
INFOCOM 2001 1

Distributing Layered Encoded Video through

Caches
Jussi Kangasharjuy, Felix Hartanto?, Martin Reisslein?, Keith W. Rossy

yInstitut Eurecom, ?GMD FOKUS

Abstract—The efficient distribution of stored information

has become a major concern in the Internet which has in-

creasingly become a vehicle for the transport of stored video.

Because of the highly heterogeneous access to the Internet,

researchers and engineers have argued for layered encoded

video. In this paper we investigate delivering layered en-

coded video using caches. Based on a stochastic knapsack

model we develop a model for the layered video caching

problem. We propose heuristics to determine which videos

and which layers in the videos should be cached. We evalu-

ate the performance of our heuristics through extensive nu-

merical experiments. We also consider two intuitive exten-

sions to the initial problem.

Keywords— Proxy Caching, Streaming Layered Video,

Utility Heuristics, Stochastic Knapsack

I. INTRODUCTION

In recent years, the efficient distribution of stored in-

formation has become a major concern in the Internet. In

the late 1990s numerous companies - including Cisco, Mi-

crosoft, Netscape, Inktomi, and Network Appliance - be-

gan to sell Web caching products, enabling ISPs to deliver

Web documents faster and to reduce the amount of traffic

sent to and from other ISPs. More recently the Internet has

witnessed the emergence of content distribution network

companies, such as Akamai and Sandpiper, which work

directly with content providers to cache and replicate the

providers’ content close to the end users. In parallel to all

of this caching and content distribution activity, the Inter-

net has increasingly become a vehicle for the transport of

stored video. Many of the Web caching and content distri-

bution companies have recently announced new products

for the efficient distribution of stored video.

Access to the Internet is, of course, highly heteroge-

neous, and includes 28K modem connections, 64K ISDN

connections, shared-bandwidth cable modem connections,

xDSL connections with downstream rates in 100K-6M

range, and high-speed switched Ethernet connections at 10

Mbps. Researchers and engineers have therefore argued

that layered encoded video is appropriate for the Internet.

When a video is layered encoded, the number of layers that

are sent to the end user is a function of the user’s down-

stream bandwidth.

An important research issue is how to efficiently dis-

tribute stored layered video from servers (including Web

servers) to end users. As with Web content, it clearly

makes sense to insert intermediate caches between the

servers and clients. This will allow users to access much

of the stored video content from nearby servers, rather ac-

cessing the video from a potentially distant server. Given

the presence of a caching and/or content distribution net-

work infrastructure, and of layered video in origin servers,

a fundamental problem is to determine which videos and

which layers in the videos should be cached. Intuitively,

we will want to cache the more popular videos, and will

want to give preference to the lower base layers rather than

to the higher enhancement layers.

In this paper we present a methodology for selecting

which videos and which layers should be stored at a finite-

capacity cache. The methodology could be used, for ex-

ample, by a cable or ADSL access company with a cache

at the root of the distribution tree. Specifically, we sup-

pose that the users have high-speed access to the cache,

but the cache has limited storage capacity and a limited

bandwidth connection to the Internet at large. For exam-

ple, the ISP might have a terabyte cache with a 45 Mbps

connection to its parent ISP. Thus, the video caching prob-

lem has two constrained resources, the cache size and the

transmission rate of the access link between the ISP and

its parent ISP. Our methodology is based on a stochastic

knapsack model of the 2-resource problem. We suppose

that the cache operator has a good estimate of the popu-

larities of the the video layers. The problem, in essence,

is to determine which videos and which layers within the

video should be cached so that customer demand can best

be met.

This paper is organized as follows. In Section II we

present our layered video streaming model. In Section III

we present our utility heuristics and evaluate their perfor-

mance. Section IV extends our caching model by adding

the possibility to negotiate the delivered stream quality.

Section V considers a queueing scheme for managing

client requests. Section VI considers the usefulness of par-

tial caching. Section VII presents an overview of related

work and Section VIII concludes the paper.
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Fig. 1. Architecture for caching and streaming of layered en-

coded video.

II. MODEL OF LAYERED VIDEO STREAMING WITH

PROXY

Fig. 1 illustrates our architecture for continuous me-

dia streaming with proxy servers. We first give a rough

overview of our streaming architecture and then discuss

each component in detail. All available continuous me-

dia objects are stored on the origin servers. Popular

streams are cached in proxy servers. The clients direct

their streaming requests to the appropriate proxy server.

If the requested stream is cached in the proxy, it is directly

streamed over the local access network to the client. If the

requested stream is not cached in the proxy, it is streamed

from the origin server over the wide area network to the

proxy. The proxy forwards the stream to the client.

A. Layered Video

The continuous media objects available on the origin

servers are prerecorded audio and video objects, such as

CD–quality music clips, short video clips (e.g., news clips,

trailers or music videos) or full–length movies or on–line

lectures. Our focus in this study is on video objects that

have been encoded using layered (hierarchical) encoding

techniques [1–3]. With hierarchical encoding each video

object is encoded into a base layer and one or more en-

hancement layers. The base layer contains the most es-

sential basic quality information. The enhancement layers

provide quality enhancements. A particular enhancement

layer can only be decoded if all lower quality layers are

available. Therefore, an enhancement layer is useless for

the client if the corresponding lower quality layers are not

available.

