
Join{the{Shortest{Queue Prefetching for VBR Video on

Demand

1

Martin Reisslein

Department of Systems Engineering

University of Pennsylvania

Philadelphia, PA 19104

reisslei@seas.upenn.edu

http://www.seas.upenn.edu/~reisslei

Keith W. Ross

Department of Systems Engineering

University of Pennsylvania

Philadelphia, PA 19104

ross@seas.upenn.edu

http://www.seas.upenn.edu/~ross

January 1997

1

This work has been supported partially by NSF grant NCR93-04601. A shorter version of this

paper appeared in the Proceedings of the 1997 IEEE International Conference on Networking Protocols,

Atlanta, GA, October 1997.

Abstract

We present a high-performance prefetching protocol for the delivery of prerecorded VBR video

from a server across a packet-switched network to a large number of clients. Not only does the

protocol give constant perceptual quality and almost 100% link utilization, but it also allows

for immediate commencement of the video upon user request and near instantaneous response

to pause/resume and temporal jumps. The protocol requires (1) that each client have a small

amount of memory dedicated to the application (2) that there is one bottleneck shared link

between the server and the clients. The protocol is based on the observation that there are

frequent periods of time during which the shared link's bandwidth is under utilized. During

these periods the server can prefetch frames from any of the ongoing videos and send the frames

to the bu�ers in the appropriate clients. The server chooses prefetched frames according to

a join{the{shortest{queue (JSQ) policy. We present simulation results of our prefetch policy

that are based on MPEG encoded traces. Our simulations show that JSQ prefetching performs

favorably as compared with the smoothing{based protocols in the existing literature.

1 Introduction

We present a high-performance prefetching protocol for the delivery of video on demand (VoD)

from a server across a packet-switched network to a large number of clients. The protocol

assumes that the videos resident on the video server are variable-bit-rate (VBR) encoded. Not

only does this protocol give constant perceptual quality and almost 100% link utilization, but it

also allows for immediate commencement of the video upon user request and near instantaneous

response to interactive actions (pause/resume and temporal jumps).

To achieve this high performance our protocol has two requirements. First we require all

of the clients to have a small amount of memory dedicated to the VoD application. Second,

as shown in Figure 1, we require that there be at most one bottleneck shared link between

the video server and the clients. If the clients are connected to an ADSL residential access

network, then this second requirement can be achieved by attaching the video server directly

to the ADSL central o�ce; in this case the shared link is the link from the server to the ADSL

central o�ce. If the clients are connected to cable, then the second requirement can be achieved

by attaching the video server directly to the cable headend.

The user's client could be a television with a set-top box capable of performing bu�ering

and decoding, or it could be a household PC. The video server could be a cache containing the

week's most popular videos. A central repository could multicast the videos to this and other

caches over the Internet using the traditional best{e�ort service [4].

Our protocols explicitly assume that the videos are VBR encoded with high peak{to{mean

ratios. The motivation for our approach is that, for the same perceived video quality, Constant

Bit Rate (CBR) encoding produces an output rate signi�cantly higher than the average rate

of the corresponding VBR encoding for action movies [3]. CBR tra�c allows for nearly 100%

link utilization; the number of connections that can be carried over a link of given capacity

is roughly the link capacity divided by the CBR rate (assuming homogeneous connections).

The number of VBR connections that can be transmitted simultaneously is the achievable

link utilization multiplied by the link capacity divided by the average rate of the VBR video

stream. Therefore schemes for transmitting VBR encoded video that achieve high average link

utilizations while keeping losses at a negligible level, can allow for signi�cantly more video

connections than does CBR video.

Our protocol achieves the constant perceptual quality, responsiveness to user interactivity,

and high link utilizations by exploiting two special properties of the prerecorded video: (1) for

1

each video, the tra�c in each video frame is known before the video session begins; (2) while

the video is being played, some of the video can be prefetched into the client memory. It is this

second property { the ability to prefetch a portion of any video { that is particularly central

to our high-performance protocol.

Our protocol is based on the observation that, due to the VBR nature of the multiplexed

tra�c, there will be frequent periods of time during which the shared link's bandwidth is under

utilized. During these periods the server can prefetch video frames from any of the ongoing

videos and send the prefetched frames to the bu�ers in the appropriate clients. With this

prefetching, many of the clients will typically have some prefetched reserve in their bu�ers.

Our protocol also speci�es the policy for how the server selects the prefetched frames. This

policy is the join-the-shortest-queue (JSQ) policy, which can be roughly described as follows:

within each frame time the server repeatedly selects frames from the connections that have the

smallest number of prefetched frames in their client bu�ers. The JSQ policy creates a bu�er

pooling e�ect so that the system behaves as if the individual client bu�ers are aggregated into

one large bu�er which is shared by all the clients. Our empirical work with public-domain

traces indicates that prefetching combined with the JSQ policy gives dramatic reductions in

packet loss. In particular, if each client dedicates a small amount of bu�er capacity to the

VoD application, this scheme can multiplex a large number of connections over the shared link

and have negligible playback starvation. In this paper we also examine several re�nements

and variations of our JSQ prefetching policy, and we develop schemes for selectively discarding

frames for MPEG encoded video when playback starvation is unavoidable.

With JSQ prefetching, through bu�er pooling, the connections collaborate in order to mini-

mize the overall packet loss. This collaboration among the connections contributes signi�cantly

to the protocol's outstanding performance. We also present numerical results which show that

Optimal Smoothing, a non-collaborative prefetching policy, can have packet loss that is several

orders of magnitude higher than that of JSQ prefetching for a wide range of bu�er sizes.

This paper is organized as follows. In the following subsection we give a brief literature

review of tra�c management schemes for prerecorded VBR-encoded video. In Section 2 we

give a description of our VoD architecture and introduce prefetching. In Section 3 we present

our JSQ prefetch policy; Section 3 includes numerical results for public domain traces and a

discussion of e�cient implementation of the JSQ policy. In Section 4 we show how our VoD

protocol allows for user interactivity with minimal delays; numerical results for interactive

actions are presented. In Section 5 we compare the performance of JSQ prefetching with that

2

of Optimal Smoothing [31, 37]. In Section 6 we explore a variation of our JSQ policy { the

packet-based JSQ prefetch policy. In Section 7 we examine MPEG compression and propose

several policies for selective discard when loss is unavoidable. In Section 8 we discuss how JSQ

prefetching can be employed in residential broadband access networks using cable or ADSL.

In Section 9 we conclude and discuss future work.

1.1 Literature Review

Work in the area of tra�c management of prerecorded video falls into two classes: tra�c

management issues in the disk subsystem of the video server (e.g., see [12] [13] [26] [34] [36]) and

tra�c management issues in the network. Although the ideas of this paper may be useful for

disk subsystem design, our focus is on management of prerecorded VBR tra�c in the network.

The papers on the management of prerecorded VBR tra�c in the network fall into three

categories: deterministic; deterministic with smoothing and/or prefetching; and probabilistic.

The principal performance metrics for all of these schemes are average link utilization, initial

delay, delays after interactive actions, and client bu�er size.

The deterministic schemes send into the network the original VBR tra�c, and admission

control ensures that the delays never exceed a prespeci�ed limit [35] [19] [16] [31] [23]. For

highly variable VBR tra�c, these deterministic schemes typically require large initial delays

to achieve moderate link utilizations [23].

