encoded video objects (highly bursty, long–range scene

dependence, average rate about 2 Mbps). In summary,

we have 10 VBR encoded video objects with N = 40,000

frames and a frame rate of F = 24 frames/sec.

In our performance evaluation we focus on the impact of

the object placement and caching strategies in the proxy’s

disk array on the proxy performance. Specifically, we

investigate the object placement and caching strategies

that utilize the storage capacity and disk bandwidth of the

proxy’s disk array most efficiently. To highlight the impact

of the object placement and caching strategies we do not

include the streaming over the local access network in our

study, that is, we focus on the admission control condition

P

disk

loss

� �. We refer the interested reader to [34], [35], [36],

[37] for studies of continuous media streaming over local

access networks.

To motivate the replication and striping of video objects

in the proxy’s disk array, we first consider a very simple

caching scenario. Suppose that the 10 video objects from

Table II are cached in the proxy’s disk array. Furthermore,

suppose, that each video object is placed on its own disk,

that is, a localized placement strategy with one video object

per disk is employed. We use the disk model and streaming

model of Section III to evaluate this simple caching sce-

nario. We impose the statistical QoS requirement that the

long run average fraction of video information (bits) lost

due to the limited disk bandwidth be less than 10

�6, i.e.

P

disk

loss

� 10

�6. For each video object we use the large de-

viation approximation (7) to calculate the maximum num-

ber of simultaneous streams that can be supported by a sin-

gle disk. The results are reported in Table III. The table

TABLE III

NUMBER OF STREAMS THAT CAN BE SUPPORTED BY A

SINGLE DISK.

Trace Stat. Mux. Peak Allocation

bean 12 2

bond 15 3

lambs 11 1

oz 14 3

soccer 15 4

star wars 1 14 2

star wars 2 14 2

star wars 3 14 2

star wars 4 14 3

terminator 15 4

also gives the maximum number of simultaneous streams



8

that can be supported when peak rate allocation is used.

The video objects have an average rate of 2 Mbps, thus

the stability limit is 19 streams. We observe from the ta-

ble that the statistical admission control criterion allows

for significantly more streams than peak rate allocation.

This substantial multiplexing gain comes at the expense of

small loss probabilities of the order of 10�6. These minis-

cule losses, however, can be effectively hidden by error

concealment techniques and will therefore not be noticed

by the viewers. We also observe from Table III that the

number of simultaneous streams supported by a disk de-

pends on the burstiness of the stored video object. The disk

with the lambs video object, which has the largest peak–

to–mean ratio, supports the smallest number of simultane-

ous streams. On the other hand, the disks storing the soc-

cer and terminator video objects, which have the smallest

peak–to–mean ratio, support the most streams.

Next, we study the total number of streams that the proxy

can typically support, when the requests for the 10 video

objects are distributed according to a Zipf distribution with

� = 1. (We still assume localized placement with one video

object per disk, that is, there is one disk with bean, one disk

with bond, and so on.) For this illustrative example we as-

sume that the popularity of the video objects in Table II de-

creases in alphabetical order, that is, bean is the most pop-

ular object (requested with probability q

1

= 0:341) and

terminator is the least popular object (requested with the

probability q

10

= 0.034). We determinate the typical num-

ber of streams, that the proxy can simultaneously support

with the following procedure. For a given target number

of streams S we generate S requests from the Zipf distribu-

tion. We then determine the number of requests that can be

supported by the 10 disks using the results from Table III.

We repeat the experiment 1000 times, creating 1000 �S re-

quests. If 95 % of these requests can be supported, then

we increment S and repeat the entire procedure. The pro-

cedure continues until the 95 % criterion is violated. We

find with this procedure that the proxy can typically support

39 simultaneous streams. This, however, is only a small

fraction of the disk array’s capacity of 138 simultaneous

streams (found by adding up the ”Stat. Mux” column of

Table III).

