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Abstract

Integrated services networks perform call admission control before accepting a new connec-

tion to ensure that the QoS requirements of all connections are met. Rather than relying on

a priori tra�c descriptors (such as leaky buckets), which often poorly characterize the actual

tra�c, measurement{based admission control bases admission decisions on measurements of

the actual tra�c. In this paper we �rst develop a novel Large Deviations (LD) approach to

measurement{based admission control. We then provide an extensive review of the existing

literature on measurement{based admission control. We conduct simulation studies with traces

of MPEG 1 encoded movies to compare the performance of the admission rules in the literature

with that of our Large Deviations approach. We demonstrate that our LD approach achieves

higher link utilizations. Finally, we compare the performance of measurement{based admission

control with that of traditional admission control, which relies on a priori tra�c descriptors.

Our numerical work indicates that measurement{based admission control achieves signi�cant

gains in link utilizations over traditional admission control.

1 Introduction

Call admission control is performed in Integrated Services networks to ensure that the connections'

Quality of Service (QoS) requirements are met. A call admission test is performed before a new

connection is accepted. The new connection is accepted if and only if the network is able to meet

the QoS requirements of all already existing connections as well as the new connection.

Traditional call admission tests are based on a priori characterizations (e.g. leaky bucket char-

acterizations) of the connections' tra�c [1]. Oftentimes, however, it is di�cult, if not impossible,

to provide an accurate a priori characterization of a connection's tra�c. This is especially true for

tra�c emanating from live sources, such as the video tra�c from the live coverage of a sporting

event. Even if accurate a priori characterizations are available, however, traditional call admission

tests typically over{provision networking resources. This is because traditional call admission tests
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usually assume that the connections are adversarial to the extent permitted by the a priori char-

acterizations and transmit worst{case tra�c patterns [2, 3, 4, 5, 6]. This assumption, however, is

often overly conservative, as in most practical circumstances connections do not transmit worst{

case tra�c patterns. As a consequence traditional call admission tests typically over{provision

networking resources and thus underutilize the network.

Measurement{based admission control is a promising alternative to admission control based on a

priori tra�c descriptors. Instead of relying on a priori tra�c characterizations, measurement{based

admission control bases admission decisions primarily on tra�c measurements. Admission decisions

are based on measurements of the actual tra�c from the already existing connections and an a priori

characterization of the connection requesting establishment. The a priori characterization of the

connection requesting establishment can be very simple, such as a peak rate speci�cation. An overly

conservative a priori characterization does not result in an over{provisioning of resources for the

entire lifetime of the new connection, as the new connection | once admitted | is included in the

measurements and is no longer characterized by its a priori speci�cation. Thus measurement{based

admission control is able to exploit the statistical multiplexing e�ect and achieves high network

utilizations.

In this paper we discuss measurement{based admission rules that base admission decisions on

measurements of the aggregate tra�c from the already existing connections. We do not consider

admission rules that require per{
ow tra�c measurements, as it is di�cult to conduct per{
ow

measurements accurately and cost{e�ciently in practice. Admission tests based on aggregate mea-

surements can not enforce per{
ow QoS; these would require per{
ow measurements which are not

practicable. Therefore, in this paper we focus on measurement{based admission rules that provide

aggregate QoS. We study the measurement-based admission rules within the smoothing/bu�erless

multiplexing framework [5, 6]. The key aspects of the smoothing/bu�erless multiplexing framework

are to (1) pass each connection's tra�c through a bu�ered smoother (peak rate limiter) at the con-

nection's input to the network, and (2) use bu�erless statistical multiplexing inside the network.

The bu�erless multiplexing inside the network has the advantage that a new connection's a priori

characterization (e.g. peak rate) does not change as it passes through a bu�erless node. Thus the

same a priori characterization can be used for the admission test at each node traversed by the

new connection. However, to simplify the discussion and highlight the measurement aspect of the

admission rules we focus on a single bu�erless node in this paper.

The contributions of this paper are threefold. First, we develop and evaluate a novel Large

Deviations (LD) approach to measurement{based admission control. In this LD approach tra�c

measurements are used to estimate the logarithmic moment generating function of the aggregate

arrival stream. From this estimate of the logarithmic moment generating function we compute

an estimate of the loss probability at the node using the LD approximation. A new connection

requesting establishment is accepted if the estimated loss probability is less than some miniscule

QoS parameter �, say � = 10

�6

, and rejected otherwise. Secondly, we provide an extensive review

of the existing literature on measurement{based admission control. We compare the performance
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Figure 1: The tra�c of connection j is passed through a smoother that limits the peak rate to c

�

j

.

The smoothed tra�c is then multiplexed onto a bu�erless link with capacity C.

of the measurement{based admission rules in the literature with that of our LD approach through

simulations with traces of MPEG 1 encoded movies. The simulations demonstrate that our LD

approach achieves both higher link utilizations and smaller loss probabilities than the existing ad-

mission rules. Lastly, we compare the performance of measurement{based admission control with

that of traditional admission control which relies exclusively on a priori tra�c characterizations. We

demonstrate that measurement{based admission control achieves signi�cantly higher link utiliza-

tions than traditional admission control that relies on leaky bucket characterizations and assumes

worst{case on{o� tra�c patterns.

2 A Large Deviations Approach to Measurement{Based Admis-

sion Control

In this section we develop our Large Deviations (LD) approach to measurement{based admission

control. We develop a basic admission rule �rst and study then some important re�nements. We

focus throughout this paper on a single node consisting of a bu�erless multiplexer that feeds into

a link of capacity C. We view tra�c as 
uid. The 
uid model, which closely approximates a

packetized model with small packets, permits us to focus on the central issues and signi�cantly

simpli�es notation. Consider a set of J connections. In the smoothing/bu�erless multiplexing

framework each connection j; j = 1; : : : ; J , is passed through a bu�ered smoother before it is

multiplexed onto the bu�erless link. The smoother limits the peak rate of connection{j tra�c

entering the bu�erless multiplexer to c

�

j

(see Figure 1). Let U

j

(t); j = 1; : : : ; J , denote the rate at

which connection{j tra�c arrives to the bu�erless multiplexer at time t. The smoother ensures that

U

j

(t) � c

�

j

8t � 0. Now regard the jth arrival process as a stochastic process. Let (U

j

(t); t � 0)

denote the jth arrival process. Let X(t) denote the aggregate arrival rate at time t:

X(t) =

J

X

j=1

U

j

(t);
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and let (X(t); t � 0) denote the aggregate arrival process. The expected long{run fraction of tra�c

lost due to link over
ow is

P

loss

= E

"

lim

�!1

R

�

0

(X(t) � C)

+

dt

R

�

0

X(t)dt

#

; (1)

where the expectation is over all arrival processes and (x)

+

:= max(0; x).

Our goal is to develop a measurement{based call admission rule that ensures that P

loss

is

less than some minute �, such as � = 10

�4

or 10

�6

. The call admission decisions are based on

measurements of the aggregate arrival rate. In practical systems, however, it is impossible to

measure the instantaneous arrival rate X(t). For this reason, we divide time into slots of length T

and measure the amount of tra�c arriving in an interval of length T . Let X

n

denote the amount

of tra�c arriving in the interval [nT; (n+ 1)T ], i.e.,

X

n

=

Z

(n+1)T

nT

X(t)dt:

For small T we can reasonably approximate:

Z

(n+1)T

nT

(X(t) � C)

+

dt � (X

n

� CT )

+

: (2)

This approximation is particularly good when the 
uctuation of the aggregate arrival process

(X(t); t � 0) is on a time scale larger than the slot length T . The slot length should there-

fore be set to the smallest value that allows for meaningful tra�c measurements. In practical

systems we suggest to set T to a few packet transmission times. Throughout this paper we shall

assume that the approximation (2) is exact. Substituting (2) into (1) we obtain:

P

loss

= E

"

lim

N!1

P

N

n=0

(X

n

� CT )

+

P

N

n=0

X

n

#

: (3)

A practical measurement{based call admission rule can not rely on measurements over an

in�nite time horizon, but instead must base its decisions on some �nite portion of the history of the

aggregate streams behavior. We propose to base admissions decisions on the measured aggregate

arrivals in the past M slots, i.e., M � 1 is the measurement window. Before we describe our

admission rule in detail we need to introduce some notation. Let k denote the slot in which a new

stream with smoother rate c

�

k

requests connection establishment. Our admission rule relies on the

measured aggregate arrivals in slots k �M; : : : ; k � 1. Let x

i

; i = 1; : : : ;M , denote the measured

aggregate arrivals in slot k � i.