The deterministic schemes with prefetching and smoothing do not send the original VBR

tra�c into the network, but instead send some smoothed version of it. Admission control can

then be based on the peak-rate of the smoothed trace. CRTT [22] is the extreme case of such

a scheme, whereby the server transmits packets into a reserved CBR connection at the average

rate of the video; such CBR connections are available from ATM and are being proposed for

the Internet [32]. Although CRTT produces close to 100% link utilizations, it has potentially

a long initial delay and potentially long delays after temporal jumps. Several independent

research teams have proposed schemes whereby the server transmits the video at di�erent

constant rates over di�erent intervals; these schemes vary in how the rates and intervals are

chosen [14] [31] [24] [8] [9]. As compared with CRTT, these schemes trade o� link utilizations

and simplicity for lower initial delay and lower interactivity delays. In summary, none of the

deterministic schemes (with or without prefetching and smoothing) allows for both high link

utilizations and consistently high responsiveness (less than a few seconds) to interactivity.

For the probabilistic approaches, [28] considers sending the original VBR encoded video

3

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

video server

bottleneck link

R packets/sec

&%

'$

�

�@

@

switch

�

�

�

�

�

�

�

H

H

H

H

H

H

H

client

client

r

r

r

r

r

r

Figure 1: Prerecorded videos multiplexed over a link of capacity R packets/sec.

into an unbu�ered multiplexer. This scheme allows for responsive interactivity, but introduces

packet loss whenever the aggregate transmission rate exceeds the link rate. In [28] we developed

an admission control procedure based on a large-deviations approximation. In [14] and [37]

related ideas are explored whereby the original tra�c is �rst smoothed before it is statistically

multiplexed at an unbu�ered link; the statistically multiplexing of the smoothed tra�c can

substantially increase link utilization at the expense of small packet loss probabilities. All of

these hybrid schemes perform non-collaborative prefetching; because JSQ is collaborative, it

can have signi�cantly better performance than these hybrid schemes.

2 Architecture Description

Figure 1 illustrates our basic model for VoD. The video server contains a large number of

videos in mass storage. For notational simplicity, assume that each video consists of N frames

and has a frame rate of F frames/sec. The videos are VBR encoded using MPEG 1, MPEG

2 or some other video compression algorithm. Let J denote the number of video connections

in progress. Although some of the connections might be transmitting the same video, the

phases (i.e., the start times) are typically di�erent. The server packetizes the frames of the

ongoing connections and then statistically multiplexes and transmits the packets into its link;

for simplicity, we assume throughout that the packets are of �xed length. Let x

n

(j) denote the

number of packets in the nth frame of the jth connection. Because the videos are prerecorded,

4

(x

1

(j); x

2

(j); : : : ; x

N

(j)) is fully known at connection establishment.

When a client requests a speci�c video, the server makes an admission control decision by

deciding whether or not to grant the request. If it grants the request, a connection is established

and the server immediately begins to transmit the connection's packets into the network. The

connection's packets are transmitted in a �xed, predetermined order. When packets arrive at

the client, they are placed in the client's prefetch bu�er. The video is displayed on the user's

monitor as soon as a few frames have arrived at the client.

Under normal circumstances, every 1=F seconds the client removes a frame from the

prefetch bu�er, decompresses it, and displays it. If at one of these epochs there are no complete

frames in its prefetch bu�er, the client loses the current frame; the client will try to conceal

the loss by, for instance, redisplaying the previous frame. At the subsequent epoch the client

will attempt to display the next frame of the video.

We denote R (in packets/sec) for the maximum transmission rate of the server. We denote

R(j) for the maximum reception rate of the jth client. Although our protocol allows for pause

and temporal jumps, we will initially exclude these interactive features in order to simplify the

discussion; thus N=F seconds elapse from when the user begins to watch the video until when

the video ends. We shall also initially assume that all prefetch bu�ers are in�nite and that

R(j) � R for j = 1; : : : ; J .

To make these ideas a little more precise, we divide time into slots of length 1=F . Let p

l

(j)

be the number of frames in the prefetch bu�er for connection j at the beginning of slot l. Let

�

l

(j) be the number of frames of connection j that arrive to the prefetch bu�er during the the

lth slot. At the end of each slot, one frame is removed from each prefetch bu�er that has one

or more frames. Thus

p

l+1

(j) = [p

l

(j) + �

l

(j)� 1]

+

; (1)

where [x]

+

= max(x; 0). Denote �

l

(j) for the frame number of connection j that is supposed

to be removed at the end of slot l; thus �

l+1

(j) = �

l

(j) + 1.

During each slot of length 1=F seconds the server must decide which frames to transmit

from the J ongoing videos. The prefetch policy is the rule that determines which frames are

transmitted in each slot. The maximum number of packets that can be transmitted in a slot

is R=F (which for simplicity we assume to be an integer).

For each ongoing connection j the server keeps track of the the prefetch bu�er contents

p

l

(j); this can be done through the recursion (1) without communicating with the client.

5

Initially, we require the server to skip the transmission of the entire frame �

l

(j) whenever

p

l

(j) + �

l

(j) = 0. Thus, the server does not transmit a frame that will not meet its deadline

at the client.

Before de�ning our prefetch policy, it is useful to introduce some more notation. Let b

l

(j)

be the number of packets in the prefetch bu�er for connection j at the beginning of slot l. Let

�

0

l

(j) denote the number of packets of connection j that arrive to the prefetch bu�er during

the the lth slot. These de�nitions imply

b

l+1

(j) = [b

l

(j) + �

0

l

(j)� x

�

l

(j)

(j)]

+

: (2)

3 The JSQ Prefetch Policy

Our Join-the-Shortest-Queue (JSQ) prefetch policy attempts to balance the number of frames

across all of the prefetch bu�ers. In describing this policy, we drop the subscript l from all

notations. At the beginning of each slot the server determines the j

�

with the smallest p(j),

transmits one frame from connection j

�

and increments p(j

�

). Within this same slot the server

repeats this procedure over and over again, at each iteration �nding a new j

�

that minimizes

p(j), transmitting a frame from connection j

�

and incrementing p(j

�

).

Due to the �nite transmission rate of the server, at some point the server must stop trans-

mitting frames within the slot. To this end, let z be a variable that keeps track of the total

number of packets sent within the slot; z is reinitialized to zero at the beginning of every slot.

The stopping rule works as follows. Before transmitting a frame from connection j

�

we check

to see if

z + x

�(j

�

)

(j

�

) � R=F; (3)

where �(j

�

) is the frame of connection j

�

that is being considered for transmission. If this

condition holds, then we transmit the frame and update z; otherwise, we do not transmit the

frame, set p(j) = [p(j)�1]

+

for j = 1; : : : ; J and recommence the procedure for the subsequent

slot. This is our basic stopping rule; later we shall discuss a slightly more complicated stopping

rule.

With prefetching, it is possible that all of a connection's frames have been transmitted but

not all of its frames have been displayed. When a connection reaches this state, we no longer

consider it in the above JSQ prefetching policy. From the server's perspective, it is as if the

connection has been terminated.

6

3.1 Re�nements of the JSQ policy

We now discuss a few important re�nements of the JSQ policy. First, we introduce a re�ned

stopping rule. Recall that during each slot the server transmits a sequence of frames until

condition (3) is violated; once (3) is violated, the server does not transmit any more frames in

the slot. An alternative stopping rule is to try to transmit more frames in the slot by removing

from consideration the connection that violates (3) and �nding a new j

�

that minimizes p(j).

If the condition (3) holds with the frame from the new connection j

�

, we transmit the frame,

update p(j

�

), and continue the procedure of transmitting frames from the connections that

minimize the p(j)'s. Whenever a frame violates condition (3), we skip the corresponding

connection and �nd a new j

�

. When we have skipped over all of the connections, we set

p(j) = [p(j)� 1]

+

for j = 1; : : : ; J and move on to the next slot. This is our re�ned stopping

rule. To reduce the online computational e�ort we can also, of course, consider rules which

fall between the basic and re�ned stopping rules. For example we could use a rule which stops

when condition (3) has been violated K times where 1 < K < J .