The reason for this is twofold. First, due to the limited

disk bandwidth the proxy cannot satisfy many of the re-

quests for the most popular objects. Secondly, much of

the disk bandwidth of the disks housing the less popular

objects is underutilized. This phenomenon is commonly

referred to as hot–spot problem. The hot–spot problem

severely affects the proxy’s performance. The proxy either

has to reject many requests for the most popular objects

(and the clients have to obtain the objects directly form the

origin server) or it has to compromise the stream quality

by admitting more streams than the QoS criterion P disk

loss

�

10

�6 allows. Both of these options, however, are highly

undesirable, as they increase the load on the wide area net-

work and reduce the media quality and level of interactiv-

ity offered to the clients. We are thus motivated to study

strategies that overcome the hot–spot problem by utilizing

the proxy’s storage capacity and disk bandwidth more effi-

ciently. Specifically, we study two strategies:

� Object replication: The proxy stores more than one

copy of the popular video objects. The goal is to

overcome the hot–spot problem by roughly matching

the replication distribution (i.e., the distribution of the

number of copies of the objects) to the request distri-

bution.

� Striping placement: The video objects are striped over

a subset of the disks in the proxy’s disk array. This

allows the proxy to use the aggregate disk bandwidth

of the entire subset to stream the video objects. If the

video objects are striped over the entire disk array (full

striping) then the hot–spot problem vanishes and all

request distributions can be equally accommodated.

Recall that streaming form a proxy with striping place-

ment has been discussed in Section III-C.

We now proceed to discuss object replication in detail.

To simplify the discussion we initially assume localized

placement. (We shall later study object replication in con-

junction with striping). To make the idea of object replica-

tion a little more precise, let D denote the number of disks

in the proxy’s disk array. Let M denote the number of dis-

tinct objects in the proxy’s cache. LetC
m

; m = 1; : : : ;M ,

denote the number of copies of object m in the cache. For

simplicity, we initially assume that each disk stores exactly

one video object, thus
P

M

m=1

C

m

= D. Now suppose that

the request pattern for the M object has a known distribu-

tion (perhaps a Zipf distribution with known parameter �).

To make the replication distribution approximately equal to

the request distribution we replicate the objects according

to the following replication algorithm:

1. C
m

= bq

m

Dc, m = 1; : : : ;M .

2. If C
m

= 0, set C
m

= 1.

3. Calculate C = C

1

+ � � � +C

M

.

4. IfC > D, decrement C
m

for the least popular ob-

ject with C
m

> 1, then for the next least popular ob-

ject with C
m

> 1, and so on, until C = D.

5. If C < D , increment C
m

for the most popular

object, then for the next most popular object, and so

on, until C = D.

Algorithm 1: Non-uniform replication algorithm.



9

This concludes our discussion of object replication for lo-

calized placement. The concept extends to group striping

with striping width W > 1 in a straightforward manner.

With group striping the video objects are replicated on dis-

tinct striping groups.

We have conducted a numerical study of object replica-

tion and striping placement. In the numerical study we con-

sider a proxy with a disk array consisting ofD = 100 disks.

We use the M = 10 video objects from Table II. In the nu-

merical study the requests for the video objects follow a

Zipf distribution with � = 1. We use the replication algo-

rithm (see Algorithm 1) to match the number of copies of

the video objects to the request distribution. We then use

the 95 % criterion to determine the number of simultane-

ous streams that the proxy can typically support. The re-

sults are reported in Table IV for different striping widths

W .

TABLE IV

NUMBER OF SIMULTANEOUS STREAMS THAT THE PROXY

CAN TYPICALLY SUPPORT FOR DIFFERENT REPLICATION

STRATEGIES AND STRIPING WIDTHS.

replication strategy

W uniform request request + bw

1 390 1274 1303

2 622 1044 1045

5 562 633 632

10 380 380 380

The table also gives the number of simultaneous streams

that can typically be supported when the video objects are

uniformly replicated, that is, there are D=M = 10 copies of

each video object in the disk array.

Two points are especially noteworthy. First, we ob-

serve that replicating objects according to the clients’ re-

quest pattern significantly increases the number of streams

that the proxy can typically support. For localized place-

ment (W = 1) the streaming capacity of the proxy is in-

creased roughly threefold by taking the request pattern into

account. The second noteworthy observation is that for

uniform replication the streaming capacity increases as the

striping width increases from one to two. This is because

striping over two disks alleviates the hot–spot problem and

thus allows the proxy to better accommodate the clients’ re-

quests. As the striping width is increased further, however,

the increased seek and rotational overhead of striping be-

comes the dominant effect, reducing the streaming capac-

ity of the proxy. For the proxy with object replication ac-

cording to the request pattern localized placement (W =1)

gives the largest streaming capacity. This is because local-

ized placement minimizes the disk overhead while object

replication according to the request pattern overcomes the

hot–spot problem.