Now consider the random variable X

k

denoting the (not yet measured) aggregate arrivals in

slot k. De�ne the estimated loss probability P

est

loss

as follows:

P

est

loss

=

E[(X

k

� (C � c

�

k

)T )

+

]

E[X

k

]

: (4)

P

est

loss

is the expected fraction of tra�c lost by the already established connections at a bu�erless

link of capacity C � c

�

k

during slot k. Note that we are conservatively setting aside the peak rate
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c

�

j

smoother rate (= peak rate) of connection j in bit/sec

C service rate of multiplexer in bit/sec

� QoS parameter (= target loss probability)

k index of slot in which a new connection with

smoother rate c

�

k

requests establishment

m

X

estimate of average aggregate arrivals

in one slot in bit

P

est

loss

estimated loss probability; computed from m

X

and

�

X

(s) using Large Deviation approximation

P

loss

actual loss probability; obtained through simulation

T slot length in seconds

x

i

measured aggregate arrivals in slot k � i in bit

�

X

(s) estimate of logarithmic moment generating function

of aggregate arrivals in one slot

Table 1: Summary of notation.

c

�

k

for the stream requesting establishment. Our strategy is to base admission decisions on P

est

loss

. If

P

est

loss

� � connection k is admitted, otherwise it is rejected.

We evaluate P

est

loss

using the Large Deviations (LD) approximation. Toward this end, let m

X

denote the estimate of E[X

k

], the mean of X

k

. We compute the estimate m

X

by averaging over

the aggregate arrivals in slots k �M; : : : ; k � 1:

m

X

=

1

M

M

X

i=1

x

i

:

Furthermore, let �

X

(s) denote the estimate of lnE[e

sX

k

], the logarithmic moment generating func-

tion of X

k

. (The notation used in this paper is summarized in Table 1.) Again, we compute �

X

(s)

by averaging over the M latest measurements:

�

X

(s) = ln

1

M

M

X

i=1

e

sx

i

: (5)

Note that (5) generalizes the notion of the sample mean and allows for the estimation of arbitrary

moments of the aggregate arrival stream. For instance, we obtain the logarithm ofm

X

by evaluating

the derivative of �

X

(s) with respect to s at s = 0, i.e., �

0

X

(0) = lnm

X

. The LD approximation of

(4) is given by [1]

P

est

loss

�

1

m

X

s

?

2

q

2��

00

X

(s

?

)

e

�s

?

(C�c

�

k

)T+�

X

(s

?

)

; (6)

where s

?

is the unique solution to

�

0

X

(s

?

) = (C � c

�

k

)T: (7)
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In summary, our basic measurement{based admission rule works as follows: Suppose that in slot k

a connection with peak rate c

�

k

requests establishment and the QoS requirement is P

loss

� �. First,

we estimate the logarithmic moment generating function of the aggregate arrival stream based on

the measurements in the lastM slots using (5). We then estimate P

est

loss

using the LD approximation

(6) and admit connection k if P

est

loss

� �, otherwise connection k is rejected.

Simulation Results

We now evaluate the basic measurement{based admission rule using traces from MPEG 1 encoded

movies. We obtained the frame size traces, which give the number of bits in each video frame, from

the public domain [7]. The movies were compressed with the Group of Pictures (GOP) pattern

IBBPBBPBBPBB at a frame rate of F = 24 frames/sec. Each of the movie traces available from

[7] has N = 40,000 frames, corresponding to about 28 minutes. Let f

n

(j); n = 1; : : : ; N , denote

the size of the nth frame of video j in bits. We convert the discrete frame size trace to a 
uid 
ow

by transmitting the nth frame of video j at rate f

n

(j) � F over the interval [n � 1=F; n=F ]. The

numerical results reported in this paper were obtained with the \Silence of the Lambs" (lambs)

trace. The lambs trace is the burstiest trace available from the library of traces [7]. Speci�cally,

the lambs trace has an average frame size of 8,048 bit, which corresponds to an average rate of

193.2 kbit/sec. The trace has a peak{to{mean ratio of 18.4 and is therefore considered extremely

bursty. The lambs trace furthermore has a Hurst parameter of 0.92, which indicates a high degree

of Long Range Dependence [7]. Because of its burstiness and Long Range Dependence the lambs

trace poses a particular challenge for admission control. In the numerical experiments reported in

this paper all video streams use the lambs trace but each stream has its own independent random

phase.

We evaluate the measurement{based admission rule within the smoothing/bu�erless multiplex-

ing framework [5, 6]. Each video stream is passed through a smoother before it enters the bu�erless

multiplexer. The smoother for connection j consists of a bu�er which serves the tra�c at rate c

�

j

.

When the smoother bu�er is nonempty, tra�c is drained from the smoother at rate c

�

j

. When the

smoother bu�er is empty and connection{j's tra�c is arriving at a rate less than c

�

j

, tra�c leaves

the smoother exactly at the rate at which it enters the bu�er. The smoother thus limits the peak

rate of connection{j tra�c entering the multiplexer to c

�

j

. The smoother rate c

�

j

is set to the small-

est value that guarantees that the video tra�c is delayed by no more than a connection{speci�c

delay limit in the smoother (see [5] for details). We initially set the delay limit for all connections to

10 frame periods, i.e., 10/24 seconds. The corresponding smoother rate for the lambs trace is 731.6

kbit/sec. Throughout this paper we set the rate of the bu�erless multiplexer to C = 45 Mbit/sec.

We simulate the system consisting of smoothers and bu�erless multiplexer on a per frame period

basis. Throughout we set the slot length of the measurement algorithm to the length of one frame

period, i.e., T = 1=F . In the simulation calls arrive according to a Poisson process. We �x the call

arrival rate at 1 call/10 frame period; thus the time between call arrivals is exponentially distributed

with a mean of 10 frame periods. For each accepted call we draw a random starting frame. The
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M 50 100 200 500 1000

J

avg

204 201 198 192 183

P

loss

9:8 � 10

�4

6:0 � 10

�4

3:8 � 10

�4

1:9 � 10

�4

1:3 � 10

�4

M 2000 4000 6000 9000 12000

J

avg

171 147 131 107 93

P

loss

7:6 � 10

�5

5:3 � 10

�5

4:5 � 10

�5

2:8 � 10

�5

3:2 � 10

�5

Table 2: Evaluation of basic measurement{based admission rule. Average number of admitted

streams and loss probability for di�erent measurement window lengths. The QoS parameter is set

to � = 10

�6

.

starting frames are independent and uniformly distributed over [1; N ]. For each call we also draw

a random life time. In our �rst set of experiments we draw the life times from an exponential

distribution with a mean of 6,000 frame periods (= 250 seconds). With these parameters the link

operates in constant overload. To see this, note that the stability limit of the 45 Mbps link is 232

lambs streams, each with an independent exponentially distributed lifetime with a mean of 6,000

frame periods. We allow the simulation to warm up for 60,000 frame periods. We determined by

visual inspection that 60,000 frame periods is su�cient for the systems to reach steady state.

The goal of the simulations is to obtain estimates for the average number of admitted streams,

denoted by J

avg

, and the loss probability P

loss

(3). We estimate J

avg

and P

loss

using the method of

batch means [8]. We use a batch size of 6,000 frame periods. In order to ensure the independence

of the batches, we separate successive batches by 12,000 frame periods, twice the average life time

of a stream. We run each simulation until the width of the 90 % con�dence interval of the loss

probability is less than 20 % of the corresponding point estimate. We observed that the estimate

for the average number of admitted streams converges much faster than the estimate for the loss

probability. By the time the con�dence interval for the loss probability has converged to less than

20 % of the point estimate, the width of the 90 % con�dence interval for the number of admitted

streams is typically less than 1 % of the point estimate.