The next re�nement of the JSQ policy limits the number of packets an ongoing connection

may have in its client's prefetch bu�er. This important re�nement is useful when the client for

connection j, j = 1; : : : ; J , has �nite bu�er capacity B(j). This re�nement works as follows.

Suppose that the server is considering transmitting frame �(j

�

) from connection j

�

. Let b(j

�

)

be the current number of packets in the prefetch bu�er for connection j

�

. It transmits this

frame in the current slot only if condition (3) and the condition

b(j

�

) + x

�(j

�

)

(j

�

) � B(j) (4)

are satis�ed. Condition (4) ensures that the server does not overow the prefetch bu�er for

connection j

�

. With this additional condition, we extend the de�nitions of the stopping rules

in the obvious way.

The �nal re�nement we consider in this subsection is applicable when R(j) < R for at least

one connection j. This situation occurs when the client's access link has limited bandwidth

(as with ADSL) or when the the client has a limited packet processing capability. In this

case, within each slot the server would keep track of z(j), the total number of packets from

connection j sent in the slot. Suppose the server is considering transmitting the frame �(j

�

)

from connections j

�

. It transmits the frame in the current slot if and only if conditions (3),

(4) and

z(j

�

) + x

�(j

�

)

(j

�

) � R(j

�

)=F (5)

7

are satis�ed. Condition (5) ensures that the server does not violate the reception constraint for

connection j

�

. Once again, we can extend the de�nitions of the stopping rules in the obvious

manner.

We also mention that if the switch has bu�er capacity for each connection, then it may

be possible to ignore (5) even when R(j) < R. The idea is to store the tra�c exceeding the

capacity of the jth access link in the output bu�er of connection j, and to feed the access

link at rate R(j). An upper bound on the switch bu�er capacity necessary for connection j is

[R�R(j)]B(j)=R. This expression is based on the worst case scenario that the prefetch policy

dedicates the entire link capacity R temporarily to connection j in order to �ll its prefetch

bu�er completely. This scenario occurs if connection j starts with empty prefetch bu�er while

all other connections have full prefetch bu�ers.

To simplify the discussion, for the remainder of this paper we shall assume that either (1)

R(j) � R for all j = 1; : : : ; J , or (2) the switch has su�cient bu�er capacity so that condition

(5) can be ignored.

3.2 System Dynamics and Pooling

We now crudely describe the dynamics of the prefetch bu�er contents. Let us make the as-

sumption that whenever all N frames of a connection are displayed, the same user immediately

requests a new connection; thus, with this assumption there are always J videos in progress.

Let us make the realistic assumption that

J

X

j=1

x

avg

(j) < R=F; (6)

where x

avg

(j) is the average number of packets in a frame in the jth connection. The condition

(6) says that the long-run average aggregate consumption rate of the ongoing videos is less

than the maximum server supply rate.

The JSQ prefetch policy will make most of the p(j)'s nearly equal to each other. Moreover,

because of (6) there will be a general tendency for each of the p(j)'s to increase. In other

words, there is typically a \pack" of p(j)'s with near equal values, with each p(j) in the pack

drifting towards B(j). A p(j) can separate itself from the pack if it hits B(j) while the pack

continues to gain higher occupancies. It will also break from the pack if the corresponding

connection reaches the state of having all its frames transmitted. In this case, the p(j) will

descend by one in each slot until it hits zero; when it hits zero, p(j) will quickly return to the

pack.

8

Trace Mean Peak/ Avg. Frame Size % of info

bits Mean I P B I P B

lambs 7,312 18.4 38,025 7,436 3,424 43 25 32

bond 24,308 10.1 83,293 41,427 10,513 29 42 29

terminator 10,904 7.3 37,387 14,120 6,387 29 32 39

mr.bean 17,647 13.0 75,146 18,275 10,215 35 26 39

Table 1: Statistics of MPEG-1 traces.

One important feature of the JSQ prefetching policy is that it creates a pooling e�ect,

namely, the individual bu�ers act as a large collected bu�er of capacity B(1) + � � � + B(J).

To see this, suppose that a large number of connections start simultaneously (therefore having

few frames in their prefetch bu�ers) and the remaining connections have a large number of

frames in their prefetch bu�ers. Also assume that the aggregate consumption rate temporarily

exceeds R packets/sec. Then if the consumption rate across the connections that have just

started is less than R, the JSQ policy will prevent frame loss as long as the high aggregate

consumption rate does not persist for too long. This is because the prefetch policy will feed

the connections that have just started until their prefetch bu�ers catch up with rest of the

pack. Thus, the likelihood of cell loss in the near future typically depends on the p(j)'s only

through the pooled bu�er content p(1) + p(2) + � � �+ p(J).

3.3 Experimental Results

In this subsection we present the results of a simulation study for the JSQ prefetch policy

described in the previous section. Throughout we use the re�ned stopping rule discussed in

Section 3.1. Our simulation study makes use of MPEG 1 encodings of the four movies in

Table 1. The associated traces, obtained from the public domain [29], give the number of bits

in each frame. (We are aware that these are low resolution traces and some critical frames

are dropped; however, the traces are extremely bursty. We have obtained similar results, not

reported here, for Star Wars and Oz.) Each of the movies was compressed with the GOP

pattern IBBPBBPBBPBB at a frame rate of F = 24 frames/sec. Each of the traces has 40,000

frames, corresponding to about 28 minutes. The mean number of bits per frame and the peak-

to{mean ratio are given in Table 1. Table 1 also gives the average size of I, P and B frames and

the percentage of encoding information carried in I, P and B frames. It can be argued that

the average rate in bits/sec is lower than what we would expect for digital compressed video

9

(e.g., MPEG-2 video); for this reason, we have chosen a relatively small server transmission

rate of 45 Mbps. We expect VoD systems in the future to have videos with larger average rates

and a proportionally larger server transmission rate. In this scaling, the number of videos that

can be multiplexed will be approximately constant. We furthermore assume that each packet

consists of 512 bytes of payload and 40 bytes of overhead; therefore, R = 81; 521 packets/sec.

We de�ne the link utilization as the average number of packets per second, summed over all

connections in progress, divided by R. In our experiments we use various mixes of the the four

movies. Each of the mixes has a di�erent link utilization. Our 90% link utilization consists

of 52 lambs connections, 16 bond connections, 35 terminator connections, and 22 mr.bean

connections. Our 95% link utilization consists of 55 lambs connections, 17 bond connections,

37 terminator connections, and 23 mr.bean connections. With these numbers, each of the four

movies accounts for roughly one fourth of the link load.

In each realization of our simulation, we generate a random starting frame �(j) for each of

the J ongoing connections. The value �(j) is the frame that is removed from the jth prefetch

bu�er at the end of slot 1. The �(j)'s are independent and uniformly distributed over [1; N].

All connections start with empty prefetch bu�ers at the beginning of slot 1. When the Nth

frame of a video is removed from a prefetch bu�er, we assume that the corresponding user

immediately requests to see the entire movie again. Thus, there are always J connections in

progress.

In Figure 2 we set the bu�er capacity of each client to 1 Mbyte and the link utilization to

95%. The �gure shows the prefetch bu�er contents in bytes for one of the lamb's connections

over 120,000 simulated frame periods; the initial starting random phase for this connection is

� = 2; 689. At l = 36; 079 frame periods all of the movie's frames have been transmitted to

the prefetch bu�er; this is why the bu�er content drops to zero at l = 37; 311, when the movie

ends and starts over for the user. Note that when the movie restarts at l = 37; 311 the JSQ

prefetch policy �lls the prefetch bu�er for the movie in just a few frame periods. Also note

that the bu�er contents typically hug the 1 Mbyte bu�er limit. Note that the bu�er occupancy

is nearly periodic, with period equal to the length of the movies (40,000 frames).