Table IV also gives the number of simultaneous streams

that the proxy can typically support when the object repli-

cation takes the video objects’ popularity as well as band-

width demand into account. This approach is motivated by

the results from Table III, which indicate that disks hous-

ing relatively bursty video objects can support relatively

fewer simultaneous streams. To accommodate a given re-

quest pattern the proxy should therefore house more copies

of objects that consume relatively more disk bandwidth. To

make this idea a little more precise let b
m

; m = 1; : : : ;M ,

denote the maximum number of simultaneous streams of

object m that can be supported by a single disk. (For the

video objects used in the numerical study the b
m

’s are given

in Table III.) To take an object’s bandwidth demand into

account we set

C

m

= bq

m

D

1

b

m

M

M

X

l=1

b

l

c

in Step 1 of Algorithm 1. The factor 1

b

m

M

P

M

l=1

b

l

is larger

(smaller) than one for video objects that require relatively

more (less) bandwidth. We see from Table IV that tak-

ing the objects’ bandwidth demand into consideration in-

creases the proxy performance slightly for localized place-

ment (W = 1). For striping placement this replication strat-

egy does not improve the proxy performance.

We next study the robustness of the replication and strip-

ing strategies of Table IV with respect to changes in the

request pattern. For this purpose we vary the parameter

of the Zipf distribution from which the requests are gen-

erated. Throughout this experiment the video objects are

replicated according to a Zipf distribution with fixed pa-

rameter � = 1 (that is, throughout we use the object repli-

cation used in the previous experiment). In other words,

the request distribution varies while the replication distri-

bution is held fixed. Figure 2 shows the typical number

of simultaneous streams that the proxy can support as a

function of the Zipf parameter of the request distribution.

The figure gives plots for uniform replication and replica-

tion according to Zipf distribution with � = 1 for localized

placement and striping over two disks. We see from the fig-

ure that uniform object replication gives good performance

only when the client request pattern is fairly uniform, that

is, when the Zipf coefficient of the request pattern is small.

For the skewed request distributions that are typical for

client request patterns, uniform replication even with strip-

ing gives poor proxy performance. Striping over two disks



10

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

1400
Uniform (W=1)
Uniform (W=2)
Zipf, zeta=1 (W=1)
Zipf, zeta=1 (W=2)

Zipf parameter of request distribution

N
u
m

b
er

 o
f 

st
re

am
s

Fig. 2. Robustness of replication strategies.

with object replication according to the Zipf distribution

with � = 1 — which can be thought of as an estimate of

the client request pattern — is very robust to changes in

the client request pattern. This strategy can support close

to 1050 streams over a wide range of the Zipf coefficient

of the actual request distribution. Striping placement with

object replication according to an estimate of the client re-

quest pattern thus performs well even when this estimate

differs significantly from the actual request pattern. How-

ever, with a good estimate of the request pattern, localized

placement (W = 1) with object replication according the

estimate outperforms striping placement. In the studied ex-

ample, where the estimate of the request pattern is the Zipf

distribution with � = 1, localized placement with object

replication according to this estimate outperforms striping

placement when the Zipf parameter of the actual request

pattern is between 0.6 and 1.4.

The localized placement strategy has the added advan-

tage that it is very simple and works well for heteroge-

neous disk arrays consisting of disks with different perfor-

mance characteristics. Furthermore, localized placement

avoids the availability problem of striping placement —

if one disk fails then all video files that are striped over

this disk become unavailable to the clients. (With local-

ized placement a given disk stores parts of fewer video ob-

jects therefore disk failure has less impact of availability.)

The availability problem of striping can be mitigated (at the

expense of added complexity) through mirroring of video

blocks or storing of parity information of the video blocks;

see for instance [38] and references therein. Because of its

simplicity and potential for improved performance we fo-

cus on localized placement (W = 1) in the next section on

caching strategies, however, the studied caching strategies

apply equally well to striping placement.