Layered video allows service providers to offer flexible

streaming services to clients with vastly different reception

bandwidths and decoding capabilities. Typically, wireless

clients and clients with modem–speed wireline Internet ac-

cess will request only the base layer stream. Clients with

high–speed ADSL or cable modem access, on the other

hand, may wish to receive higher quality streams consist-

ing of base layer as well enhancement layers. Furthermore,

layered video allows for flexible pricing structures. A ser-

vice provider may offer the base layer stream at a basic

rate and charge a premium for the enhancement layers.

In other words, clients are charged more when receiving

more layers (i.e., higher quality streams). Such a pricing

structure might prompt clients to request the cheaper base

layer–only stream of a news clip or talk show, say, while

requesting the more expensive high quality stream of an

entertainment movie.

To make the notion of layered video objects more pre-

cise, suppose that there are M video objects. We assume

that the video objects are encoded into Constant Bit Rate

(CBR) layers, which is a reasonable first approximation of

the output of hierarchical codecs. For notational simplicity

we assume that all video objects are encoded into L lay-

ers. (Our model extends to video objects that differ in the

number of layers in a straightforward manner.) Let r
l

(m)

denote the rate (in bit/sec) of layer l; l = 1; : : : ; L, of

video object m; m = 1; : : : ;M . We define a j–quality

stream as a stream consisting of layers 1; 2; : : : ; j. Let

T (m); m = 1; : : : ;M , denote the length (in seconds) of

video object m. Let R(j;m) denote the revenue accrued

from providing a j–quality stream of object m.

B. Proxy Server

The proxy server is located close to the clients. It is

connected to the origin servers via a wide area network

(e.g., the Internet). We model the bandwidth available

for streaming continuous media from the origin servers to

the proxy server as a bottleneck link of fixed capacity C

(bit/sec). The proxy is connected to the clients via a local

access network. The local access network could be a LAN

running over Ethernet, or a residential access network us-

ing xDSL or HFC technologies. For the purpose of this

study we assume that there is abundant bandwidth for con-

tinuous media streaming from the proxy to the clients. We

model the proxy server as having a storage capacity of G

(bytes). We assume that the proxy storage has infinite stor-

age bandwidth (for reading from storage). We note that the

proxy storage is typically a disk array with limited storage

bandwidth due to the limited disk bandwidths and seek and

rotational overheads. Our focus in this study, however, is

on gaining a fundamental understanding of the impact of

the two basic streaming resources (bottleneck bandwidth

C and cache space G) on the proxy performance. We refer

the interested reader to [4–6] for a detailed discussion of

the disk array limitations as well as discussions on replica-
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tion and striping techniques to mitigate these limitations.

We consider a caching scenario where the cache con-

tents are updated periodically, say every few hours, daily,

or weekly. The periodic cache updates are based on es-

timates of the request pattern of the proxy’s client com-

munity. A service provider may estimate the request pat-

tern from observations over the last couple of days or

weeks. Suppose that the requests for video streams arrive

according to a Poisson process with rate � (requests/sec).

Let p(j;m) denote the popularity of the j–quality stream

of object m, that is, p(j;m) is the probability that a re-

quest is for the j–quality stream of object m. These pop-

ularities could be estimated from the observed requests

using an exponential weighted moving average. As a

proper probability mass distribution the p(j;m)’s satisfy
P

M

m=1

P

L

j=1

p(j;m) = 1. Also, note that the arrival rate

of requests for the j–quality stream of object m is given

by �p(j;m).

Our focus in this study is on caching strategies that

cache complete layers of video objects in the proxy. Our

goal is to cache object layers so as to maximize the rev-

enue accrued from the streaming service. When updating

the cache our heuristics give layers of very popular objects

priority over layers of moderately popular objects. More-

over, lower quality layers are given priority over higher

quality layers (as these require the lower quality layers for

decoding at the clients).

To keep track of the cached object layers we introduce

a vector of cache indicators 
 = (


1

; 


2

; : : : ; 


M

), with

0 � 


m

� L for m = 1; : : : ;M . The indicator 

m

is set

to i if layers 1 through i of object m are cached. Note that




m

= 0 indicates that no layer of object m is cached. With

the cache indicator notation the cache space occupied by

the cached object layers is given by

S(
) =

M

X

m=1




m

X

l=1

r

l

(m)T (m): (1)

C. Stream Delivery

The client directs its request for a j–quality stream of

a video object m to its proxy server (for instance by us-

ing the Real Time Streaming Protocol (RTSP) [7]). If all

the requested layers are cached in the proxy (

m

� j), the

requested layers are streamed from the proxy over the lo-

cal access network to the client. If layers are missing in

the proxy (

m

< j), the appropriate origin server attempts

to establish a connection for the streaming of the missing

layers 

m

+ 1; : : : ; j at rate
P

j

l=


m

+1

r

l

(m) over the bot-

tleneck link to the client. If there is sufficient bandwidth

available, the connection is established and the stream oc-

cupies the link bandwidth
P

j

l=


m

+1

r

l

(m) over the life-

time of the stream. (The layers 1; : : : ; 


m

are streamed

from the proxy directly to the client.) We assume that the

client watches the entire stream without interruptions, thus

the bandwidth
P

j

l=


m

+1

r

l

(m) is occupied for T (m) sec-

onds. In the case there is not sufficient bandwidth available

on the bottleneck link, we consider the request as blocked.

(In Section IV we study a refined model where clients may

settle for a lower quality stream in case their original re-

quest is blocked.)