In Figure 3 we plot the 90 % con�dence intervals of P

time

loss

for the prefetch bu�er sizes

ranging from 2 KBytes to 256 KBytes. P

time

loss

is the long{run fraction of frame periods for

which loss occurs for at least one of the J ongoing videos; see [28] for more details. Each of

the con�dence intervals is based on 1000 replications. On this �gure P

time

loss

is plotted for both

95% and 90% utilizations.

10

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

0 20000 40000 60000 80000 100000 120000

bu
ffe

r
oc

cu
pa

nc
y

b(
j)

in
 b

its

l

Figure 2: Prefetch bu�er contents in a 1 Mbyte bu�er in bits for a lamb's connection.

11

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1 10 100 1000

P
-lo

ss
-t

im
e

prefetch buffer B(j) in KByte

90 % utilization
95 % utilization

Figure 3: Con�dence intervals of P

time

loss

for link utilizations of 90 % and 95 %. P

time

loss

is the

fraction of frame times during which loss occurs.

Figure 3 shows the dramatic improvement in performance that comes from prefetching

and the JSQ policy. Without any prefetching we have P

time

loss

= 0:29 for 95 % utilization.

By increasing the capacity only to 256 KBytes, the loss probability is reduced to P

time

loss

�

4:7 � 10

�6

. By further increasing the bu�er to 512 KBytes, no loss was observed for any of

8000 replications, corresponding to 3:2� 10

8

frame periods! Similarly, for 90 % utilization we

did not observe any loss for 1000 replications, corresponding to 4 � 10

7

frame periods, for 64

KByte prefetch bu�er. Whenever loss occurred, the bu�er contents at each of the clients was

nearly zero, con�rming the existence of a strong pooling e�ect. (The existence of pooling is

further justi�ed by the analytical work of Reiman [27]).

Figure 3 demonstrates that with a small prefetch bu�er at each client the JSQ prefetching

policy will allow for almost 100% utilization with negligible packet loss. Also note that the

scheme allows for near immediate playback of the video upon user request. It can be argued

12

that for MPEG-2 traces with an order of magnitude larger average rate, the prefetch bu�er will

have to be an order of magnitude larger to achieve the same loss probabilities. But even with

this order of magnitude increase, only 5 Mbytes of prefetch bu�er is required to give negligible

packet loss.

3.4 E�cient Implementation of the JSQ Prefetching Policy

In this subsection we describe a list based approach that allows for e�cient implementation

of the JSQ prefetch policy. We found in our experiments that it takes only 2.5 msec to

execute the administrative steps necessary in each frame period for 132 video connections on

a SPARCstation 2. We applied the re�ned stopping rule in these experiments and took also

the bu�er capacity test (4) into account.

The underlying data structure in our implementation is a singly linked list. Each list

element is a record storing the data pertaining to an active connection; in particular, we

keep track of �(j); p(j) and b(j). We also keep track of an index indicating which video is

being transmitted. Finally, each record contains a pointer to the next list element. The list

is maintained such that the index p(j) is ascending as one moves down the list, that is, the

connection with the smallest number of prefetched frames is on the top. In each frame period

we start by considering the connections at the top of the list. We �rst check whether conditions

(3) and (4) (and also (5) when applicable) are satis�ed. If theses conditions are satis�ed, we

transmit the frame, increment p(j) and adjust b(j). Next, we check whether the successor in

the list has a smaller p(j). If not, we try to prefetch the next frame. This is repeated until p(j)

is larger than that of the next connection in the list. At that point we have to rearrange the

pointer references in order to maintain the order of the list. After the order has been restored

we start over, trying to prefetch for the connection on top of the list. If we �nd at any point

that (3) or (4) (or (5) when applicable) is violated, we skip the connection and try to prefetch

for the successor in the list, that is, we prefetch no longer for the connection on top of the list,

but move down the list as we skip over connections.

4 Interactivity

In this section we adapt the JSQ prefetch policy to account for pauses as well as forward and

backward temporal jumps. Our protocol allows these interactive actions to be performed with

minimal delay. We assume that whenever a user invokes a interactive action, the client sends

13

a message indicating the interactive action to the server.

Suppose that the user for connection j pauses the movie. Upon receiving noti�cation of

the action, the server can simply remove connection j from consideration until it receives a

resume message from the client; while the connection is in the paused state, its prefetch bu�er

remains at a constant level. A slightly more complex policy would be to �ll the corresponding

bu�er with frames once all the other prefetch bu�ers are full or reach a prespeci�ed level.

Suppose that the user for connection j makes a temporal jump of � frames into the future.

If � < p(j), we discard � frames from the head of the prefetch bu�er and set p(j) = p(j)� �.

If � � p(j) we set p(j) = 0 and discard all the frames in the prefetch bu�er. Finally, suppose

that the user for connection j makes a backward temporal jump. In this case we set p(j) = 0

and discard all frames in the prefetch bu�er.

In terms of frame loss, pauses actually improve performance because the movies which

remain active have more bandwidth to share. Frequent temporal jumps, however, can degrade

performance since prefetch bu�ers would be frequently set to zero. Whenever we set a prefetch

bu�er to zero, the pool loses some of its total savings, thereby increasing the likelihood of loss.

We now present some numerical results for interactive actions. We consider only forward

and backward temporal jumps and ignore pauses as pauses can only improve performance; we

furthermore assume that � > p(j) for all forward temporal jumps. Our results give therefore

a conservative estimate of the actual performance. In our simulation, we assume that each

user performs temporal jumps repeatedly, with the time between two successive jumps being

exponentially distributed with constant rate. When a user performs such an action, her prefetch

bu�er is set to zero. Figure 4 shows the 90 % con�dence interval for P

time

loss

for 11, 22, 32 and

43 temporal jumps per hour (on average). This experiment was conducted with B(j) = 256

KBytes and a 95 % link utilization. As we would expect, loss probabilities increase as the rate

of temporal jumps increase; however, the increase is not signi�cant for a sensible number of

temporal jumps.

5 Comparison between JSQ Prefetching and Optimal Smooth-

ing

As mentioned in the Introduction, there are other protocols in the literature for the transport

of VBR-encoded video which exploit prefetching and client bu�ers [14] [22] [24] [31] [8] [9]. In

all of these other schemes, the transmission schedule for a given video is determined o�-line

14

1e-07

1e-06

1e-05

0.0001

0.001

0 5 10 15 20 25 30 35 40 45

P
-lo

ss
-t

im
e

avg. number of VCR actions per hour

Figure 4: P

time

loss

as a function of the average number of temporal jumps per hour for 256 KByte

bu�ers and 95 % link utilization.

15

and depends only on the tra�c characteristics of that video; thus, the transmission schedule

of a connection does not take into account the tra�c requirements of the other connections

in progress. For this reason, we refer to all the schemes cited just above as non-collaborative

prefetching schemes.

On the other hand, the JSQ prefetching protocol determines the transmission schedule of a

connection on{line, as a function of the bu�er contents at all of the clients. For this reason, we

refer to JSQ as a collaborative prefetching scheme. The purpose of this section is to show that

the JSQ bu�er �ll policy is responsible for the outstanding performance reported in Section 3.3.

To this end we shall compare JSQ prefetching with one of the non-collaborative schemes in the

existing literature, namely, Optimal Smoothing [31] [37]. We apply the Optimal Smoothing

algorithm to the traces used for the JSQ experiments (see Section 3.3). We then statistically

multiplex the smoothed traces on a bu�erless 45 Mbps link and calculate P

time

loss

using the

Large Deviation (LD) approximation described in [28] and [37]. The LD approximation is

known to be very accurate [1, 15, 6, 7, 28]. We do this for two versions of optimal smoothing:

no initiation delay and a 10 frame initiation delay [31] [37] [5]. We chose Optimal Smoothing for

our comparison, as optimal smoothing minimizes the peak rate and variability of the smoothed

tra�c for a given client bu�er.