V. CACHING STRATEGIES

In the previous section, which served to motivate object

replication and striping in the proxy, we assumed that (i)

the requests for video objects follow a known distribution,

and (ii) all available objects are cached in the proxy. In

this section we consider a more realistic scenario, where

(i) the client request pattern is unknown, and (ii) only a

subset of the available objects can be cached in the proxy.

We propose and evaluate caching and replacement policies

that either implicitly or explicitly track the client request

pattern. The caching policy determines which object (and

how many copies thereof) to cache while the replacement

policy determines which objects to evict from the cache to

free up storage space for new objects.

A. Implicit Tracking

With implicit tracking the caching policy is invoked

whenever the proxy can not satisfy a client’s streaming re-

quest. This is the case when either (1) the requested ob-

ject is not cached, or (2) the requested object is cached but

the additional stream can not be supported by the cached

copy without violating the QoS requirement P disk

loss

� �.

The basic caching policy is to always try to cache the re-

quested object in case (1). In case (2) we distinguish two

policies: caching with object replication and caching with-

out object replication. Caching with object replication at-

tempts to cache an additional copy of the requested ob-

ject (which is generated internally from the already cached

copy). Caching without object replication, on the other

hand, leaves the cache contents unchanged and the re-

quested object is streamed from the origin server directly

to the client.

If there is not enough free disk space to store the new

object (or additional copy when caching with replication

is employed) we invoke a replacement policy. We con-

sider in this section two simple replacement policies: Least

Recently Used (LRU) and Least Frequently Used (LFU).

With LRU replacement we first check whether we can re-

move one copy of the object that was requested least re-

cently without interrupting ongoing streams. We verify

whether the ongoing streams (if any) of the least recently

requested object can be supported by the remaining copies

(if any). If so, we remove one copy of that object. Other-

wise, we move on to the next to least recently requested ob-

ject and start over. This replacement algorithm terminates

when we have freed up enough space to cache the new ob-

ject or we have considered all cached objects. In the latter

case the attempt to cache the new object fails and the object

is streamed from the origin server directly to the client.



11

With LFU replacement a request counter is maintained

for every object in the cache. When the replacement pol-

icy is invoked we consider first the object with the small-

est request counter value, then the object with the next to

smallest counter value, and so on.

We have conducted a simulation study of these caching

strategies. For the simulation study we generate 1000

video objects from the 10 pseudo traces from Table II in the

following manner. For each of the 1000 video objects we

randomly select one of the 10 pseudo traces and a random

average rate between 1.5 and 2.5 Mbps. For each video ob-

ject we furthermore draw a random starting phase into the

selected pseudo trace and a random lifetime from an expo-

nential distribution with mean L video frames. In the sim-

ulation client requests arrive according to a Poisson pro-

cess. For each client request one of the 1000 video objects

is drawn according to the Zipf distribution with parameter

� . (The request arrival rate is set to 0:95D �

�

b

m

=L, where

D is the number of disks in the proxy and �

b

m

is the aver-

age number of streams that a single disk can support subject

to P disk

loss

� 10

�6; for simplicity we assume that each disk

stores at most one video object.)

Figure 3 shows the hit rate as a function of the number

of disks in the proxy for LRU replacement and LFU re-

placement, both with and without object replication (ignore

the “Explicit tracking” curves for now). The hit rate is de-

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

Explicit tracking
LRURep
LFURep
LRU
LFU

Number of disks

H
it

 R
at

e

Fig. 3. Impact of proxy server resources.

fined as the ratio of the number of requests served out of

the cache (without contacting the origin server) to the total

number of client requests. (The results for the byte hit rate

are similar.)

The Zipf parameter of the client request distribution is

set to � = 1 for this experiment. The average length

of the video objects is set to L = 20,000 frames, corre-

sponding to roughly 14 minutes. We observe from the

plots that caching with object replication clearly outper-

forms caching without replication. Interestingly, we see

from Figure 3 that the replacement policy (LRU or LFU)

has no impact on the proxy performance.

In Figure 4 we plot the hit rate as a function of the aver-

age length of the video objects (which we assume is iden-

tical to the stream lifetimes, i.e., clients receive the en-

tire object). We consider a proxy with 100 disks and a

0 2000 4000 6000 8000 10000
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Explicit tracking
LRURep
LFURep
LRU
LFU

0.7

Average Object Length

H
it

 R
at

e

Fig. 4. Impact of average object length.