Formally, let B



(j;m) denote the blocking probability

of the request for a j–quality stream of object m, given the

cache configuration 
. Clearly, there is no blocking when

all requested layers are cached, that is, B



(j;m) = 0 for




m

� j. If the request requires the streaming of layers

over the bottleneck link (

m

< j), blocking occurs with

a non–zero probability B




(j;m). We calculate the block-

ing probabilities B




(j;m) using results from the analy-

sis of multiservice loss models [8]. An overview of the

relevant loss modeling is provided in the Appendix. In

summary, we model the bottleneck link as a stochastic

knapsack of capacity C . Requests for j–quality streams

(j = 1; : : : ; L) of object m; m = 1; : : : ;M are modeled

as a distinct class of requests, thus there is a total of ML

distinct classes of requests. The load offered by requests

for j–quality streams of object m is �p(j;m)T (m). The

blocking probabilities B



(j;m) for the request classes can

be calculated using the recursive Kaufman–Roberts algo-

rithm [8, p. 23] with a time complexity of O(CML). The

expected blocking probability of a client’s request is given

by

B(
) =

M

X

m=1

L

X

j=1

p(j;m)B




(j;m):

The service provider should strive to keep the expected

blocking probability acceptably small, say, less than 5%.

The throughput of requests for j–quality streams of object

m, that is, the long run rate at which these requests are

granted and serviced is �p(j;m)(1�B




(j;m)). The long

run rate of revenue accrued from the serviced j–quality

streams of object m is the revenue per served request,

R(j;m), multiplied by the throughput. Thus, the long run

total rate of revenue of the streaming service is

R(
) = �

M

X

m=1

L

X

j=1

R(j;m)p(j;m)(1 �B




(j;m)): (2)

Our goal is to cache object layers so as to maximize the

total revenue rate.

III. OPTIMAL CACHING

In this section we study optimal caching strategies. Sup-

pose that the stream popularities (p(j;m)) and the stream
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characteristics (layer rates r
l

(m) and lengths T (m)) are

given. The question we address is how to best utilize the

streaming resources — bottleneck bandwidth C and cache

space G — in order to maximize the revenue. Our focus in

this study is on optimal caching strategies, that is, we focus

on the question: which objects and which layers thereof

should be cached in order to maximize the revenue? For-

mally, we study the optimization problem max




R(
) sub-

ject to S(
) � G. Throughout this study we assume the

complete sharing admission policy for the bottleneck link,

that is, a connection is always admitted when there is suf-

ficient bandwidth. We note that complete sharing is not

necessarily the optimal admission policy. In fact, the op-

timal admission policy may block a request (even when

there is sufficient bandwidth) to save bandwidth for more

profitable requests arriving later. We refer the interested

reader to [8, Ch. 4] for a detailed discussion on optimal

admission policies. Our focus in this study is on the im-

pact of the caching policy on the revenue; we assume com-

plete sharing as a baseline admission policy that is simple

to describe and administer.

The maximization of the long run revenue rate R(
)

over all possible caching strategies (i.e., cache configu-

rations 
) is a difficult stochastic optimization problem,

that — to the best of our knowledge— is analytically in-

tractable. To illustrate the problem consider a scenario

where all video layers have the same rate r and length T ,

i.e., r
l

(m) = r and T (m) = T for all l = 1; : : : ; L, and all

m = 1; : : : ;M . In this scenario all object layers have the

size rT . Thus, we can cache up to G=(rT ) object layers

(which we assume to be an integer for simplicity). Sup-

pose that during the observation period used to estimate

the stream popularities, the proxy has recorded requests

for M distinct objects from its client community. Thus,

there are a total of ML object layers to choose from when

filling the cache (with “hot” new releases there might even

be more objects to consider). Typically, the cache can ac-

commodate only a small subset of the available object lay-

ers, i.e., G=(rT ) � ML. For an exhaustive search there

are

�

ML

G=(rT )

�

possibilities to fill the cache completely;

a prohibitively large search space even for small ML.

Recall that with layered encoded video a particular en-

hancement layer can only be decoded if all lower quality

layers are available. Therefore, a reasonable restriction of

the search space is to consider a particular enhancement

layer for caching only if all lower quality layers of the

corresponding object are cached. Even the “reasonable”

search space, however, is prohibitively large for moderate

ML; withM = 50, L = 2, G=(rT ) = 20, for instance, there

are 2:929 � 10

16 possibilities to fill the cache completely.

TABLE I

UTILITY DEFINITIONS.

Popularity utility u

l;m

=

P

L

j=l

p(j;m)

Revenue utility u

l;m

=

P

L

j=l

R(j;m)p(j;m)

Revenue density utility u

l;m

=

P

L

j=l

R(j;m)p(j;m)

r

j

(m)T (m)

Because the maximization problem max




R(
) subject

to S(
) � G is analytically intractable and exhaustive

searches over 
 are prohibitive for realistic problems, we

propose heuristics for finding the optimal cache composi-

tion 
.

A. Utility Heuristics

The basic idea of our utility heuristics is to assign

each of the ML object layers a cache utility u

l;m

; l =

1; : : : ; L; m = 1; : : : ;M . The object layers are then

cached in decreasing order of utility, that is, first we cache

the object layer with the highest utility, then the object

layer with the next highest utility, and so on. If at some

point (as the cache fills up) the object layer with the next

highest utility does not fit into the remaining cache space,

we skip this object layer and try to cache the object layer

with the next highest utility. Once a layer of an object has

been skipped, all other layers of this object are ignored as

we continue “packing” the cache. We propose a number of

definitions of the utility u
l;m

of an object layer; see Table I

for an overview.