In the �rst set of simulation experiments we evaluate the basic measurement{based admission

rule. We set the QoS parameter to � = 10

�6

and run simulations for di�erent values of M , the

length of the measurement window. The results are reported in Table 2; in order to avoid visual

clutter only point estimates are reported. We observe from the table that the loss probabilities are

one to two orders of magnitude larger than the target loss probability � = 10

�6

.

Figure 2 shows typical sample path plots from the simulation of the basic measurement{based

admission rule with M = 6,000. The time axis is in units of slots of length 1=F seconds (= 1/24

seconds). Figure 2(a) shows the aggregate arrivals in each slot. Figure 2(b) shows P

est

loss

versus time.

P

est

loss

is only computed (and plotted) when a call requests establishment. Recall that the call inter

arrival times are exponentially distributed with a mean of 10 slots. Figure 2(c) shows the number

7



of admitted connections, J , versus time. We observe that the plots show strong oscillations. The

reason for these oscillations lies in the way the logarithmic moment generating function �

X

(s) (5)

(from which the loss probability P

est

loss

is computed) is estimated. Recall that �

X

(s) is estimated

by averaging over the measured aggregate arrivals in the past M slots (M = 6,000 slots in the

example shown). Consider the period from slot 64,800 to slot 71,000. P

est

loss

is larger than � = 10

�6

throughout this period and no new connections are admitted. The number of streams and the

aggregate arrivals are dropping as connections terminate. P

est

loss

, however, is slow to re
ect this drop

in utilization, as it is computed by equally weighing the aggregate arrivals in the past 6,000 slots.

P

est

loss

remains above the threshold � until around slot 71,000 when the peak in the aggregate arrivals

around slot 65,000 leaves the measurement window. After P

est

loss

drops below �many new connections

are admitted. P

est

loss

, however, continues to drop and reaches its minimum around slot 72,300 since

the newly admitted streams have initially little impact on the estimate of the logarithmic moment

generating function �

X

(s). The number of stream climbs quickly to 221 and the aggregate arrivals

exceed the link capacity of 1:875 �10

6

bit/slot (=45 Mbps � 1/24 sec) before P

est

loss

jumps to 1:4 �10

�5

around slot 73,000 and stops the acceptance of new streams.

These typical sample plots illustrate the shortcomings of the basic measurement{based admis-

sion rule. Weighing the measured aggregate arrivals in the measurement window uniformly results

in strong oscillations and poor system performance. The link is underutilized for extended periods

of time; hence J

avg

is relatively small. At the same time, however, the loss probability is fairly

large (and o� the target loss probability �) as the surges in the number of admitted streams lead

periodically to losses. We next try to improve the measurement{based admission rule by weighing

the more recent measurement more heavily when estimating the logarithmic moment generating

function.

2.1 Non{Uniform Weight Re�nement

In order to improve the performance of the Large Deviations admission rule, we now introduce an

important re�nement. The basic idea of this re�nement is to give the recent measurements more

weight when estimating the logarithmic moment generating function. In (5) all measurements

are weighed uniformly with 1=M . Our goal is to improve the measurement{based admission rule

by assigning weights larger than 1=M to recent measurements and weights smaller than 1=M to

older measurements. Toward this end, let p

i

; i = 1; : : : ;M , denote weights with 0 � p

i

� 1 and

P

M

i=1

p

i

= 1. Throughout this paper we use exponentially decaying weights:

p

i

=

e

�i=�

p

P

M

l=1

p

l

; i = 1; : : : ;M;

where �

p

is a tuning parameter. Setting �

p

=1 gives uniform weights p

i

= 1=M for i = 1; : : : ;M ,

which were used in the basic measurement{based admission rule. For �nite �

p

the weights for the

recent measurements are larger than the weights for older measurements. With the non{uniform

8



�

p

1 6000 3000 1200 600 300 120 60

J

avg

131 132 134 137 157 173 191 198

P

loss

4:5 � 10

�5

4:4 � 10

�5

4:0 � 10

�5

3:1 � 10

�5

6:2 � 10

�5

8:1 � 10

�5

1:6 � 10

�4

2:1 � 10

�4

M

e�

6,000 6,000 6,000 6,000 6,000 4,506 1,912 998

Table 3: Evaluation of measurement{based admission rule with non{uniform weights.

weights the estimates m

X

and �

X

(s) are computed as:

m

X

=

M

X

i=1

p

i

x

i

and �

X

(s) = ln

M

X

i=1

p

i

e

sx

i

: (8)

As before, these estimates are used to compute P

est

loss

(4) and the connection requesting establishment

is accepted if P

est

loss

� � and rejected otherwise. We refer to this call admission rule as measurement{

based admission rule with non{uniform weights.

Simulation Results

For the evaluation of the measurement{based admission rule with non{uniform weights we use the

same simulation approach as in Section 2. The QoS requirement is again set to � = 10

�6

. We set

the length of the measurement window to M = 6,000. This choice is intuitively appealing as the

average lifetime of a stream is 6,000 frame periods. In order to avoid unnecessary computation we

ignore measurements that are assigned weights less than 10

�9

. Thus, for small �

p

the number of

measurements considered when estimating the logarithmic moment generating function is less than

M ; we denote M

e�

for the number of samples actually used in the estimation. We note that the

computational complexity of the LD admission test is O(M

e�

). We found in our numerical experi-

ments that it takes typically M

e�

� 0.13 msec to perform one admission test on a SUN ULTRA 10

workstation. Finding s

�

(7) is computationally the most expensive step in the LD admission test.

We use Newtons method [9] for computing s

�

and start Newtons method with the s

�

of the last

admission test. Provided the call arrivals are not too far apart, s

�

changes only little from one

admission test to the next and Newtons method �nds the new s

�

with high accuracy after only a

few iterations.

Table 3 gives the average number of admitted streams, the loss probability andM

e�

for di�erent

values of �

p

. We see from the table that the average number of connections increases as �

p

decreases.

It is interesting to note that for decreasing �

p

the loss probability �rst decreases slightly and then

increases. However, the loss probability is generally over one order of magnitude larger than the

imposed QoS requirement. In Figure 3 we show typical sample path plots from the simulation for

�

p

= 300. It is instructive to compare these sample path plots with the plots for the admission

rule with uniform weights in Figure 2. When comparing the plots take note of the di�erent scales

on the axes; Figure 2 shows the plots over 20,000 time slots while Figure 3 shows the plots over

9



10,000 time slots and the scales on the y{axes are also di�erent. We observe from the �gures that

the non{uniform weights have reduced the oscillations signi�cantly. In the next section we try to

improve the admission rule by adding the so{called peak rate reservation re�nement.

2.2 Peak Rate Reservation Re�nement

To motivate the peak rate reservation re�nement consider a scenario where a stream, say stream

u, is admitted and a few slots later another stream, say stream v, requests establishment. When

conducting the admission test for stream v only a few aggregate arrival measurements that include

stream{u tra�c are available. These few measurements that include stream{u tra�c have little

impact on the estimated logarithmic moment generating function �

X

(s). Especially when the

measurement window is long and older measurements are assigned relatively large weights, the

few samples including stream u have very little in
uence on �

X

(s). The new stream u is therefore

underrepresented in �

X

(s) and the aggregate bandwidth demand is underestimated. As a result the

estimated loss probability P

est

loss

is too small and too many connections are admitted. In summary,

the problem with the measurement{based admission rules studied so far is that they \forget" the

peak rates of recently admitted streams even though the new stream's tra�c is not yet fully re
ected

in the measurements.

To �x this shortcoming we add a re�nement to the measurement{based admission rule with

non{uniform weights. This re�nement works roughly as follows. We keep a record of peak rates of

the recently admitted streams. When conducting an admission test this record is used to compute

a reserved peak rate denoted by c

�

. The reserved peak rate c

�

is computed by assigning weights

to the recorded peak rates. Peak rates of relatively new streams are assigned weights close to one,

while peak rates of relatively old streams are assigned weights close to zero. Thus, streams that

are relatively new are mostly accounted for by the reserved peak rate. On the other hand, stream

that have been established for a while are mostly accounted for by the tra�c measurements. The

reserved peak rate c

�

is then subtracted from the link capacity C when computing the estimated

loss probability P

est

loss

.