Zipf request pattern with � = 1 in this experiment. The

figure reveals that for short–lived streams (< 2000 video

frames, corresponding to roughly 1.3 minutes) LFU re-

placement outperforms LRU replacement. We also see that

the caching policy (caching with or without object repli-

cation) has no impact on the proxy performance. As the

streams become longer lived, however, the replacement

policy looses its impact on the proxy performance and the

caching policy becomes dominant. The reason for this is

that, roughly speaking, it becomes harder to find an ob-

ject copy that can be removed without interrupting ongoing

streams when the streams become longer lived. As a result

both replacement policies tend to pick the same object for

removal. The main conclusion from this experiment is that

object replication is not needed for caching of text and im-

age objects (which can be thought of as having a lifetime of

zero). However, for caching of continuous media objects,

replication is crucial for good proxy performance.

We next investigate how well the caching policies adapt

to different client request patterns. In Figure 5 we plot the

hit rate as a function of the Zipf parameter of the request

distribution. In this experiment we consider a proxy with

100 disks and the average object length is set toL = 20,000

frames. The plots clearly show that caching with object



12

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Explicit tracking
LRURep
LFURep
LRU
LFU

Zipf parameter of request distribution

H
it

 R
at

e

Fig. 5. Impact of object request distribution.

replication outperforms caching without object replication

for Zipf request parameters larger than 0.6.

Note that the four discussed and evaluated caching

strategies (LRU and LFU replacement, both with and with-

out object replication) implicitly track the client request

pattern. Popular objects — once cached — tend to stay in

the cache since it is very likely that their removal would in-

terrupt ongoing streams. In addition, caching with object

replication is able to adapt to highly localized request pat-

terns as it tends to cache more copies of objects that are rel-

atively more popular. A shortcoming of the implicit track-

ing schemes is that they do not directly take the objects’

popularities into consideration. We observed in our simu-

lations that quite frequently, moderately popular objects fill

up the cache and prevent very popular objects from being

cached. We are therefore motivated to explicitly take the

objects’ popularities into consideration.

B. Explicit Tracking

Our explicit tracking approach uses an exponential

weighted moving average to estimate the client request pat-

tern. Based on the estimated request pattern we determine

which objects (and how many copies thereof) to cache in

the proxy.

The estimation procedure works as follows. The proxy

maintains estimates r̂

m

of the request rate (requests per

time slot of length �, we set � = 1 minute in our numerical

work) for all objects m; m = 1; : : : ;M , requested by its

client community. The estimates r̂
m

are updated at the end

of every time slot. Let req
m

denote the number of requests

for object m in the just expired time slot. The estimates r̂
m

are updated according to

r̂

m

 (1� �

m

)r̂

m

+ �

m

req

m

;

where �
m

is an object specific dampening factor. We set

�

m

such that (1 � �

m

)

�

m

= 1=e, where �
m

is the “ag-

ing time” (in multiples of the slot length) of object m. We

propose to set �
m

to a small value for objects that “age” rel-

atively quickly, such as news clips. On the other hand, �
m

should be set to a large value for objects that “age” slowly,

such as on–line lectures, operating instructions or video

clips showcasing products in on–line shopping systems.

Based on the estimated request rates

r̂

m

; m = 1; : : : ;M , we calculate the popularity estimates

q̂

m

as

q̂

m

=

r̂

m

�M

P

M

l=1

r̂

l

:

We use the popularity estimates q̂
m

to decide which ob-

jects (and how many copies thereof) to cache. Our caching

policy strives to match the distribution of the number of

copies of the cached objects to the estimated popularities.

Formally, let ^

C

m

;m = 1; : : : ;M , denote the number of

copies of object m required to match the estimated popu-

larities q̂
m

. Furthermore, let C
m

; m = 1; : : : ;M , denote

the number of copies of object m that are currently in the

cache. For reasons that will become clear shortly, we dis-

tinguish between the number of copiesC
m

in the cache and

the number of copies ^

C

m

suggested by the popularity esti-

mates. The ^

C

m

’s are matched to the q̂
m

’s with the follow-

ing replication algorithm:

1. q̂
m

= r̂

m

�M=

P

M

l=1

r̂

l

; m = 1; : : : ;M .