The popularity utility is based exclusively on the stream

popularities; it is defined by u
l;m

= p(l;m)+p(l+1;m)+

� � � + p(L;m). This definition is based on the decod-

ing constraint of layered encoded video, that is, an object

layer l is required (i.e., has utility) for providing l–quality

streams (consisting of layers 1 through l), l + 1–quality

streams, : : : , and L–quality streams. Note that u
l;m

is the

probability that a request involves the streaming of layer l

of object m. Also, note that by definition u

l;m

� u

l+1;m

for l = 1; : : : ; L � 1. This, in conjunction with our pack-

ing strategy ensures that a particular enhancement layer is

cached only if all corresponding lower quality layers are

cached.

B. Evaluation of Heuristics

In this section we present some numerical results from

both analytical and simulation experiments to evaluate var-

ious aspects of the heuristics algorithms. The analytical

experiments based on exhaustive optimal search are car-

ried out to evaluate the proximity of the solution provided

by the heuristics algorithm to the actual optimal solution.
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The simulation experiments, on the other hand, are carried

out to verify the correctness of blocking probability calcu-

lation used by the heuristics algorithm.

We assume that there are 1000 different movies, each

encoded into two layers. The characteristics of each movie

are defined by the rate for each layer and its length. The

rate for each layer is drawn randomly from a uniform dis-

tribution between 0.1 and 3 Mbps, while the length of the

movie is drawn from an exponential distribution with an

average length of 1 hour.

In the simulation experiments client requests arrive ac-

cording to a Poisson process. The average request arrival

rate is 142 Erlangs. The client can request either a base

layer only or a complete movie. The request type and the

movie requested are drawn randomly from a Zipf distribu-

tion with a parameter of � = 1:0. The revenue for each

movie layer is uniformly distributed between 1 to 10.

The results of interest will be the revenue per hour and

the blocking probabilities. To obtain the results with 99%

confidence intervals, we run the experiments with different

random seeds and we require a minimum of 10000 runs

before calculating the confidence intervals. In each run

we randomly assign the popularities of movies from the

Zipf distribution, the rates and the lengths of the movie

layers. The results are calculated as the average value of

the revenue per hour from all the runs until the confidence

intervals are reached.

We first tested the performance of our heuristics in small

problems in order to be able to compare the heuristic

against the “reasonable” exhaustive search. For the small

problems we set M = 10 with each movie having two

layers. We varied the link bandwidth C between 3 and

15 Mbit/s and the cache capacity between 3 and 7 Gbytes.

The cache could therefore store on the average between

3.5 and 7.6 layers out of the total 20 layers, or between

23.1 and 41.7% of the total movie data.

The results of the small problems are shown in Table II.

In Table II we show the average error obtained with each

heuristic compared to the “reasonable” exhaustive search

for four different cache configurations. The Small Link

and Large Link refer to link capacities of 3 Mbit/s and

15 Mbit/s, respectively, and Small Cache and Large Cache

refer to 3 Gbyte and 7 Gbyte caches, respectively.

As we can see, our heuristics achieve performance very

close to the optimum in most cases. Only when both the

link and the cache are small is there any marked difference

in performance. This is largely due to the small link ca-

pacity, only 3 Mbit/s, which allows us to stream only one

movie on the average. As both the link and cache grow in

size, we can achieve the same performance as the optimal

caching strategy.
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Fig. 2. Revenue as function of link capacity for 3 different cache

sizes

To test the performance of our heuristics in real-world

size problems, we ran the heuristics for 1000 movies. We

varied the cache size between 12 and 560 Gbytes. The

cache could therefore hold on the average between 13.9

and 625 layers, or between 0.9 and 41.7% of the total

movie data. Given the average length of a movie T

avg

,

the average rate of a movie r

avg

, and the client request

rate �, we would need on the average T
avg

r

avg

� Mbit/s of

bandwidth to stream all the requested movies. We varied

the link capacity between 10 and 150 Mbit/s, or between 1

and 15% of the total bandwidth required.

Because running the exhaustive search was not feasible

for problems this large, we approximated the best possible

performance by calculating the revenue when the block-

ing probability was zero. This means that all client re-

quests are always satisfied and it provides us with an up-

per limit on the achievable revenue. In reality, this upper

limit is not reachable unless the link and cache capacities

are sufficiently large to ensure that no client requests are

ever blocked. In our tests the smallest observed blocking

probabilities were around 0.005%.

In Fig. 2 we show the revenue relative to the no block-

ing case obtained with 3 different cache sizes as a func-

tion of the link capacity. We can see that the revenue den-

sity heuristic performs the best overall and that the per-

formance difference is biggest when the link capacity is

smaller. As the link capacity increases, the performance

difference disappears. We also see that the popularity

heuristic has the worst overall performance.

In Fig. 3 we show the revenue obtained with 2 differ-

ent link capacities as a function of the cache size. Here

the difference between revenue density heuristic and the

others is clearer. For example, with a 1% link and a 20%

cache (10 Mbit/s link and a cache of 250 Gbytes in our

case), revenue density heuristic achieves 87% of the up-

per limit while the revenue heuristic achieves only 79%.

Again, as in Fig. 2, when we have enough link and cache

capacity, the difference between the heuristics disappears.
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TABLE II

AVERAGE ERROR OF HEURISTICS IN SMALL PROBLEMS

Small Link Large Link

Utility heuristic Small Cache Large Cache Small Cache Large Cache

Popularity 1.6% 2.4% 0.006% 0%

Revenue 2.8% 0.4% 0.1% 0%

Revenue density 0.3% 0.3% 0.1% 0%
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Fig. 3. Revenue as function of cache size for 2 different link

capacities

To illustrate the tight confidence intervals we observed, we

plot the revenue density heuristic in the 1% link case with

the 99% confidence intervals.