The results are given in Figure 5; only the point estimates of the simulation results are

plotted here. The �gure shows P

time

loss

as a function of bu�er size at the client for 95% average

link utilization. The �gure shows that JSQ prefetching gives a P

time

loss

that is more than two

orders of magnitude smaller than Optimal Smoothing for a 128 Kbyte bu�er, and more than

three orders of magnitude smaller for a 256 Kbyte bu�er. Furthermore, for this case of 95%

utilization, Optimal Smoothing has unacceptably high loss probabilities for all bu�er sizes

shown, whereas JSQ prefetching gave no loss in 4 � 10

8

simulated frame periods for a bu�er

size of 300 Kbytes. (To account for this point on the graph, we suppose that loss occurs for

one of the 4 � 10

8

frame periods at 300 Kbytes.) We are thus led to the conclusion that the

collaborative nature of JSQ prefetching contributes signi�cantly to its high performance. JSQ

prefetching is inspired by the least-loaded routing algorithm for circuit-switched loss networks,

which is known to give excellent performance and to be extremely robust over a wide range of

tra�c conditions [30].

In Figure 6 we compare the admission region of JSQ prefetching, Optimal Smoothing and

GOP smoothing. We use the lambs video, the burstiest of the mix of movies (see Table 1),

for this experiment. We �x the client bu�er size at 1 MByte. A client bu�er of 1 MByte can

16

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10 100

P
-lo

ss
-t

im
e

prefetch buffer B(j) in KByte

Opt. smoothing, no start-up latency
Opt. smoothing, 10 frames start-up latency

JSQ prefetching

Figure 5: P

time

loss

as a function of bu�er size for JSQ prefetching and statistical multiplexing of

optimally smoothed traces for 95% average link utilization.

17

10

20

30

40

50

60

70

80

20 30 40 50 60 70 80

of

 la
m

bs
 c

on
ne

ct
io

ns

normalized bandwidth (link bandwidth/lambs average rate)

client buffer B = 1 MByte (41 sec of video)

P-loss-time <= 1e-5

client buffer B = 1 MByte (41 sec of video)

P-loss-time <= 1e-5

client buffer B = 1 MByte (41 sec of video)

P-loss-time <= 1e-5

client buffer B = 1 MByte (41 sec of video)

P-loss-time <= 1e-5

client buffer B = 1 MByte (41 sec of video)

P-loss-time <= 1e-5

JSQ prefetching
optimal smoothing with 10 frames start-up

optimal smoothing, no start-up latency
GOP smoothing

Figure 6: Number of lambs connections as a function of normalized bandwidth for JSQ prefetch-

ing, Optimal Smoothing and GOP smoothing. The client bu�er of 1 MByte holds on average

41 seconds of the lambs video.

18

store on average 41 seconds of the lambs video. We set the QoS criterion to P

time

loss

� 10

�5

.

The plot gives the number of lambs connections that can be supported as a function of the

normalized bandwidth of the bottleneck link. We de�ne normalized bandwidth as the link

bandwidth divided by the average rate of the lambs video. The JSQ prefetching results are

obtained from simulation. The Optimal Smoothing and GOP smoothing results are computed

using the very accurate LD approximation. With GOP smoothing the video is smoothed

over each Group of Pictures (GOP), that is, 12 frames in the case of the lambs movie (see

Section 3.3). The plot shows that JSQ prefetching clearly outperforms the other smoothing

schemes. With a normalized bandwidth of 21.4, corresponding to a link rate of 4 Mbps, JSQ

prefetching can support 20 lambs connections (95 % average link utilization) while Optimal

Smoothing can support 15 connections (70 % average link utilization). GOP smoothing can

support 10 connections (48 % average link utilization).

We furthermore note that the JSQ policy allows for instantaneous interactive actions, mak-

ing the scheme amenable to highly interactive multimedia applications. These interactions

cause only a modest drop in performance (see Section 4). An indepth study of interactivity for

Optimal Smoothing is given in [5]. In general, no smoothing scheme can always give instanta-

neous playback after all temporal jumps, because for some playback points a build-up delay is

required to ensure no starvation in the future. In [5] an algorithm is given for which the build-

up delay is typically very small for the traces considered. However, this build-up delay typically

increases with the client bu�er size, and at playback points before long high-bandwidth scenes

the delay can be large (an example is given for which the delay after a temporal jump can

be as much as 63 seconds for a 4Mbyte bu�er). Thus, with Optimal Smoothing, as the client

bu�ers become larger, the link utilizations increase but interactivity performance decreases.

In contrast, with JSQ prefetching, both link utilization and interactivity performance improve

with increasing client bu�er.

We now provide an intuitive explanation of why packet loss is less of JSQ prefetching. The

JSQ policy strives to (1) equalize the number of prefetched frames over all ongoing connections

and (2) keep the bu�ers always �lled. Optimal Smoothing, on the other hand, �rst �lls the

bu�er when a connection starts up. The bu�er is then emptied, then �lled again and so on;

the bu�er content thus oscillates between empty and full.

Now consider a situation where a number of connections have been in progress for a while

and a new connection becomes active. The JSQ policy dedicates the entire link capacity

temporarily to the new connection so as to bring the number of prefetched frames up to the

19

level of the other connections. These other connections are fed from their prefetch bu�ers

during this period. For loss to occur, the prefetch bu�ers of the older connections need to be

drained completely and the aggregate rate of the ongoing connections has then to exceed the

link capacity. This is a highly unlikely scenario given that the prefetch bu�ers typically hold a

large number of prefetched frames. With optimal smoothing, however, the new connection gets

only a small fraction of the link capacity since the other connections have to transmit according

to their �xed schedule. Losses are therefore more likely, particularly for movies requiring a

large amount of bandwidth in the beginning.

Next, consider a situation where a number of connections have been active for a while and

high action scenes in the movies collude and thus cause temporarily an excessive demand for

bandwidth. Since JSQ prefetching keeps the bu�ers always full while the optimal smoothing

policy drives the bu�er contents periodically up and down, the aggregate bu�er contents of all

the ongoing connections is larger with JSQ prefetching. The JSQ policy can therefore support

longer periods of excessive demand for bandwidth.

We conclude this section by mentioning that the non-collaborative prefetching schemes

do have an important advantage over our JSQ prefetching protocol { namely, they can be

implemented over multiple, decentralized servers, and they can be easily adapted to run over a

network with multiple bottleneck links. In particular, the server does not need to be attached

to a cable headend or an ADSL switch, but can instead be distributed and placed deeper into

the network. In our current research, we are adapting the JSQ prefetching protocol so that

the server can be distributed and placed deeper into the network.

6 A Packet-Based JSQ Prefetch Policy

Up to now we have measured the length of the queue in a prefetch bu�er by the number of

frames present in the bu�er. An alternative measure for length is the number of packets in

the bu�er. With this measure, the JSQ policy strives to equalize the number of packets in

each of the prefetch bu�ers. In de�ning this policy, we drop the subscript l from all notations.

At the beginning of each slot the server determines the j

�

with the smallest b(j)� x

�(j)

(j),

transmits one packet from connection j

�

and increments b(j

�

). Within this same slot the server

repeats this procedure over and over again, at each iteration �nding a new j

�

that minimizes

b(j)� x

�(j)

(j), transmitting a packet from connection j

�

and incrementing b(j

�

). For in�nite

prefetch bu�ers, the procedure stops when z (the total number of packets transmitted within

20

the slot) equals R=F . For �nite prefetch bu�ers, the procedure stops when z = R=F or when

all the prefetch bu�ers are full.