To make these ideas a little more precise, suppose that in slot k a stream with peak rate c

�

k

requests establishment. Let y

i

; i = 1; : : : ;M , denote the peak rates of the admitted streams in

slots k � i; i = 1; : : : ;M . y

i

is set to zero if no new stream was admitted in slot k � i. Let

q

i

; i = 1; : : : ;M , denote weights with 0 � q

i

� 1. Throughout this paper we use exponentially

decaying weights

q

i

= e

�i=�

q

; i = 1; : : : ;M;

where �

q

� 0 is a tuning parameter. The reserved peak rate is computed as

c

�

= c

�

k

+

M

X

i=1

q

i

y

i

:

Note that the peak rate c

�

k

of the stream requesting establishment is assigned a weight of one.

We now de�ne the estimated loss probability P

est

loss

as the expected fraction of tra�c lost by the
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�

p

1200 600 300 120 60 40 30

0 137 157 173 191 198 197 198

3:1 � 10

�5

6:2 � 10

�5

8:1 � 10

�5

1:6 � 10

�4

2:1 � 10

�4

3:2 � 10

�4

3:8 � 10

�4

50 147 161 174 185 188 190 192

4:3 � 10

�6

5:0 � 10

�6

8:9 � 10

�6

1:5 � 10

�5

2:7 � 10

�5

3:3 � 10

�5

4:6 � 10

�5

�

q

100 150 165 173 180 183 185 186

8:0 � 10

�7

9:0 � 10

�7

1:1 � 10

�6

2:9 � 10

�6

4:1 � 10

�6

6:6 � 10

�6

9:0 � 10

�6

125 154 163 172 178 181 183 184

4:8 � 10

�7

4:9 � 10

�7

6:4 � 10

�7

1:1 � 10

�6

2:0 � 10

�6

2:9 � 10

�6

4:3 � 10

�6

200 156 161 166 172 174 175 177

2:4 � 10

�9

6:9 � 10

�9

3:2 � 10

�8

7:1 � 10

�8

2:3 � 10

�7

1:3 � 10

�7

4:7 � 10

�7

Table 4: Evaluation of measurement{based admission rule with peak rate reservation. Each table

entry gives the average number of streams, J

avg

, and the loss probability, P

loss

, for a speci�c

combination of the tuning parameters �

p

and �

q

.

established connections at a bu�erless link of capacity C � c

�

, formally:

P

est

loss

:=

E[(X

k

� (C � c

�

)T )

+

]

E[X

k

]

:

As before, the estimated loss probability is computed using the LD approximation; the expression

for the LD approximation of P

est

loss

(6) is modi�ed in the obvious way. The logarithmic moment

generating function �

X

(s) is evaluated using the non{uniform weight re�nement (8). Connection k

is admitted if P

est

loss

� � and rejected otherwise. We refer to this admission rule as the measurement{

based admission rule with peak rate reservation.

The parameter �

q

is used to tune the peak rate reservation. For �

q

= 0 all the weights are zero

and the measurement{based admission rule with peak rate reservation reduces to the admission

rule with non{uniform weights. For strictly positive �

q

the weights q

i

decay exponentially. The

larger �

q

, the larger the peak rate reservation.

Simulation Results

We now evaluate the measurement{based admission rule with peak rate reservation through sim-

ulation. We use the same simulation set{up as in Sections 2 and 2.1. The results are reported

in Table 4. The table gives the average number of streams, J

avg

, and the loss probability, P

loss

,

for di�erent combinations of the tuning parameters �

p

and �

q

. Several points are noteworthy here.

First, consider the column �

p

= 600. We see that as �

q

increases from zero (i.e., no peak rate

reservation) to 100 the average number of streams increases while the loss probability decreases.

Loosely speaking the admission rule makes \smarter" admission decisions by reserving more peak

11



rate; it achieves both higher link utilizations and smaller losses. As �

q

increases further, however,

both J

avg

and P

loss

drop. Reading along any row of the table we see that for �xed �

q

both J

avg

and

P

loss

increase with decreasing �

p

.

The goal of this simulation experiment is to �nd the combination of tuning parameters that

gives good on{target performance, i.e., a loss probability nearly equal to �, as well as high link

utilizations. We see from the table that the combination �

p

= 120 and �

q

= 125 gives the highest

J

avg

among the combinations with P

loss

nearly equal to � = 10

�6

. Unless stated otherwise these

tuning parameters are used for all numerical experiments in the remainder of this paper.

Figure 4 shows typical sample path plots from the simulation for �

p

= 120 and �

q

= 125.

Comparing these sample path plots with the sample path plots in Figures 2 and 3 we see that

the peak rate reservation re�nement has eliminated the oscillations that were present in the earlier

plots. The plots illustrate the responsiveness of the admission rule with peak rate reservation. P

est

loss

remains typically close to the threshold � = 10

�6

. Moreover, when P

est

loss

deviates from � by more

than one order of magnitude it very quickly returns to �.

3 Comparison with other Measurement{based Admission Rules

In this section we review the measurement{based admission rules in the existing literature and

compare the performance of our Large Deviations based admission rule with that of the admission

rules in the literature.

Measured Sum Approach

Jamin et al. in their seminal work on measurement{based admission control [10, 11] develop a

measurement{based admission rule for Integrated Services networks. They assume a network con-

sisting of bu�ered multiplexers. Their admission rule consists of a delay criterion and a rate

criterion. The delay criterion is designed to keep the delay in the network below a prespeci�ed

delay bound. The delay criterion takes the measured delay in the network and a leaky bucket

characterization (i.e., average rate r and bucket depth b) of the connection requesting establish-

ment into consideration. The rate criterion strives to keep the link utilizations below prespeci�ed

utilization targets. The rate criterion relies on the measured link utilizations and the leaky bucket

rate r of the new stream. The new stream is admitted if it passes both the delay criterion and

the rate criterion. In order to compare the performance of the admission rule of Jamin et al. with

that of our Large Deviations based admission rule, we apply the admission rule of Jamin et al. to

the smoothing/bu�erless multiplexing networking architecture [5, 6]. In the smoothing/bu�erless

multiplexing networking architecture the tra�c is delayed by no more than the delay bound in

the bu�ered smoother at the network edge. The bu�erless multiplexers inside the network add no

further delay. Therefore there is no need to check the delay criterion. This simpli�es call admission

tremendously since delay measurements, which are di�cult to conduct in practice, are no longer

required.

12



We now brie
y review the rate criterion; see [10, 11] for more details. First, we review the

necessary notation. As before, T denotes the slot length. Note however, that the slots lengths of

our Large Deviations based admission rule and the admission rule of Jamin et al. are fundamentally

di�erent. We base admission decisions on the estimate of the moment generating function of the

aggregate arrival stream. To ensure that the estimate of the moment generating function correctly

re
ects the variability of the aggregate arrival stream we use a slot length short enough to capture

individual bursts. Recall that for the numerical work in this paper we use a slot length of 1=F �

0.042 seconds. Jamin et al. base admission decisions on the estimate of the average aggregate arrival

rate. To obtain a good and stable estimate of the average aggregate arrival rate, they average the

aggregate arrivals over a longer slot length and thus avoid capturing individual bursts. This is also

re
ected in the terminology as they refer to the slot length as averaging period. They suggest to

set the averaging period to 0.5 seconds. We therefore set the averaging period to 12=F for the

numerical evaluation of the Jamin et al. approach in this paper.

Let x̂ denote the estimate of the aggregate arrivals in one averaging period. To estimate x̂

Jamin et al. employ a time{window measurement mechanism. Let W denote the length of the

measurement window in multiples of the averaging period T . The time window measurement

mechanism works roughly as follows. The amount of tra�c arriving in each averaging period is

measured. At the end of the measurement window, that is, after obtaining W measurements, x̂ is

set to the largest of the W samples. When a new stream is admitted x̂ is increased by the arrivals

of the new stream (computed from the leaky bucket rate r), i.e., we set x̂ x̂+ rT . Furthermore,

when a particular sample value is larger than x̂ we do not wait until the end of the measurement

window to update x̂, but instead set x̂ to this larger sample value right away. Finally, let v denote

a prespeci�ed utilization target. Jamin et al. suggest to set v = 0:9. With v = 0:9 the admission

rule strives to keep the link utilization below 90 %. The rate criterion of Jamin et al. is to verify

whether

x̂+ rT � vCT: (9)

The new stream with leaky bucket rate r is accepted if (9) holds, otherwise it is rejected.