Overall, we can conclude that the revenue density util-

ity heuristic has the best performance of the three heuris-

tics studied. This is especially true in situations where we

have a shortage of one of the resources, link capacity or

cache size. This implies that the revenue density heuristic

predicts the usefulness of a layer more accurately than the

other two heuristics.

In Fig. 4 we show the revenue obtained with the rev-

enue density heuristic as a function of both link capacity

and cache size. We observe that if we have a shortage of

both resources, we should first increase the cache before

increasing the link capacity. We see that when the cache

size is around 20% of the total movie data (250 Gbytes

in our case), further increase in cache size provides only

small gains in revenue. At this point, increasing the link

capacity provides larger gains in revenue. This behavior

can also be observed in Figs. 2 and 3 where we can see

that the revenue increases roughly linearly with the link

capacity and roughly logarithmically with the cache size.

In Fig. 5 we show the expected blocking probability for

the revenue density heuristic. Note that the plot shows

1 � B(
) and smallest expected blocking probability is

therefore obtained when the curve is close to 1.

We also studied the effects of varying the parameter �

in the Zipf-distribution and varying the client request rate,

�. Previous studies in Web caching and server access dy-
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namics have found that � can vary from 0.6 in Web prox-

ies [9] up to 1.4 in popular Web servers [10]. We studied

four different values of � , namely 0.6, 0.8, 1.0, and 1.3.

In Fig. 6 we show the revenue obtained with each of the

four parameter values for three different link capacities as

a function of the cache size. We can see that the curves

corresponding to one value of � are close together and that

there is a significant difference in groups of curves belong-

ing to different values of � . This implies that a decrease in

� (movies become more equally popular) requires signifi-

cant increases in link capacity and cache size to keep the

revenue at the same level. On the other hand, should �

increase (small number of movies become very popular),

we can achieve the same revenue with considerably less

resources.

In Fig. 7 we show the effects of varying the client re-

quest rate. We plot curves for three different values of �

for two different link capacities. The curves for “Low � at

6% link” and “Medium � at 10% link” fall on top of each

other. We can clearly see that the client request rate has
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much less effect on the revenue than the Zipf-parameter.

In some cases, it is possible to counter the changes in re-

quest rate by increasing the link capacity or cache size. For

example, if the request rate goes from Low to Medium, in-

creasing the link capacity from 6% to 10% (60 Mbit/s to

100 Mbit/s in this case) keeps the revenue the same.

In conclusion, all three of our heuristics perform well

under many different link and cache size combinations.

The revenue density heuristic achieves the best perfor-

mance under constrained conditions.

IV. NEGOTIATION ABOUT STREAM QUALITY

In this section we study a negotiation scheme where in

case the client’s original request is blocked, the service

provider tries to offer a lower quality stream of the re-

quested object. The client may then settle for this lower

quality stream. The question we address is: how much

additional revenue is incurred with this “negotiation.” As

we shall demonstrate, this intuitively quite appealing ap-

proach adds very little to the revenue in most situations.

For simplicity we focus in this section on video objects

that are encoded into L =2 layers: a base layer and one

enhancement layer. (Our arguments extend to the case of

more encoding layers in a straightforward manner.) Sup-

pose that a client requests a 2–quality stream (consisting of

base layer and enhancement layer) of object m. Suppose

that the cache configuration is given by 
. Clearly, the

original request can only be blocked if not all requested

layers are cached, that is, if 

m

< 2. If the client’s original

request for a 2–quality stream of object m is blocked the

service provider tries to offer a 1–quality (i.e., base layer)

stream of the object. The service provider is able to make

this offer if the base layer stream is not blocked.

Note that the negotiations increase the arrival rates of re-

quests for base layer streams. This is because the blocked

2–quality stream requests “reappear” as base layer stream

requests. With negotiations the arrival rates of base layer

stream requests depend on the blocking probabilities of 2–

quality stream requests, that is, the system becomes a gen-

eralized stochastic knapsack [8, Ch. 3]. Calculating the

blocking probabilities of the generalized stochastic knap-

sack, however, is quite unwieldy. Therefore we approx-

imate the blocking probabilities of the streaming system

with negotiations. In typical streaming systems the block-

ing probabilities are small, typically less than 5 %. The

increase in the arrival rates of base layer stream requests

is therefore relatively small. We approximate the blocking

probabilities of the system with negotiations by the block-

ing probabilities of the system without negotiations. The

probability that the client’s original request for a 2–quality

stream of object m is blocked is approximately B



(2;m).

The probability that the corresponding base layer stream

is not blocked is approximately 1 � B




(1;m). Suppose

that the client accepts the quality degradation with prob-

ability P

a



(m). If the client does not accept the offer

the negotiation terminates. Thus, given that the negotia-

tion is entered, it ends in a success (i.e., service provider

and client settle for a base layer stream) with probability

(1 � B




(1;m))P

a



(m). The long run rate (successful

negotiations per hour) at which negotiations settle for a

base layer stream of object m is �p(2;m)B




(2;m)(1 �

B




(1;m))P

a



(m). Suppose that each successful nego-

tiation resulting in the delivery of a base layer stream of

object m incurs a revenue of R
neg

(1;m) (which may be

different from R(1;m) as the service provider may offer

the base layer at a discount in the negotiation). Thus, the

long run total rate of revenue incurred from successful ne-

gotiations is

R

neg

(
) = �

M

X

m=1

R

neg

(1;m)p(2;m)B




(2;m)

(1�B




(1;m))P

a



(m):

The long run total rate of revenue of the streaming ser-

vice with negotiations is R(
)+R

neg

(
), where R(
), the

revenue rate incurred from serving first–choice requests, is

given by (2).