2. ^

C

m

= bq̂

m

Dc, m = 1; : : : ;M .

3. Calculate ^

C =

^

C

1

+ � � � +

^

C

M

.

4. If ^

C < D , increment ^

C

m

for the most popular

object, then for the next most popular object, and so

on, until ^

C = D.

Algorithm 2: Replication algorithm.

For simplicity we assume in the replication algorithm that

each disk stores exactly one video object. Note that this

replication algorithm differs from the replication algorithm

of Section IV in that it caches only objects with q̂
m

� 1=D.

Based on the ^

C

m

’s obtained with this replication algorithm

we propose a caching policy for explicit tracking.

Similar to the implicit strategies discussed in the previ-

ous section, the caching policy for explicit tracking is in-

voked whenever the proxy can not satisfy a client’s stream-

ing request. This is the case when either (1) the requested

object j� is not cached (i.e., C
j

� = 0), or (2) the requested

object j� is cached but the additional stream can not be sup-

ported by the cached copies C
j

�

� 1 without violating the

QoS requirement P disk

loss

� �. Our caching policy with ex-

plicit tracking works as follows. First, we execute the repli-



13

cation algorithm to determine the current popularity esti-

mates q̂
m

and the matching object replication ^

C

m

; m =

1; : : : ;M . If ^

C

j

�

� C

j

� we do not attempt to cache object

j

� and it is streamed from the origin server directly to the

client. Otherwise, i.e., if ^

C

j

�

> C

j

� , we attempt to store

a copy of object j� in the disk array. In case (1) this is the

first copy of object j�, which is obtained via the wide area

network from the appropriate origin server. In case (2) this

is an additional copy of object j�, which is generated inter-

nally from the other already cached copy. If there is enough

empty disk space in the proxy we place the new/additional

copy of object j� there, otherwise we invoke the replace-

ment policy.

Roughly speaking, the replacement policy tries to re-

move one copy of an object that has more copies in the

cache than are required to match its popularity. Formally,

let R = fj : C

j

>

^

C

j

; 1 � j � M; j 6= j

�

g. If R is

non–empty we pick some j 2 R and check whether we

can remove one copy of object j without interrupting on-

going streams. This amounts to verifying whether the on-

going object–j streams (if any) can be supported by the re-

mainingC
j

�1 copies. If so, we remove one copy of object

j and the replacement algorithm terminates if enough disk

space has been freed up. Otherwise, we remove object j

from consideration by setting R R�fjg and start over.

The replacement algorithm terminates when we have freed

up enough space or end up with an empty R. In the lat-

ter case the attempt to cache object j� fails and object j� is

streamed from the origin server directly to the client.

The results of our simulation study of the explicit track-

ing scheme are given in Figures 3, 4 and 5. The plots

show that the explicit tracking scheme consistently outper-

forms the LRU/LFU based implicit tracking schemes. We

observe from Figure 4 that the gap in peformance widens

as the average object length increases; explicit tracking

achieves roughly 18 % higher hit rates than the implicit

tracking schemes when the average object length exceeds

2000 video frames. Also, we observe from Figure 5 that

explicit tracking outperforms the other schemes for all re-

quests patterns. In sumary, we find that explict tracking is

a very attractive caching strategy for continuous media ob-

jects.

VI. CONCLUSION

We have studied caching strategies for continuous me-

dia objects in this paper. The basis for our study is our

model for VBR video streaming that provides statistical

QoS. We find that for caching of continuous media ob-

jects, conventional replacement policies such as LRU and

LFU achieve only small hit rates. We have proposed novel

caching strategies that either implicitely or exlicitely track

the client request pattern. Our numerical evaluation in-

dicates that these novel caching strategies achieve signif-

icantly higher hit rates for continuous media objects than

LRU or LFU. In our ongoing research we study refine-

ments of the explicit tracking scheme, such as a refined re-

placement algorithm, which tries to remove one copy of

objects with more than one cached copy before consider-

ing objects with only one cached copy.

REFERENCES

[1] G. A. Gibson, J. S. Vitter, and J. Wilkes, “Storage and I/O Issues

in Large–Scale Computing ,” in ACM Workshop on Strategic Di-

rections in Computing Research, ACM Computing Surveys, 1996,

http://www.medg.lcs.mit.edu/doyle/sdcr.