We now compare the performance of the admission rule of Jamin et al. with that of our Large

Deviations based admission rule. We use the load{loss curve [12] for the performance comparison.

The load{loss curve is a plot of the loss probability P

loss

versus the average number of admitted

streams J

avg

. Both P

loss

and J

avg

are obtained through simulation. We employ the simulation

approach outlined in Section 2. For all simulations in this section we set the link capacity to C

= 45 Mbps. All the tra�c streams are \Silence of the Lambs" video streams, each with its own

independent random phase. We consider two scenarios. Figure 5(a) shows the load{loss curves for

the case where the video streams are passed through smoothers (see Figure 1) with a maximum

smoothing delay of 10 frame periods before they enter the bu�erless multiplexer. Figure 5(b) gives

the load{loss curves for the case where the unsmoothed lambs video streams are multiplexed onto

the bu�erless link. The plots give the load{loss curves of the admission rule of Jamin et al. for
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di�erent measurement windows W . Speci�cally, we show the load{loss curves for W = 100T ,

W = 10T , W = 5T and W = T ; recall that the averaging period is set to T = 0.5 seconds as

suggested by Jamin et al. [10, 11]. The curves are obtained by varying the utilization target v. The

curve for W = 100T , for instance, was obtained by running simulations for v = 0.9, 0.925, 0.95,

0.975 and 1.0. Two observations are in order. First, we observe that the actual link utilization

di�ers signi�cantly from the target utilization. For W = 100T and v = 0.9 (see Figure 5(a)), for

instance, the admission rule admits on average 162.4 unsmoothed lambs streams, which corresponds

to an average link utilization of 70 %. The corresponding loss probability is 1:2 � 10

�6

. Note that

the admission rule of Jamin et al. is not designed to take a target loss probability as input. The

second noteworthy observation is that for smaller measurement windows W the load{loss curves

move towards the lower right corner of the plots. This means that for smaller W the admission

control rule performs better; it achieves higher link utilizations and smaller loss probabilities.

Jamin and Shenker [12] de�ne the load{loss frontier as the load{loss curve that gives the smallest

loss probabilities for the range of link utilizations. We see from the plots that the load{loss frontiers

are composed of the load{loss curves for W = 5T and W = T . The plots in Figure 5 give also

the load{loss points of our Large Deviations based admission rule (LD{MBAC). These points were

obtained by setting �

p

= 120 and �

q

= 125 and running simulations for the target loss probabilities

� = 10

�6

and � = 10

�4

. As in Section 2 we run the simulations for the LD admission rule until

the width of the 90 % con�dence interval of the loss probability is less than 20 % of the point

estimate. The simulations for the admission rule of Jamin et al., which is computationally less

demanding than the LD admission rule, are terminated when the 90 % con�dence interval of the

loss probability is less than 10 % of the point estimate. The 90 % con�dence intervals for the loss

probability P

loss

are plotted in Figure 5. We do not plot the con�dence intervals for the average

number of connections since these con�dence intervals are much tighter. In fact, the widths of

the 90 % con�dence intervals for J

avg

are less than 0.1 connection and do not show up on the

plots. We observe that the load{loss points of our Large Deviations based admission rule are below

the load{loss frontiers of the admission rule of Jamin et al. Considering Figure 5(a) we see that

for � = 10

�6

our admission rule admits on average 178 connections and the loss probability is

1:1 � 10

�6

. For the same average link utilization, i.e., for 178 connections, the admission rule of

Jamin et al. gives a loss probability of roughly 6 � 10

�6

. Comparing the Plots 5(a) and 5(b) we

observe that the gap in performance is wider when the burstier, unsmoothed video streams are

multiplexed. We see from Figure 5(b) that for a given QoS requirement the LD admission rule

admits on average 8 unsmoothed lambs video streams more. These numerical results indicate that

by measuring individual bursts and capturing the variability of the arrival process in the moment

generating function, the LD admission rule utilizes the available link capacity more e�ciently.

We conclude the review of the measurement{based admission rule of Jamin et al. by brie
y

discussing an enhancement of this admission rule that is due to Casetti et al. [13]. As we have seen

in Figure 5 the performance of the admission rule of Jamin et al. depends greatly on the tuning of

its parameters | the measurement windowW and the target utilization v. The appropriate tuning
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of these parameters is still an area of ongoing research. Casetti et al. propose a feedback control

mechanism that automatically tunes the measurement window W . Instead of the target utilization

v their adaptive measurement{based admission rule takes a target loss probability as input. The

measurement window W is dynamically adjusted based on measurements of the aggregate arrivals

and the losses at the multiplexer. Roughly speaking the adjustment works as follows; see [13]

for more details. If the aggregate arrivals are above a trigger value, which is computed internally

by the feedback algorithm, and the measured loss probability exceeds the target loss probability

the measurement window W is increased. This makes the admission rule more conservative and

results in the acceptance of fewer new connections. Conversely, if the aggregate arrivals are below

the trigger value and the measured loss probability is smaller than the target loss probability the

measurement window W is decreased. This results in a less conservative admission rule. Casetti et

al. demonstrate that their adaptive a measurement{based admission rule works reasonably well for

large loss probabilities on the order of 10

�3

or larger. However, their adaptive admission rule fails

for smaller loss probabilities as it is di�cult to measure smaller loss probabilities with su�cient

statistical signi�cance.

Cherno� Bound Approach

We next review the work on measurement{based admission control by Gibbens et al. [14, 15].

Gibbens et al. study di�erent variations of Cherno� bound based admission rules. They assume that

the multiplexed tra�c streams are on{o� streams. Recall from Section 2 that U

j

(t); j = 1; : : : ; J ,

denote the rate of connection{j tra�c entering the multiplexer at time t. Let U

j

; j = 1; : : : ; J ,

denote the associated steady state random variables. Recall that c

�

j

denotes the peak rate of

connection{j tra�c entering the multiplexer, and let r

j

denote the average rate of connection j

(which is measured). Gibbens et al. assume that connection j transmits at rate c

�

j

with probability

r

j

=c

�

j

and is silent with probability 1� r

j

=c

�

j

, i.e., P (U

j

= c

�

j

) = r

j

=c

�

j

and P (U

j

= 0) = 1 � r

j

=c

�

j

.

Let �

U

j

(s) denote the logarithmic moment generating function of U

j

de�ned as �

U

j

(s) := lnE[e

sU

j

].

Clearly,

�

U

j

(s) = ln[1�

r

j

c

�

j

+

r

j

c

�

j

e

sc

�

j

]: (10)

The Cherno� bound [16] gives an upper bound on the probability that the sum of the independent

random variables U

j

exceeds the link capacity C:

P (

J

X

j=1

U

j

> C) � e

s(

P

J

j=1

1

s

�

U

j

(s)�C)

: (11)

Notice from the exponent of the Cherno� bound that

1

s

�

U

j

(s) can be ascribed the meaning of

bandwidth; in fact the term

1

s

�

U

j

(s) is commonly referred to as e�ective bandwidth of connection j

[17]. Gibbens et al. view the e�ective bandwidth as function of the average rate r

j

and bound this

concave function of r

j

by a tangent of the function. Depending on the point at which the tangent of
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the e�ective bandwidth function is constructed di�erent admission rules are derived. Constructing

a tangent at r

j

= 0, for instance, gives the bound

1

s

�

U

j

(s) �

e

sc

�

j

� 1

sc

�

j

r

j

;

which is easily veri�ed by calculating the derivative of �

U

j

(10) with respect to r

j

at r

j

= 0.