INFOCOM 2001 8

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0
10

20
30

40
50

0

5

10

15
0

0.2

0.4

0.6

0.8

1

Cache size (% total)Link capacity (% total)

In
c
re

a
s
e
d
 r

e
v
e
n
u
e
 f
ro

m
 r

e
n
e
g
o
ti
a
ti
o
n

Fig. 8. Increased revenue from renegotiation

A. Numerical Results

We experimented with adding the renegotiation revenue

to our tests. We first tested the quality of the approxima-

tion used in calculating the blocking probability of the sys-

tem with renegotiation against the simulation results. We

varied the link capacities between 10 to 120 Mbps. Our

results show a close approximation of the analysis to the

simulation results with an average error of 0.4–0.5% for

12 Gbyte cache and 0.7–1.1% for 560 Gbyte cache.

Fig. 8 shows how much extra revenue renegotiation

could bring relative to the baseline revenue R(
). The rev-

enue in Fig. 8 is based on the assumption that the client

will always accept the lower quality version if one is avail-

able, i.e., P
a



(m) = 1 for m = 1; : : : ;M . We also as-

sumed that R
neg

(1;m) = R(1;m) for m = 1; : : : ;M ,

i.e., the revenue from the renegotiated stream is the same

as if the client had requested the lower quality stream in the

first place. These two assumptions give us the maximum

possible gain from renegotiation.

As we can see from Fig. 8, the largest gains from rene-

gotiation are achieved when the cache size is extremely

small, only 1–2% of the total amount of data. The rene-

gotiation gains are almost insensitive to link capacity with

the exception of very small link capacities where the gains

are slightly smaller. The maximum gain we observed is

around 20% and the gain drops sharply as the cache size

increases. The maximum gain would decrease as the client

acceptance probability P

a



decreases. Also, if the cache

size and link capacity are large, the potential gain from

renegotiation is typically well below 1%. We can there-

fore conclude that renegotiation, although intuitively ap-

pealing, does not provide any significant increase in rev-

enue in most situations. This is because renegotiation is

only applicable to blocked requests and one of the goals of

a cache operator would be to keep the expected blocking

probability as low as possible.

0 2 4 6 8 10 12 14 16
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Link capacity (% total)

In
c
re

a
s
e

d
 r

e
v
e

n
u

e
 f

ro
m

 q
u

e
u

e
in

g
 r

e
q

u
e

s
ts

Arrival − 4% cache  
Resource − 4% cache 
Revenue − 4% cache  
Arrival − 16% cache 
Resource − 16% cache
Revenue − 16% cache 
Arrival − 40% cache 
Resource − 40% cache
Revenue − 40% cache 

Fig. 9. Increased revenue from queueing requests for buffer size

of 100

V. QUEUEING OF REQUESTS

In this section we study a request queueing scheme

where in case the client’s request is blocked, the service

provider queues the request. With the queueing strategies,

we expect that the queued requests make use of the re-

sources released by currently served requests. This has the

potential of increasing the resource utilization and thus,

bringing additional revenue. The question is how much

additional revenue does it bring.

We use simulation experiments to answer this question.

To align the experiments with the real-world practice, we

assume that a client will cancel its request after waiting for

some time, referred to as the request timeout period. We

model the timeout period using an exponential distribution

with an average of 5 minutes.

We assume that the queue is of a finite size. An in-

coming request finding a full buffer will be blocked. We

consider three different strategies for ordering the requests

in the queue, i.e., based on the order of request arrivals,

their required resources and the potential revenues.

Fig. 9 shows how much extra revenue queueing of re-

quests could bring relative to the baseline revenue R(
).

As we can see from the figure, the gain from introducing

the queue is very small. The gain is not affected by the

cache size. The gain generally increases with the link ca-

pacity.

With the limited bandwidth of the bottleneck link, which

causes request blocking in the first place, the serving of

one request from the queue will mean the blocking of an-

other incoming request. This results in a near zero gain

in the number of requests served. A possible gain can

be achieved by changing the request service strategies, for

example by serving the request according to the potential

revenue that it brings.
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VI. IS PARTIAL CACHING USEFUL ?

Consider a streaming system where clients are only in-

terested in complete streams (consisting of all L layers)

and no revenue is incurred for partial streams (consisting

of less than L layers). The question we address is: in such

a system is caching of partial streams (e.g., base layers)

beneficial? Interestingly, the answer appears to be no.

We focus on the homogeneous two–layer case where

the video objects are encoded into L = 2 layers: a base

layer of rate r

1

(m) and one enhancement layer of rate

r

2

(m). For simplicity we assume that (1) all videos have

the same layer rates, i.e., r
1

(m) = r

b

and r
2

(m) = r

e

for

m = 1; : : : ;M , and (2) all videos have the same length

T . We study a system where clients request only com-

plete streams (consisting of both base layer and enhance-

ment layer), i.e., p(1;m) = 0 for m = 1; : : : ;M . For

ease of notation we write p(m) for p(2;m) and note that
P

M

m=1

p(m) = 1. We order the video objects from most

popular to least popular; thus, p(m) � p(m + 1); m =

1; : : : ;M � 1. In the considered system no revenue is in-

curred for streams consisting of only the base layer, i.e.,

R(1;m) = 0. We assume that all complete streams incur

the same revenue, i.e., R(2;m) = R for m = 1; : : : ;M .