[2] “Streaming media caching white paper,” Technical Report, Ink-

tomi Corporation, 1999, http://www.inktomi.com/-

products/traffic/streaming.html.

[3] S. Sahu, P. Shenoy, and D. Towsley, “Design considerations for

integrated proxy servers,” in Proc. of Int. Workshop on Network

and Operating System Support for Digital Audio and Video, Bask-

ing Ridge, NJ, June 1999.

[4] R. Rejaie, M. Handley, H. Yu, and D. Estrin, “Proxy caching

mechanism for multimedia playback streams in the internet,” in

submitted for review, January 1999.

[5] R. Rejaie, M. Handley, and D. Estrin, “Architectural considera-

tions for playback of quality adaptive video over the internet,” in

submitted for review, November 1998.

[6] R. Rejaie, M. Handley, and D. Estrin, “RAP: An end–to–end rate–

based congestion control mechanism for realtime streams in the

internet,” in Proc. of IEEE INFOCOM, New York, NY, March

1999, pp. 1337–1345.

[7] Y. Wang, Z. Zhang, D. Du, and D. Su, “A network–conscious ap-

proach to end–to–end video delivery over wide area networks us-

ing proxy servers,” in Proc. of IEEE INFOCOM, San Francisco,

CA, April 1998, pp. 660 – 667.

[8] S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching for mul-

timedia streams,” in Proc. of IEEE INFOCOM, New York, NY,

March 1999, pp. 1310 – 1319.

[9] R. Tewari, H.M. Vin, A. Dan, and D. Sitaram, “Resource–based

caching for web servers,” in Proc. of SPIE/ACM Conf. on Multi-

media Computing and Networking, San Jose, 1998.

[10] D.J. Gemmell, H.M. Vin, D.D. Kandlur, P.V. Rangan, and L.A.

Rowe, “Multimedia storage servers: A tutorial,” IEEE Computer,

vol. 28, no. 5, pp. 40–49, May 1995.

[11] J. Gafsi and E.W. Biersack, “Data striping and reliability aspects

in distributed video servers,” Cluster Computing: Networks, Soft-

ware Tools and Applications, February 1999.

[12] B. Ozden, R. Rastogi, and A. Silberschatz, “On the design of

a low–cost video–on–demand storage system,” Multimedia Sys-

tems, vol. 4, no. 1, pp. 40–54, 1996.

[13] P.J. Shenoy and H.M. Vin, “Efficient striping techniques for mul-

timedia file servers,” in Proc. of Int. Workshop on Network and

Operating System Support for Digital Audio and Video, St. Louis,

Missouri, May 1997, pp. 25–36.

[14] S. Sahu, Z.L. Zhang, J. Kurose, and D. Towsley, “On the effi-

cient retrieval of VBR video in a multimedia server,” in Proc. of

IEEE Int. Conf. on Multimedia Computing and Systems, Ottawa,

Canada, June 1997.

[15] Y. Birk, “Random RAIDs with selective exploitation of redun-

dancy for high performance video servers,” in Proc. of Int. Work-



14

shop on Network and Operating System Support for Digital Audio

and Video, St. Louis, Missouri, May 1997.

[16] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming

protocol (RTSP),” Request for Comments (Proposed Standard)

2326, Internet Engineering Task Force,, Apr. 1998.

[17] I. Dalgic and F. A. Tobagi, “Characterization of quality and traffic

for various video encoding schemes and various encoder control

schemes,” Tech. Rep. CSL–TR–96–701, Stanford University, De-

partments of Electrical Engineering and Computer Science, Aug.

1996.

[18] W. S. Tan, N. Duong, and J. Princen, “A comparison study of

variable bit rate versus fixed bit rate video transmission,” in Aus-

tralian Broadband Switching and Services Symposium, 1991, pp.

134–141.

[19] A. L. N. Reddy and J. C. Wyllie, “I/O issues in a multimedia sys-

tem,” Computer, vol. 27, no. 3, pp. 69–74, Mar. 1994.

[20] Seagate

Disk Detailed Specifications, “Disk model medalist 13032,”

http://www.seagate.com/cda/disk/mark/detail/0,1250,152,00.shtml,

1999.