Substituting this bound into the exponent of the Cherno� bound (11) and requiring that the

Cherno� bound be less than some miniscule � gives the admission control condition

J

X

j=1

r

j

e

sc

�

j

� C;

see Appendix A of [15] for details. Interestingly, the QoS parameter � does not appear in the

admission control condition. The condition is tuned with the space parameter s of the moment

generating function. The appropriate setting of the tuning parameter s is still the subject of ongoing

research. Also, note that this admission control condition requires measurements of the average

arrival rates r

j

; j = 1; : : : ; J , of each individual connection j. In practice, however, it is very

di�cult to measure per{connection rates accurately and cost e�ciently. Gibbens et al. therefore

propose to assign individual tra�c streams based on their peak rate c

�

j

to a small number of tra�c

classes and measure the aggregate arrivals for each class. Gibbens et al. employ a simple point

sample measurement mechanism. They measure the aggregate arrivals per class over an averaging

period T and base admission decisions on the most recent measurement only; older measurements

are not considered. (Note that this is equivalent to setting W = T in the measurement window

scheme of Jamin et al.) Thus, in the simplest case of only one class the admission control condition

is

(rT + x

1

)e

sc

�

T

� CT;

where r is the leaky bucket rate of the connection requesting establishment, x

1

denotes the measured

aggregate arrivals in the most recent averaging period of length T , and c

�

is the peak rate of the

class. Gibbens et al. study this admission rule, which is derived from the tangent of the e�ective

bandwidth function at r

j

= 0, in the context of a decision theoretic framework for admission control

in [14]. In [15] Gibbens and Kelly derive a number of variations of this admission rule by considering

tangents at di�erent points of the e�ective bandwidth function.

Jamin and Shenker [12] compare the performance of their approach to measurement{based

admission control with the di�erent variation of the approach of Gibbens et al. They �nd in

their extensive simulations that the load{loss frontiers of both approaches coincide. Hence both

approaches have the same performance. This surprising result is due to structural similarities of

the two approaches, which are studied in detail by Jamin and Shenker [12]. Roughly speaking,

both approaches rely on the mean of the measured arrivals (higher moments are not considered).

A constant, which represents the new connection, is added to the mean and the new connection is

accepted if this sum is less than the link capacity multiplied by a constant.
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Our Large Deviations based approach to measurement{based admission control is fundamentally

di�erent from the approach of Gibbens et al. in that we do not assume on{o� tra�c. Moreover,

we do not bound the e�ective bandwidth function, which is derived from the logarithmic moment

generating function, but use the actual logarithmic moment generating function in our admission

rule. The LD admission rule thus takes the mean as well as the higher moments of the measured

aggregate arrivals into account.

Hoe�ding Bound Approach

Floyd [18] studies measurement{based admission control based on the Hoe�ding bound [19, 20].

The Hoe�ding bound is a Cherno�{style bound for sums of bounded, independent random vari-

ables. Recall that U

j

; j = 1; : : : ; J , are steady state random variables denoting the rate at which

connection{j tra�c enters the multiplexer. Furthermore, recall that c

�

j

and r

j

denote the peak rate

and average rate of connection j. The Hoe�ding bound gives an upper bound on the probability

that the sum of the random variables U

j

exceeds the sum of the average rates r

j

by some positive

constant �:

P (

J

X

j=1

U

j

>

J

X

j=1

r

j

+ �) � e

�2�

2

=

P

J

j=1

c

�

j

2

:

Floyd derives an admission control condition from the Hoe�ding bound by requiring that the bound

be less than some miniscule QoS parameter �. Clearly,

e

�2�

2

=

P

J

j=1

c

�

j

2

� �

for

� �

v

u

u

t

ln(1=�)

2

J

X

j=1

c

�

j

2

:

Noting furthermore that

P (

J

X

j=1

U

j

> C) � P (

J

X

j=1

U

j

>

J

X

j=1

r

j

+ �)

for

P

J

j=1

r

j

+ � � C, Floyd arrives at the admission control condition

J

X

j=1

r

j

+

v

u

u

t

ln(1=�)

2

J

X

j=1

c

�

j

2

� C: (12)

We note that Gibbens and Kelly derive this condition as a special case of their Cherno� bound based

admission control conditions. They obtain (12) by bounding the e�ective bandwidth of an on{o�

stream

1

s

�

U

j

(s) (where �

U

j

(s) is given by (10)) by a tangent of slope one at r

j

= 1=s�c

�

j

=(e

sc

�

j

�1);

see Appendix A3 of [15] for details. Measurement{based admission control based on the Hoe�ding
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bound is also studied by Brichet and Simonian [21]. They derive a tighter bound on the e�ective

bandwidth of an on{o� stream

1

s

�

U

j

(s) by considering a series expansion of �

U

j

(s) for small s.

Floyd [18] as well as Brichet and Simonian [21] employ an exponential weighted moving average

measurement mechanism. Let x̂ denote the estimate of the aggregate arrivals in an averaging period

of length T , i.e., x̂ denotes the estimate of T

P

J

j=1

r

j

. The estimate x̂ is updated using the recursion

x̂ = (1� !)x̂+ !x

i

;

where ! is the weight used to tune the measurement mechanism and x

i

denotes the aggregate

arrivals in the just expired averaging period of length T . Now suppose that a new connection J +1

with peak rate c

�

J+1

requests establishment. The new connection is accepted if

x̂+ T

v

u

u

t

ln(1=�)

2

J

X

j=1

c

�

j

2

+ c

�

J+1

T � CT;

and rejected otherwise.

Jamin and Shenker [12] consider the measurement{based admission control approach employing

the Hoe�ding bound and the exponential weighted moving average measurement mechanism in their

simulation studies. They �nd that the load{loss frontier of the Hoe�ding bound approach coincides

with the load{loss frontiers of the Jamin et al. [11] and Gibbens et al. [14, 15] approaches. Hence,

these three approaches have the same performance; this is due to their structural similarities [12].

Jamin and Shenker also note that the Hoe�ding bound admission rule performs far o� target;

setting the QoS parameter to � = 0:99, for instance, resulted in an actual loss probability of 10

�5

in their experiments.

Time{Scale Decomposition Approach

Finally, we provide a brief review of the work on measurement{based admission control by Gross-

glauser and Tse [22, 23]. Roughly speaking, their approach is to estimate mean and variance of

the arrivals from the measurements and estimate the loss probability at the node using the Normal

approximation [16]. In [22] they conduct an extensive analysis of this Normal approximation ap-

proach for the case when per{
ow measurements are available. In [23] they extend the analysis to

the more practicable case when only aggregate tra�c measurements are available. We focus on this

latter case, which is also referred to as the time{scale decomposition approach, in this review. In

their analysis Grossglauser and Tse identify a critical time{scale

~

T

h

= T

h

=

p

J

cap

, where T

h

denotes

the average holding time (lifetime) of a connection and J

cap

denotes the capacity of the multiplexer

(which is the multiplexer rate divided by the average rate of a typical connection). The key idea

of the time{scale decomposition approach is to decompose the aggregate arrival process (i.e., the

measurements x

i

over time) into a low{frequency component and a high{frequency component.

The low frequency component is obtained by passing the measurements through a low{pass �lter

with a cuto� frequency of 1=

~

T

h

, while the high frequency component is obtained through a high{

pass �lter with a cuto� frequency of 1=

~

T

h

. The low frequency component, which tracks the slow
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time{scale 
uctuations of the arrival process, is used to estimate the mean of the arrivals, while

the high frequency component, which tracks the fast time{scale 
uctuations, is used to estimate

the variance of the arrivals. Formally, let g

i

; i � 1, denote the impulse response of the low{pass

�lter. Grossglauser and Tse propose to use a geometrically decaying impulse response

g

i

=

1

~

T

h

�

1�

1

~

T

h

�

i�1

:

Suppose that in slot k a new connection with smoother rate (peak rate) c

�

k

requests establishment.

Recall that x

i

; i = 1; : : : ;M

e�

, denote the measured aggregate arrivals in slot k � i. Let J

i

; i =

1; : : : ;M

e�

, denote the number of ongoing streams in slot k � i. Let m

U

denote the estimate of

the average arrivals per connection in a slot. This estimate is obtained by averaging the measured

aggregate arrivals over the ongoing connections and convolving the measurements with the impulse

response of the low{pass �lter:

m

U

=

M

e�

X

i=1

x

i

J

i

g

i

:

Furthermore, let �

2

U

denote the estimate of the variance of the arrivals per connection in a slot.