We investigate a caching strategy that caches both base

and enhancement layer of very popular video objects.

For moderately popular objects only the base layer is

cached (and the enhancement layer is streamed upon re-

quest over the bottleneck link of capacity C). For rel-

atively unpopular objects neither base nor enhancement

layer is cached. Let N
1

denote the number of completely

cached objects. Clearly, 0 � N

1

� bG=(r

b

+ r

e

)T )
 :=

N

max

1

. Let N
2

denote the number of cached base lay-

ers. The N

1

completely cached objects take up the

cache space N

1

(r

b

+ r

e

)T . Hence, 0 � N

2

�

b(G�N

1

(r

b

+ r

e

)T )=(r

b

T )
 := N

max

2

. The investigated

caching strategy caches base and enhancement layer of the

N

1

most popular objects, that is, objects 1; : : : ; N

1

. It

caches the base layers of the N
2

next most popular objects,

that is of objects N
1

+ 1; : : : ; N

1

+N

2

.

The probability that a request is for a completely cached

object is P
1

=

P

N

1

m=1

p(m). The probability that a re-

quest is for an object for which only the base layer has

been cached is P
2

=

P

N

1

+N

2

m=N

1

+1

p(m). Note that the prob-

ability that a request is for an object which has not been

cached at all is P
3

= 1� P

1

� P

2

.

We model the bottleneck link connecting the cache to

the wide area network again as a stochastic knapsack [8].

The bottleneck link is modeled as a knapsack of capacity

C . We refer to streams of completely cached video objects

as class 1 streams. Class 1 streams consume no bandwidth

on the bottleneck link, that is, b
1

= 0. The arrival rate

of class 1 streams is �
1

= �P

1

. Streams of video objects

for which only the base layer is cached are referred to as

class 2 streams. Class 2 streams consume the bandwidth

b

2

= r

e

. The arrival rate for class 2 streams is �
2

= �P

2

.

Streams of video objects which have not been cached at all

are referred to as class 3 streams. Class 3 streams consume

the bandwidth b

3

= r

b

+ r

e

and have an arrival rate of

�

3

= �P

3

. All streams have a fixed holding time T .

Our objective is to maximize the total long run rev-

enue rate, or equivalently, the long run throughput of re-

quests (i.e., the long run rate at which requests are granted

and serviced). Towards this end let TH
k

denote the long

run throughput of class k requests. Also, let TH de-

note the long run total throughput of requests. Clearly,

TH = TH

1

+TH

2

+TH

3

. Let B
k

denote the probability

that a request for a stream of class k is blocked. Obviously,

B

1

= 0 since class 1 streams do not consume any band-

width. Thus, TH = �[P

1

+ P

2

(1�B

2

) + P

3

(1�B

3

)℄.

A. Numerical Results

We used the same experiment setup as for evaluating

the performance of the utility heuristics in Section III-B.

In fact, we can consider the partial caching case as a spe-

cial case of the utility heuristics. Note that for the par-

tial caching case the utilities of the base and enhancement

layer of a given movie are the same and thus base layer

and enhancement layer are cached together.

In our experiments we question the usefulness of par-

tial caching where a portion of the cache is reserved for

caching base layers only. Doing so allows us to cache

(at least the base layers of) a larger number of movies for

the same cache size. An intuitive question to follow is

whether trunk reservation is beneficial. With trunk reser-

vation a portion of the link bandwidth, say C
2

= x% of C ,

x = 0 � 100, is reserved for streaming the enhancement

layers of the class 2 movies which have base layers in the

cache. We naturally expect that a combination of these two

strategies may give us the best throughput.

Fig. 10 shows the normalized throughput as a function

of the percentage of cache space used for caching com-

plete movies. The figure also shows the throughput for

different link reservation and cache sizes. The link reser-

vation of 0% implies a complete sharing of the link band-

width between class 2 and class 3 streams. This case can

be analyzed using the stochastic knapsack formulation, see

Section II-C, which gives us the blocking probabilities B
2

and B

3

and hence the throughput. On the other hand, the

link reservation of 100% implies a total blocking of class

3 streams. The link is solely used for streaming enhance-

ment layers for class 2 streams which have base layers
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Fig. 10. Normalized throughput for partial caching and trunk

reservation with C = 150 Mbps
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Fig. 11. Normalized throughput for partial caching and trunk

reservation with different Zipf parameters

cached. As we have only one traffic class, this case can

be analyzed using the Erlang–B formula with the number

of trunks being C=r

e

. For the other cases with the link

reservations between 0 to 100%, we use simulations to

obtain the throughput. In the figure we plot the normal-

ized throughput for link reservations in an increment of 25

Mbps for a link bandwidth C = 150 Mbps.

The results confirm our intuition that once the base lay-

ers are cached, it is beneficial to reserve some bandwidth

to give us an optimum throughput. For example, if we re-

serve 30% of the cache space for complete movies, which

also means that we reserve 70% of the cache for base lay-

ers, then reserving any amount of bandwidth for streaming

class 2 movies will give us better throughput than com-

plete sharing. However, the figure shows that the maxi-

mum throughput for all cases is always achieved when we

use the entire cache for caching complete movies. In this

case, there is no class 2 streams and thus, the link is used

exclusively for streaming the class 3 movies.