The packet-based JSQ policy is easier to implement the frame-based JSQ policy. For

brevity, we only describe this implementation for the case of in�nite prefetch bu�ers. At the

beginning of each slot we order the prefetch bu�ers according to their y[j] = b(j)� x

�(j)

(j)

values. Let �(j), j = 1; : : : ; J , be this ordering. We �ll bu�er �(1) with y[�(2)] � y[�(1)]

packets. We then �ll bu�ers �(1) and �(2) with y[�(3)] � y[�(2)] packets. The procedure

continues as long as z � R=F . If at any iteration we will have z > R=F , we spread the

remaining packets evenly over the bu�ers in question.

The drawback of this policy is that it can produce frame levels in the prefetch bu�ers

which are highly unbalanced; this can occur when one set of connections has a large number

of packets per frame and a second set has a small number of packets per frame. An advantage

of this policy is that it can �ll all the prefetch bu�ers to the brim when drain rate is far below

the link rate.

Throughout the remainder of this paper we use the original frame{based JSQ policy.

7 Selective Discard Policies for MPEG Compression

There is cell loss in a slot l if and only if

X

j2J

x

�

l

(j)

(j) > R=F; (7)

where J is the set of connections that have no frames in their bu�ers at the beginning of the

slot. However, when (4) holds, the server still has the freedom to select which part of the

aggregate tra�c,

X

j2J

x

�

l

(j)

(j);

to transmit and which part ot discard. A rule for choosing which part of the aggregate tra�c

to discard is a selective discard policy. A good selective discard policy will discard the parts

of the aggregate tra�c that can most easily be estimated at the client. The estimation of lost

video tra�c at the client is called error concealment, which, for MPEG encoding, has been

thoroughly discussed in the literature [20, 2, 38].

21

7.1 Selective Discard Strategies for MPEG{1

Recall that for MPEG-1 encoding the frames have a GOP pattern, e.g., IBBPBBPBB. Because

B and P frames are encoded with respect to the I frames, it is important to minimize loss for

each I frame, as this loss propagates through the entire GOP. Similarly, loss for P frames is

more damaging than loss for B frames. These observations lead to the following simple selective

discard policy. Let J (I), J (P) and J (B), be the set of connections in J of the current slot

that are to transmit I, P and B frames. Note that the sets J , J (I), J (P) and J (B) change

from slot to slot. If

X

j2J (I)

x

�

l

(j)

(j) +

X

j2J (P)

x

�

l

(j)

(j) � R=F; (8)

then we transmit all the frames in J (I) [J (P) and discard \part" of the tra�c from J (B).

If (8) fails, but

X

j2J (I)

x

�

l

(j)

(j) � R=F; (9)

then we transmit all the frames in J (I), discard all the frames in J (B) and discard \part" of

the tra�c from J (P). Finally, if (9) fails, we discard all of the frames in J (B) [J (P) and

\part" of the tra�c in J (I). The above discard policy has not been fully de�ned, as we have

not yet speci�ed the \part" of tra�c that is discarded in each of the cases. There are several

natural strategies here:

1. Slice discarding strategy: Suppose it su�ces to discard tra�c only from J (B). Then we

discard slices from the B frames, spreading the discarded frames over the connections in

J (B); furthermore, if we must discard multiple slices in a frame, we attempt to discard

non-adjacent slices in order to facilitate estimation and concealment at the client. If

discarding all the B frames in J (B) does not su�ce, then we also discard slices from P

frames; �nally, if discarding all the B and P frames from J (B) [J (P) does not su�ce,

then we also discard slices from I frames.

2. Frame discarding strategy: Discard entire frames in a round robin fashion across all the

videos in J . With this strategy, loss of consecutive frames of a speci�c connection should

be rare.

3. Do not discard the frames or any \parts" of the frames, but instead to re{encode the

frames on{the{y with a coarser quantization. A related strategy is to include in the

server's storage a second version of each video which has been o�-line encoded at a lower

22

1e-06

1e-05

0.0001

0.001

0.01

0.1

1 10 100

P
-lo

ss
-f

ra
m

e

prefetch buffer B(j) in Kbyte

P frames
B frames

Figure 7: The fraction of lost P and B frames as a function of the prefetch bu�er size for 95

% utilization.

rate; when J is nonempty and loss is unavoidable, then the server switches to the low-rate

versions for all videos in J .

Figure 7 illustrates the performance of this discard policy. In the simulation we simplify the

policy by never transmitting any \parts" of the tra�c; speci�cally, we drop all frames from

J (B) when (8) holds, all frames from J (B) [J (P) when (8) fails and (9) holds; and all

frames from J when (9) fails. We conducted this experiment with a link utilization of 95%

and ran 1000 replications for bu�er sizes ranging from 4 to 64 KByte. The �gure plots the

point estimates of the fraction of P and B frames that are lost (we ignore con�dence intervals

to avoid visual clutter). In all our simulations we never observed any loss of I frames.

23

7.2 An Admission Policy for MPEG{1

We now present a connection admission policy which, when combined with our selective discard

policy, ensures that I frames experience practically no loss. To this end, observe that with our

selective discard policy the loss probability for I frames will be less than that when the clients

have no bu�er and the tra�c in the P and B frames is equal to zero. For this conservative model,

we can adapt the theory in [28] to construct a conservative large-deviation approximation for

the loss of I frames. Using this approximation, we only admit a new connection if (1) the

fraction of frame periods which have I-frame loss remains less than some minute number, say,

10

�9

, and (2) the link utilization remains below, say, 95 %. This admission policy essentially

guarantees no loss of I frames while simultaneously ensuring a low probability of loss for the

B and P frames.

We give now a brief outline of how the large-deviation approximation applies to our scheme.

First, for each video in the server we construct a modi�ed trace y

n

(j), j = 1; : : : ; J , with

y

n

(j) = x

n

(j) if the nth frame is an I frame and y

n

(j) = 0 if the nth frame is either a P or B

frame. We then calculate the frame size distribution for the modi�ed trace:

�

j

(l) :=

1

N

N

X

n=1

1(y

n

(j) = l);

The logarithmic moment generating function of the aggregate amount of tra�c in a frame for

the modi�ed trace is:

�

Y

(s) := lnE[e

sY

];

where

Y =

J

X

j=1

Y (j)

and Y (j) is distributed according to �

j

(�). The probability that at least one I frame is lost in

an arbitrary frame period is approximated as

P

time

loss

(I) = P (\all I frames cannot be transmited in a frame period") (10)

�

1

s

?

q

2��

00

Y

(s

?

)

e

�s

?

R=F+�

Y

(s

?

)

;

where s

�

satis�es

�

0

X

(s

?

) = R=F:

24

1e-08

1e-07

1e-06

1e-05 0.0001 0.001 0.01 0.1 1

P
-lo

ss
-t

im
e

(I
-f

ra
m

es
)

P-loss-time (simulation)

Figure 8: P

time

loss

(I) as a function of P

time

loss

for 16 KByte prefetch bu�er.

The admission control test is thus satis�ed if

1

s

?

q

2��

00

Y

(s

?

)

e

�s

?

R=F+�

Y

(s

?

)

� �;

where � is some minute number such as 10

�9

.