For details on how this estimate is obtained we refer the reader to [23]. The new connection with

peak rate c

�

k

is accepted if

Q

0

@

(C � c

�

k

)T � J

1

m

U

q

J

1

�

2

U

1

A

� �;

where Q(�) denotes the complementary cumulative distribution function of a standard normal

random variable, which is given by

Q(a) =

1

p

2�

Z

1

a

e

�y

2

=2

dy:

Grossglauser and Tse de�ne the loss probability as the long{run fraction of time during which

loss occurs, that is, the long{run fraction of slots with aggregate arrivals exceeding CT . We denote

this loss measure by P

time

loss

to distinguish it from the loss measure P

loss

(3), which is the long{run

fraction of information (bits) lost. Formally, P

time

loss

is de�ned as

P

time

loss

= E[ lim

N!1

1

N

N

X

n=1

1(X

n

> CT )]:

The time{scale decomposition approach is designed to ensure that P

time

loss

� �. We evaluate the

time{scale decomposition approach using the simulation set{up of Section 2. We run simulations

for di�erent � and record both loss measures, P

time

loss

and P

loss

. The results are reported in Table 5.

Part (a) of the table gives the results for the case where the video streams are passed through

smoothers with a maximum smoothing delay of 10 frame periods before being multiplexed. Part

(b) gives the results for the case where the unsmoothed video steams are multiplexed. We observe
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� 10

�1

10

�2

10

�3

10

�4

J

avg

211 197 185 180

P

time

loss

1:0 � 10

�1

1:2 � 10

�2

1:5 � 10

�3

1:6 � 10

�4

P

loss

3:8 � 10

�3

3:2 � 10

�4

2:8 � 10

�5

3:6 � 10

�6

(a) maximum smoother delay = 10 frame periods

� 10

�1

10

�2

10

�3

10

�4

J

avg

205 187 174 163

P

time

loss

1:0 � 10

�1

1:3 � 10

�2

1:7 � 10

�3

2:7 � 10

�4

P

loss

5:2 � 10

�3

4:8 � 10

�4

5:4 � 10

�5

7:1 � 10

�6

(b) no smoothing

Table 5: Evaluation of time{scale decomposition approach of Grossglauser and Tse.

from the table that the time{scale decomposition approach gives good on{target performance. We

also observe that P

loss

is typically almost two orders of magnitude smaller than P

time

loss

. This is

because only the fraction (X

n

� CT )=CT of bits is lost in slots with aggregate arrivals exceeding

the link capacity CT . The load{loss points (J

avg

; P

loss

) (with 90 % con�dence intervals for P

loss

)

are plotted in Figure 5. We observe from the plots that the load{loss frontier of the time{scale

decomposition approach lies between the load{loss frontiers of the approach of Jamin et al. and

our LD approach. This indicates that by taking the �rst two moments of the arrival process

into consideration the time{scale decomposition approach can accommodate more connections (on

average) than the other reviewed approaches, which take only the �rst moment into consideration.

We conclude the discussion of the time{scale decomposition approach with two remarks. First,

note that the time{scale decomposition approach has no explicit tuning parameters. However, it

requires knowledge of the average lifetime of the connections, T

h

, and the average rate of a typical

connection (to determine the capacity J

cap

). The time{scale decomposition approach is therefore

an attractive admission control approach if these two parameters are fairly well known. If these

parameters are unknown or change over time, however, the time{scale decomposition approach

faces tuning problems similar to the other approaches.

Secondly, note that the time{scale decomposition approach requires the multiplexer to keep

track of the number of ongoing connections in each slot. The multiplexer has to maintain a counter

that is incremented when a new connection is accepted and decremented when a connection termi-

nates. The other reviewed approaches as well as the LD approach do not require the multiplexer to

maintain this counter (and a history of the counter values). If this information is readily available

it can be incorporated in our LD admission rule in a straightforward manner. The logarithmic

moment generating function of the aggregate arrivals �

X

(s) is not estimated using (8), but instead

as �

X

(s) = J

1

�

U

(s). Here, J

1

denotes the most recent connection count and �

U

(s) denotes the
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estimate of the logarithmic moment generating function of the arrivals per connection, which is

obtained as

�

U

(s) = ln

M

e�

X

i=1

p

i

e

sx

i

=J

i

:

We plan to study this version of the LD admission rule in detail in future work.

4 Comparison with traditional Admission Control

In this section we compare measurement{based admission control with traditional admission control

that bases admission decisions on a priori tra�c characterizations.

Adversarial Admission Control

First, we consider an admission rule that takes leaky bucket tra�c characterizations as input

and assumes that the connections are adversarial to the extent permitted by the leaky bucket

characterizations, i.e., transmit worst{case on{o� tra�c. Suppose that the connection{j tra�c at

the smoother output is characterized by the tra�c constraint function E

j

(t), that is, the amount

of tra�c leaving smoother j over an interval of length t is less than E

j

(t). Speci�cally, suppose

that E

j

(t) = min(c

�

j

t; �

j

+ �

j

t), that is, the output of smoother j is constrained by the smoother

rate (peak rate) c

�

j

and a single leaky bucket (�

j

; �

j

), where �

j

is the maximum burst size and �

j

bounds the long{term average rate of connection j. The adversarial admission rule assumes that

each connection transmits worst{case on{o� tra�c [2, 5], that is, connection j transmits at rate c

�

j

with probability �

j

=c

�

j

and is silent with probability 1 � �

j

=c

�

j

. Recall that U

j

; j = 1; : : : ; J , are

steady state random variables denoting the rate at which connection{j tra�c enters the multiplexer.

The adversarial assumption is that P (U

j

= c

�

j

) = �

j

=c

�

j

and P (U

j

= 0) = 1��

j

=c

�

j

. The logarithmic

moment generating function of U

j

, de�ned as �

U

j

(s) := lnE[e

sU

j

], is clearly

�

U

j

(s) = ln[1�

�

j

c

�

j

+

�

j

c

�

j

e

sc

�

j

]:

Let X denote the sum of the random variables U

j

; j = 1; : : : ; J , i.e., X =

P

J

j=1

U

j

. Furthermore, let

�

X

(s) and m

X

denote the logarithmic moment generating function and mean of X. Assuming that

the connections generate tra�c independently, i.e., U

j

; j = 1; : : : ; J , are mutually independent, we

obtain �

X

(s) =

P

J

j=1

�

U

j

(s).

1

The expected fraction of tra�c lost at the multiplexer is

P

loss

=

E[(X � C)

+

]

E[X]

: (13)

The Large Deviation approximation of (13) is given by [1]

P

loss

�

1

m

X

s

?

2

q

2��

00

X

(s

?

)

e

�s

?

C+�

X

(s

?

)

; (14)

1

Note that we have rede�ned �

X

(s) in this section. In Section 2 �

X

(s) is de�ned as the estimate of the logarithmic

moment generating function of X

k

, the amount of tra�c (in bit) arriving in slot k. In this section �

X

(s) is de�ned

as the logarithmic moment generating function of X, the rate of arriving tra�c (in bit/sec).
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where s

�

satis�es

�

0

X

(s

�

) = C:

A set of J connections is permissible on a link with capacity C if the loss probability P

loss

(14) is

less than some miniscule QoS parameter �.

For the numerical work in this section we use again the \Silence of the Lambs" (lambs) trace.

We obtain the tra�c constraint function of the lambs trace E

lambs

(t) by following the procedure

described in [5]. We give here only a brief outline of this procedure and refer the reader to [5] for

details. The �rst step is to compute the empirical envelope, which is the tightest tra�c constraint

function of the video sequence. The empirical envelope is however not necessarily concave. It

is therefore bounded by a piecewise linear function so that the tra�c constraint function can be

represented by a cascade of leaky buckets. Given this leaky bucket characterization and a maximum

delay in the smoother, which we set again to 10 frame periods (= 10/24 seconds), we obtain the

smoother rate c

�

lambs

= 731.6 kbit/sec by applying the theory developed in [5]. The lambs tra�c

at the smoother output is characterized by this smoother rate (peak rate) and the leaky bucket

(�

lambs

; �

lambs

) = (3.16 Mbyte, 193.2 kbit/sec). For the following numerical evaluation we set the

multiplexer rate to C = 45 Mbps and assume that all tra�c streams are independent lambs video

streams. We vary the number of connections J and compute the loss probability for each J using

the LD approximation (14). The results are plotted as the solid line (labeled \adversarial") in

Figure 6. We defer the discussion of this result to the end of this section.