[21] P. J. Shenoy and M. Vin, “Efficient striping techniques for multi-

media file servers,” in Proceedings of NOSSDAV ’97, May 1997,

pp. 25–36.

[22] M. Reisslein and K. W. Ross, “Call admission for prerecorded

sources with packet loss,” IEEE Journal on Selected Areas in

Communications, vol. 15, no. 6, pp. 1167–1180, Aug. 1997.

[23] J. Roberts, U. Mocci, and J. Virtamo (Eds.), Broadband Network

Traffic: Performance Evaluation and Design of Broadband Mul-

tiservice Networks, Final Report of Action COST 242, (Lecture

Notes in Computer Science, Vol. 1155), Springer Verlag, 1996.

[24] J. Gafsi and E. W. Biersack, “Data striping and reliability as-

pects in distributed video servers,” in Cluster Computing: Net-

works, Software Tools, and Applications, 1998, Available at

http://www.eurecom.fr/˜erbi.

[25] B. Özden, R. Rastogi, and A. Silberschatz, “Disk striping in video

server environments,” in Proceedings of IEEE Conference on

Multimedia Systems, Hiroshima, Japan, June 1996, pp. 580–589.

[26] D. J. Gemmel, H. M. Vin, D. D. Kandalur, P. V. Rangan, and L. A.

Rowe, “Multimedia storage servers: A tutorial,” IEEE MultiMe-

dia, vol. 28, no. 5, pp. 40–49, May 1995.

[27] M. Reisslein, K.W. Ross, and S. Shrestha, “Striping for interactive

video: Is it worth it?,” in Proc. of IEEE Int. Conf. on Multimedia

Computing and Systems, Florence, Italy, June 1999, pp. II 635–

640.

[28] G.K. Zipf, Human Behavior and Principle of Least Effort: An In-

troduction to Human Ecology, Addison–Wesley, Cambridge, MA,

1949.

[29] A. Dan, D. Sitaram, and P Shahabuddin, “Dynamic batching poli-

cies for an on–demand video server,” Multimedia Systems, vol. 4,

no. 3, pp. 112–121, June 1996.

[30] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web

caching and zipf–like distributions: Evidence and implications,”

in Proc. of IEEE INFOCOM, New York, NY, March 1999, pp.

126–134.

[31] M. W. Garret, Contributions toward Real-Time Services on

Packet Networks, Ph.D. thesis, Columbia University, May 1993,

ftp address and directory of the used video trace: bellcore.com

/pub/vbr.video.trace/.

[32] M. Krunz, R. Sass, and H. Hughes, “Statistical characteristics and

multiplexing of MPEG streams,” in Proc. of IEEE INFOCOM,

April 1995, pp. 455–462.

[33] O. Rose, “Statistical properties of MPEG video traffic and their

impact on traffic modeling in ATM systems,” Technical Report

No. 101, University of Wuerzburg, Germany, February 1995,

ftp://ftp–info3.informatik.uni–wuerzburg.de/pub/MPEG.

[34] M. Reisslein and K. W. Ross, “High–performance prefetching

protocols for VBR prerecorded video,” IEEE Network, vol. 12,

no. 6, pp. 46–55, Nov/Dec 1998.

[35] J. Salehi, Z. Zhang, J. Kurose, and D. Towsley, “Supporting stored

video: Reducing rate variability and end–to–end resource require-

ments through optimal smoothing,” IEEE/ACM Transactions on

Networking, vol. 6, no. 4, pp. 397–410, Aug. 1998.

[36] M. Grossglauser, S. Keshav, and D. Tse, “RCBR: A simple and

efficient service for multiple time–scale traffic,” in Proceedings

of ACM SIGCOMM, Aug. 1995, pp. 219–230.

[37] W. Feng and J. Rexford, “A comparison of bandwidth smooth-

ing techiniques for the transmission of prerecorded compressed

video,” in Proceedings of IEEE Infocom, Kobe, Japan, Apr. 1997,

pp. 58–67.

[38] J. Gafsi and E.W. Biersack, “Performance and reliability study for

distributed video servers: Mirroring or parity,” in Proc. of IEEE

Int. Conf. on Multimedia Computing and Systems, June 1999, pp.

II 628–634.