Figure 8 shows the relationship between the P

time

loss

(the fraction of frame periods during

which loss occurs for I,P, or B frames) and P

time

loss

(I) (the conservative estimate for the fraction

of frame periods during which loss of an I frame occurs when using selective discard). In this

�gure with have used a 16 KByte prefetch bu�er at each of the clients. The series of points

was obtained by varying the link utilization. (For visual simplicity we ignore the con�dence

intervals for P

time

loss

and only report the mid-point in the �gure.) From this curve we see, for

example, that when P

time

loss

is 2�10

�5

then the fraction of frame periods during which I frames

are lost is 3�10

�8

. The values of P

time

loss

(I) reported in this �gure come from the large-deviation

approximation. This approximation is conservative, as it assumes that the prefetch bu�ers are

25

zero; the actual loss probability for I frames is much less. In fact, for the last point (as well

as the other points) on the graph, corresponding to P

time

loss

� 0:1 and 99.5% utilization, we

observed absolutely no loss of I frames in the simulation!

7.3 MPEG-2

The MPEG-2 standard is similar to MPEG-1 but includes extensions and re�nements to cover

a wider range of applications. While MPEG-1 was primarily introduced for CD-ROM and has

a typical bitrate of 1.5 Mbps, MPEG-2 is intended for the digital transmission of broadcast

TV quality video with bitrates between 4 and 9 Mbps.

The most important extension of MPEG-2 over MPEG-1 for our discussion is scalability.

Scalability o�ers the possibility to partition the video stream into two di�erent layers: the

base and enhancement layers. This allows for transmission with di�erent priorities. The

enhancement layer conveys re�ned image information at a lower priority. Transmitting a basic

quality image at the base layer with high priority ensures that a minimum quality image can

be decoded at the client. If both layers are received, a high quality image can be displayed.

If the low priority enhancement layer is lost, the client will at least be able to display a basic

quality image (provided the base layer is received intact).

Although there are four scalability modes we shall focus on SNR scalability as it o�ers a

exible way to partition the video data while keeping the encoder and decoder architecture

simple. The basic idea of SNR scalability is to �rst generate the base layer by quantizing the

DCT coe�cients of a frame with a coarse base quantization matrix. The di�erence between

the original DCT coe�cients and the DCT coe�cients reconstructed from the base layer is

quantized with a �ner quantization matrix and transmitted in the enhancement layer. If the

low priority enhancement layer is lost, the frame is decoded using only the base layer.

An admission control policy for MPEG-2 video may proceed similar to the one outlined for

MPEG{1 video in subsection 7.2. Again, we conduct 2 tests:

1. The admission control test for a bu�erless link outlined under 7.2 with a very small QoS

parameter � such as 10

�9

. Consider only the base layer in this test.

2. Taking base and enhancement layer into account, check whether the average link utiliza-

tion is less than 0.95.

The �rst test practically guarantees the delivery of the base-layer image.

26

8 Video Delivery to the Home

8.1 ADSL

In this section we discuss how JSQ prefetching ties into the Asymmetric Digital Subscriber

Line (ADSL) technology. First, we give a brief overview of the ADSL technology; for more

details see [11, 21]. ADSL exploits advances in digital signal processing to provide a high

speed downstream channel from the central o�ce to the home (up to 9 Mbps total capacity)

and a lower rate upstream channel (up to 640 kbps total capacity) over a single twisted pair

copper loop while leaving the POTS (Plain Old Telephone Service) una�ected. The high

speed downstream channel provides a switched point{to{point link for delivering video from

the central o�ce to the home. The lower rate upstream channel can be used to control the

downstream video stream; in particular, the upstream channel can be used to convey the

request for a video and VCR actions to the video server. The downstream channel capacity

provided by the ADSL technology, however, depends on the length of the copper loop, wire

gauge and interference. The maximum downstream rate of 9 Mbps can be supported over

approximately 3,000 meter of regular copper wire. As the wire length increases to 6,000

meter the available downstream capacity drops to 1.5 Mbps due to increased attenuation.

The bandwidth requirements for VBR transmission of video can readily be accommodated by

ADSL for homes within 3,000 meter of the central o�ce since the peakrate of VBR video is

typically well below 9 Mbps.

Figure 9 shows the architecture of a VoD system utilizing ADSL. The video server multi-

plexes the video streams onto an essentially bu�erless link. The videos may be transported in

ATM cells or TCP/IP packets. The packet switch in the central o�ce forwards the cells/packets

to the appropriate output bu�er. The cells/packets are then transmitted to the individual

homes over the point{to{point ADSL operated copper lines. The ADSL Forum is developing

interface and protocol guidelines for three basic distribution protocols [10] [33]:

1. The ADSL modem is con�gured for continuous bit{rate synchronous transmission; thus,

the ADSL modem works as a bitpump.

2. The modem is con�gured for packet transport. The ADSL modem is con�gured for

Ethernet packets in this case.

3. The ADSL modem is con�gured for an ATM interface.

27

video server R

ADSL Modem

ADSL Modem

output
buffer

packet switch in central office

Figure 9: VoD architecture with ADSL

.

28

In this paper we are focusing on packet or ATM cell based transmission. Hence, the following

transport modes are possible on the link joining the video server and the central o�ce and on

the ADSL link joining the central o�ce and the home:

1. ATM cells from server through switch to home

2. IP datagrams from server through switch. After switch datagrams are encapsulated in

Ethernet frames.

3. ATM cells from server through switch. After switch, cells are converted to IP packets.

This last option has the advantage of using powerful ATM switching technology in the central

o�ce while allowing the user to have inexpensive Ethernet equipment.

8.2 Cable

In this section we discuss how the JSQ prefetching protocol for VoD proposed in this paper

ties into the cable modem technology. First, we give a brief overview of the cable modem

technology; for more details see [17, 18, 25]. The coaxial cable was installed for broadcast of

one-way analog TV. Cable is a shared medium; many homes are attached to the same coaxial

cable. Medium access control for the downstream video tra�c is particularly simple as there

is only one sender, the headend. The upstream control tra�c, however, poses a problem.

Carrier sensing fails for cable plants with tree{and{branch structure, where only the headend

hears every source. Remedies for this problem are currently being developed [17]. As of the

writing of this paper, there are no �xed standards that specify how upstream and downstream

bandwidth are allocated to homes. Typically, the upstream tra�c is transmitted in the 5{40

MHz range. The downstream bandwidth from 40 { 750 MHz is split into 6 MHz channels

for analog TV. Each of these channels yields approximately 25 Mbps when 64 Quadrature

Amplitude Modulation (QAM) is employed and could thus carry a couple of video streams.

Figure 10 shows a possible VoD architecture with cable. The video server is attached

directly to the cable headend as are multiple cable trunks. We assume in this architecture that

the link connecting the video server to the headend has in�nite bandwidth. The bottleneck link

is the cable trunk connecting the homes to the headend. Homes are attached to cable trunks

via cable modems. The request for a video is relayed from the viewers home to the headend via

the upstream channels. The headend forwards the request to the video server. The video server

immediately starts transmitting the video frames. The video server runs the JSQ algorithm

29

video server

cable modem

shared
bandwidth R

shared
bandwidth R

Headend

Figure 10: VoD architecture for cable residential access

.

for each cable trunk. The switch in the headend forwards the frames to the appropriate output

queue. All the videos requested by viewers connected to the same cable trunk are multiplexed

onto the shared channel of capacity, say R bps. Our JSQ prefetching protocol allows for the

e�cient use of the valuable trunk bandwidth, R. We achieve transmission with negligible losses

and thus constant high video quality for average trunk bandwidth utilizations of 95%.

9 Conclusion

Prerecorded video has two special properties: (1) for each video, the tra�c in each video frame

is known before the video session begins; (2) while the video is being played, some of the video

can be prefetched into the client memory. In this paper we have shown how these two properties

can be exploited to achieve high performance when there is one shared link between the server

and the clients. We have also shown how selective discard can enhance the performance when

all of the video connections originate from the same server. The results should be useful for

designing VoD systems that connect servers to residential broadband networks using cable or

ADSL, or for VoD systems that connect the server to its clients through a LAN. Our client{

server scheme can be part of a larger Internet solution to VoD, whereby the prerecorded videos

are multicast to local servers at o�-peak hours with the best e�ort service. We are currently

working on a variation of the JSQ prefetch protocol so that the server can be distributed and

30

placed deeper into the network.