Histogram{based Admission Control

We next consider an admission rule that is speci�cally designed for prerecorded sources [24]. This

admission rule bases admission decisions on the marginal distribution of the sources' tra�c. For

video tra�c the histogram of the frame sizes is used to compute the logarithmic moment generating

function of the video stream. Recall from Section 2 that f

n

(j); n = 1; : : : ; N , denotes the frame

size of the nth frame of video j in bits. Also recall from Section 2 that the transmission of a frame is

spread out over one frame period of length 1=F , i.e., the frame f

n

(j) is transmitted at rate f

n

(j) �F

over the interval [(n � 1)=F; n=F ]. Let u

n

(j); n = 1; : : : ; N , denote the smoothed frame size

trace obtained by simulating the transmission of the original frame size trace f

n

(j); n = 1; : : : ; N ,

through the bu�ered smoother with peak rate c

�

j

(see Figure 1). The logarithmic moment generating

function of the smoothed video stream j is calculated directly from the smoothed frame size trace:

�

U

j

(s) = ln

1

N

N

X

n=1

e

sFu

n

(j)

: (15)

A set of J connections is admitted if the loss probability (14) is less than some prespeci�ed QoS

parameter �. For the numerical evaluation we assume that all multiplexed tra�c streams are

smoothed lambs video streams. The dashed line (labeled \histogram") in Figure 6 is the load{loss

curve of this admission rule, which is obtained by computing the loss probability (14) for a range

of link utilizations.
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We also verify the accuracy of the LD approximation through simulation. For this purpose we

use the simulation program used to evaluate the measurement{based admission rules in Sections 2

and 3. Instead of employing any of the studied measurement{based admission rules, we �x a

maximum number of admissible streams, J

max

. A connection requesting establishment is accepted

if there are currently less than J

max

connections in progress, and rejected otherwise. As before, all

of the streams are generated from the lambs trace. Each stream has its own independent random

phase, which is uniformly distributed over [1; N ]. The lifetime of the streams is �xed at N =

40,000, and the lambs trace is wrapped around to generate the streams. We set the connection

inter arrival time to zero, thus there are always J

max

connections in progress. We run the simulation

until the width of the 90 % con�dence interval of the loss probability is less than 10 % of the point

estimate. The results are plotted in Figure 6 (labeled \�xed adm. region (simul.)").

The �gure also shows the load{loss points of our LD approach to measurement{based admission

control (LD{MBAC). These points are obtained by running simulations for � = 10

�4

and � = 10

�6

.

The parameters of the admission rule are set to �

p

= 120 and �

q

= 1; 250 for these simulations. The

time between call arrivals is exponentially distributed with a mean of 67 frame periods. Further-

more, the lifetime of each stream is �xed at N = 40; 000 frame periods to ensure a fair comparison

with the other admission rules. (The tra�c constraint function obtained through the procedure

described in [5] gives the tightest leaky bucket characterization of the full{length video segment;

for shorter segments, however, the characterization may be loose.)

Several points are noteworthy about Figure 6. First, note that the J

max

{simulation (\�xed

adm. region (simul.)") veri�es the accuracy of the histogram admission rule. We observe that

the histogram admission rule is a little too conservative, but generally very accurate. Secondly,

we observe that the adversarial admission rule, which assumes worst{case on{o� tra�c, results

in low link utilizations. Note that by following the procedure described in [5] we have obtained

the tightest leaky bucket characterization of the prerecorded lambs trace. The di�erence in link

utilization (horizontal distance) between the \adversarial" and \histogram" curves in Figure 6

therefore gives an indication of the conservatism of the assumption of adversarial on{o� tra�c.

With a QoS parameter of � = 10

�6

, for instance, the adversarial admission rule admits 147 lambs

video streams while the histogram rule admits 169 streams and the measurement{based admission

rule admits on average 174.5 streams. In the case of live video transmission where one has to resort

to loose leaky bucket characterizations the link utilization with adversarial admission control is

even lower, while measurement{based admission control still achieves high link utilizations.

The third noteworthy observation is that measurement{based admission control outperforms

histogram{based admission control, which has perfect knowledge of the marginal distribution of

the streams' tra�c. This can be intuitively explained as follows. The histogram{based admission

rule bases admission decisions on the connections' logarithmic moment generating functions �

U

j

(s)

(15), which characterize the connections' tra�c over their entire lifetime. A new connection is

accepted if the long{run fraction of tra�c lost due to excursions of the aggregate arrival process

X above the link capacity CT is less than �. Most of the time, however, the aggregate arrival
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process X is below the threshold CT and the slack capacity CT � X is wasted. Measurement{

based admission control bases admission decisions on measurements of the aggregate arrival process

X. It admits new connections when slack capacity is available. Conversely, measurement{based

admission control stops the acceptance of new connections when the aggregate arrivals are close to

the link capacity or even exceed the link capacity. It does not accept any new streams until departing

connections have created slack capacity. Measurement{based admission control thus utilizes the

link capacity e�ciently by taking advantage of the connection arrival and departure dynamics.

Note however, that measurement{based admission control is bound to fail when the connection

arrival and departure times collude, that is, when the connections arrive roughly at the same time

and have identical lifetimes. In the worst{case scenario when all connections arrive in the same

time slot the LD{MBAC rule bases admission decisions on the connections' peak rate speci�cation,

i.e., it admits 61 smoothed lambs streams (= C=c

�

lambs

). Traditional admission control, on the

other hand, achieves the link utilizations shown in Figure 6 irrespective of the connection arrival

and departure dynamics.

5 Conclusion

In this paper we have studied measurement{based admission control for unbu�ered multiplex-

ers. We have developed a Large Deviations approach to measurement{based admission control.

We have provided an extensive review of the existing literature on measurement{based admis-

sion control. We found in our simulations with MPEG{1 encoded videos that the LD admission

rule compares favorably with the admission rules in the existing literature. Finally, we compared

measurement{based admission control with traditional admission control, which relies on a priori

tra�c characterizations. Our numerical work indicates that measurement{based admission control

can achieve signi�cantly higher link utilizations.

In our current research we are addressing the parameter tuning problem. We are investigating

the use of feedback control to automatically tune the parameters of he LD admission rule. Our

numerical work suggests that the LD admission rule performs on{target and achieves high link

utilizations when the estimated loss probability P

est

loss

oscillates with small amplitudes around the

target loss probability � (see for instance Figure 4(b)). We are therefore studying feedback control

policies that tune the parameters of the LD admission rule based on P

est

loss

; in particular integral

control policies that strive to minimize the area under the P

est

loss

curve. This approach avoids the

di�cult problem of measuring the actual, miniscule losses at the multiplexer.

Another avenue for future research is to study the combination of measurement{based admission

control with traditional admission control. The goal is to develop a hybrid admission rule that

strives to achieve the high link utilizations of measurement{based admission control and at the

same time guards against gross mistakes by the measurement{based admission rule due to incorrect

parameter settings of colluding connection arrivals/departures.
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Figure 2: Sample path plots from simulation of basic measurement{based admission rule with M

= 6,000.
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Figure 3: Sample path plots from simulation of measurement{based admission rule with non{

uniform weights for �

p

= 300.
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Figure 4: Sample path plots from simulation of measurement{based admission rule with peak rate

reservation for �

p

= 120 and �

q

= 125.

29



1e-06

1e-05

165 170 175 180 185 190

P-
lo

ss

# of connections

eps = 1e-6

eps = 1e-4

v = 0.9 eps = 1e-6

eps = 1e-4

v = 0.9 eps = 1e-6

eps = 1e-4

v = 0.9 eps = 1e-6

eps = 1e-4

v = 0.9

Jamin, W = 100 T
Jamin, W = 10 T
Jamin, W = 5 T

Jamin, W = T
time-scale dec.

LD-MBAC

(a) maximum smoother delay = 10 frame periods

1e-06

1e-05

145 150 155 160 165 170 175

P-
lo

ss

# of connections

Jamin, W = 100 T
Jamin, W = 10 T

Jamin, W = 5 T
Jamin, W = T

time-scale dec.
LD-MBAC

(b) no smoothing

Figure 5: Comparison of admission rules in the literature with our LD based admission rule.
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Figure 6: Comparison of measurement{based admission control with traditional admission control.

31