Fig. 11 shows the effect of varying the popularity of

the movies. We observe that the proportion of the cache

space that needs to be reserved to achieve the optimum

throughput for the partial caching case changes with the

Zipf parameter. This makes it harder to dimension the

cache properly to achieve the optimum throughput at all

times. Considering this difficulty and the fact that reserv-

ing the entire cache for caching complete movies give the

maximum throughput, our experiments indicate that the

partial caching is not beneficial.

VII. RELATED WORK

There are only few studies on distributing video objects

with caches, all of which are complementary to the issues

studied in this paper. Rejaie et al. propose a proxy caching

mechanism [11] in conjunction with a congestion control

mechanism [12, 13] for layered–encoded video. The ba-

sic idea of their caching mechanism is to cache segments

of layers according to the objects’ popularities: the more

popular an object, the more complete are the individual

layers cached and the more layers are cached (partially).

When streaming an object to a client, the layer segments

that are not cached at the proxy are obtained from the ori-

gin server.

A related idea is explored by Wang et al. in their study

on video staging [14]. With video staging the part of the

VBR video stream, that exceeds a certain cut–off rate (i.e.,

the bursts of a VBR stream) is cached at the proxy while

the lower (now smoother) part of the video stream is stored

at the origin server.

Sen et al. [15] propose to cache a prefix (i.e., the ini-

tial frames) of video streams at the proxy and to employ

work–ahead smoothing while streaming the object from

the proxy to the client. The cached prefix hides the poten-

tially large initial start–up delay of the work–ahead trans-

mission schedule from the client.

Tewari et al. [16] propose a Resource Based Caching

(RBC) scheme for video objects encoded into one CBR

layer. They model the cache as a two resource (storage

space and bandwidth) constrained knapsack and study re-

placement policies that take the objects’ sizes as well as

CBR bandwidth into account. The replacement policies

are evaluated through simulations. Our work differs from

RBC in that we develop an analytical stochastic knapsack

model for the two resource problem. Moreover, we an-

alyze a streaming system where videos are encoded into

multiple layers.

VIII. CONCLUSION

In this paper we have formulated an analytical stochas-

tic knapsack model for the layered video caching problem.

We have proposed three different heuristics for determin-

ing which layers of which videos to cache. Through ex-

tensive numerical experiments we have found that all our

heuristics perform well and that the best performance is

obtained with the revenue density heuristic. Our heuris-

tics are useful for cache operators in both provisioning the
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caching system as well as deciding on-line the gain from

caching a given layer of a given video. To the best of our

knowledge, this is the first study to consider an analytical

model of this 2-resource problem.

We also considered two intuitive extensions, renegotia-

tion and queueing of requests, but found that they provide

little extra gain to the cache operator. As a special case

we considered a situation where clients only request com-

plete video streams. Our results indicate that in this spe-

cial case, best performance is obtained if videos are cached

completely.

APPENDIX

I. CALCULATION OF BLOCKING PROBABILITIES

B




(j;m)

In this appendix we give an overview of the calculation

of the blocking probabilities B




(j;m), which are non–

zero for 

m

< j. We calculate the blocking probabil-

ities using results from the analysis of multiservice loss

models. We refer the interested reader to [8] for a de-

tailed discussion of this analysis. We model the bottle-

neck link for continuous media streaming from the ori-

gin servers to the proxy server as a stochastic knapsack

of capacity C . We model requests for j–quality streams

of object m as a distinct class of requests. Let b



=

(b




(j;m)); m = 1; : : : ;M; j = 1; : : : ; L, be the vec-

tor of the sizes of the requests. Note that this vector has

ML elements. Recall that a request for a j–quality stream

of object m of which the 

m

–quality stream is cached re-

quires the bandwidth
P

j

l=


m

+1

r

l

(m) on the bottleneck

link; hence b



(j;m) =

P

j

l=


m

+1

r

l

(m) for 

m

< j and

b




(j;m) = 0 for 

m

� j. Without loss of generality

we assume that C and all b



(j;m)’s are positive integers.

Let n = (n(j;m)); m = 1; : : : ;M; j = 1; : : : ; L, be

the vector of the numbers of b



(j;m)–sized objects in the

knapsack. The n(j;m)’s are non–negative integers. Let

S




= fn : b




�n � Cg be the state space of the stochastic

knapsack, where b



� n =

P

M

m=1

P

L

j=1

b




(j;m)n(j;m).

Furthermore, let S



(j;m) be the subset of states in which

the knapsack (i.e., the bottleneck link) admits an object of

size b



(j;m) (i.e., a stream of rate
P

j

l=


m

+1

r

l

(m)). We

have S



(j;m) = fn 2 S




: b




� n � C � b




(j;m)g The

blocking probabilities can be explicitly expressed as

B




(j;m) = 1�

P

n2S




(j;m)

Q

M

m=1

Q

L

j=1

(�(j;m))

n(j;m)

=(n(j;m))!

P

n2S




Q

M

m=1

Q

L

j=1

(�(j;m))

n(j;m)

=(n(j;m))!

;

where �(j;m) = �p(j;m)T (m). Note that �(j;m) is the

load offered by requests for j–quality streams of object

m. The blocking probabilities can be efficiently calculated

using the recursive Kaufman–Roberts algorithm [8, p. 23].

The time complexity of the algorithm is O(CML). The

complexity is linear in the bandwidth C of the bottleneck

link and the number of objects M , which can be huge. The

complexity is also linear in the number of encoding layers

L, which is typically small (2 – 5).
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