References

[1] Methods for the performance evaluation and design of broadband multiservice networks.

In The COST 242 Final Report, 1996.

[2] L. T. Chia., D. J. Parish, and JWR Gri�ths. On the treatment of video cell loss in the

transmission of motion-JPEG and JPEG images. Computers & Graphics, 18(1):11{19,

January 1994.

[3] I. Dalgic and F. A. Tobagi. Characterization of quality and tra�c for various video

encoding schemes and various encoder control schemes. Technical Report CSL{TR{96{

701, Stanford University, Departments of Electrical Engineering and Computer Science,

August 1996.

[4] S. E. Deering. Multicast Routing in Datagram Internetwork. PhD thesis, Stanford Uni-

versity, December 1991.

[5] J. Dey, S. Sen, J. Kurose, D. Towsley, and J. Salehi. Playback restart in interactive

streaming video applications. In To appear in Proceedings of IEEE Multimedia, Ottawa,

Canada, 1997.

[6] A. Elwalid, D. Heyman, T. Lakshman, D. Mitra, and A. Weiss. Fundamental bounds and

approximations for ATM multiplexers with application to video teleconferencing. IEEE

Journal on Selected Areas in Communications, 13(6):1004{1016, August 1995.

[7] A. Elwalid, D. Mitra, and R. H. Wentworth. A new approach for allocating bu�ers and

bandwidth to heterogeneous regulated tra�c in an ATM node. IEEE Journal on Selected

Areas in Communications, 13(6):1115{1127, August 1995.

[8] W. Feng, F. Jahanian, and S. Sechrest. Providing VCR functionality in a constant quality

video{on{demand transportation service. In IEEE Multimedia, Hiroshima, Japan, June

1996.

[9] W. Feng and J. Rexford. A comparison of bandwidth smoothing techiniques for the

transmission of prerecorded compressed video. In Proceedings of IEEE Infocom, Kobe,

Japan, April 1997.

[10] ADSL Forum. ADSL forum system reference model. Technical Report TR{001.

http://www.adsl.com/adsl reference model.html.

[11] ADSL Forum. ADSL Tutorial: Twisted Pair Access to the Information Highway.

http://www.adsl.com/adsl tut.html.

[12] D.J. Gemmell and J. Han. Multimedia network �le servers: multichannel delay sensitive

data retrieval. Multimedia Systems, 1:240{252, 1994.

[13] D.J. Gemmell and H.M. Vin. Multimedia storage servers: A tutorial. IEEE Computer,

pages 40{49, 1995.

31

[14] M. Grossglauser, S. Keshav, and D. Tse. RCBR: A simple and e�cient service for multiple

time-scale tra�c. In ACM SIGCOMM, 1995.

[15] I. Hsu and J. Walrand. Admission control for ATM networks. In IMA Workshop on

Stochastic Networks, Minneapolis, Minnesota, March 1994.

[16] E. W. Knightly and H. Zhang. Tra�c characterization and switch utilization using a

deterministic bounding interval dependent tra�c model. In Proceedings of IEEE Infocom

'95, Boston, MA, April 1995.

[17] M. Laubach. Cable modem basics: An introduction to cable modem technology, October

1996. Presentation at the University of Pennsylvania

Slides available at ftp.com21.com /pub/laubach/.

[18] M. Laubach. To foster residential area broadband internet technology: IP datagrams keep

going and going and going: : : . ConneXions, 10(2), February 1996.

[19] J. Liebeherr and D. Wrege. Video characterization for multimedia networks with a deter-

ministic service. In Proceedings of IEEE Infocom '96, San Francisco, CA, March 1996.

[20] W. Luo and M. El Zarki. Analysis of error concealment schemes for MPEG-2 video

transmission over ATM based networks. In Proceedings of SPIE Visual Communications

and Image Processing 1995, Taiwan, May 1995.

[21] K. Maxwell. Asymetric digital subscriber line: Interim technology for the next forty years.

IEEE Communications Magazine, pages 100{106, October 1996.

[22] J. M. McManus and K. W. Ross. Video on demand over ATM: Constant-rate transmission

and transport. IEEE JSAC, 14(6):1087{1098, August 1996.

[23] J.M. McManus and K.W. Ross. A

comparison of tra�c management schemes for prerecorded video with constant quality

service. Available at http://www.seas.upenn.edu/~ross.

[24] J.M. McManus and K.W. Ross. Prerecorded VBR sources in ATM networks: Piecewise-

constant rate transmission and transport. In Proceedings of SPIE, Dallas, TX, October

1997. Available at http://www.seas.upenn.edu/~ross/.

[25] P. Mockapetris. @HOME network overview, October 1996. Presentation at the University

of Pennsylvania.

[26] A.L.N. Reddy and J. Wyllie. Disk scheduling in multimedia I/O system. In Proceedings

of ACM Multimedia Conference, 1992.

[27] M.I. Reiman. Some di�usion approximations with state space collaspe. In F. Baccelli

and G. Fayolle, editors, Lecture Notes in Control and Informational Sciences 60, pages

209{240. Springer-Verlag, 1983.

[28] M. Reisslein and K. W. Ross. Call admission for prerecorded sources with packet loss.

IEEE Journal on Selected Areas in Communications, 15(6):1167{1180, August 1997.

32

[29] O. Rose. Statistical properties of MPEG video tra�c and their impact on tra�c modelling

in ATM systems. Technical Report 101, University of Wuerzburg, Insitute of Computer

Science, Am Hubland, 97074 Wuerzburg, Germany, February 1995.

ftp address and directory of the used video traces:

ftp-info3.informatik.uni-wuerzburg.de /pub/MPEG/.

[30] K. W. Ross. Multiservice Loss Models for Broadband Telecommunication Networks.

Springer Verlag, 1995.

[31] J. Salehi, Z.-L. Zhang, Kurose J, and D. Towsley. Supporting stored video: Reducing

rate variability and end-to-end resource requirements through optimal smoothing. In

Proceedings of ACM SIGMETRICS, May 1996. Philadelphia, PA.

[32] S. Shenker and C. Partridge. Speci�cation of guaranteed quality of service. Technical

report. Internet Draft; December 1995.

[33] D. Veeneman and R. Olshansky. ADSL for

video and data services. In IEEE International Conference on Communications, June

1995. http://www.gte.com/Adsl/News/Docs/9506.html.

[34] H. Vin and P. Venkat Rangan. Chapter 4: Multimedia storage systems. In Multimedia

Systems and Techniques, ed. B. Furht, 1996.

[35] D. Wrege, E. Knightly, H. Zhang, and J. Liebeherr. Deterministic delay bounds for

VBR video in packet{switching networks: Fundamental limits and tradeo�s. IEEE/ACM

Transactions on Networking, 4(3):352{362, June 1996.

[36] P. Yu, , M.S. Chen, and D.D. Kandlur. Design and analysis of a grouped sweeping scheme

for multimedia storage management. In Third International Workshop on Network and

Operating System Support for Digital Audio and Video, 1993.

[37] Z. Zhang, J. Kurose, J. Salehi, and D. Towsley. Smoothing, statistical multiplexing and call

admission control for stored video. IEEE Journal on Selected Areas in Communications,

13(6):1148{1166, August 1997.

[38] Q. Zhu, Y. Wang, and L. Shaw. Coding and cell{loss recovery in DCT-Based packet

video. IEEE Transactions on Circuits and Systems for Video Technology, 3(3):248{258,

June 1993.

33

