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Abstract— Multimedia traffic can typically tolerate some loss but has

rigid delay constraints. A natural QoS requirement for a multimedia con-

nection is a prescribed bound on the the fraction of traffic that exceeds

an end–to–end delay limit. We propose and analyze a traffic management

scheme which guarantees QoS to multimedia traffic while simultaneously al-

lowing for a large connection–carrying capacity. We study our traffic man-

agement scheme in the context of a single node. In order for the node to

guarantee QoS, each connection’s traffic is regulated. In order to support

many connections, the link statistically multiplexes the connections’ traffic.

The scheme consists of (i) cascaded leaky–buckets for traffic regulation, (ii)

smoothers at the ingresses, and (iii) bufferless statistical multiplexing within

the node. For this scheme we show that loss probabilities are minimized with

simple one–buffer smoothers which operate at specific minimum rates. We

also show that the worst–case input traffic is extremal on–off traffic for all

connections. These two results lead to a straightforward scheme for guar-

anteeing QoS to regulated traffic. Using MPEG video traces, we present nu-

merical results which demonstrate the methodology. Finally, we compare

the bufferless scheme with buffered statistical multiplexing.

Keywords—Bufferless Multiplexing, Call Admission Control, Multime-

dia Traffic, Regulated Traffic, Statistical Multiplexing, Statistical QoS, Traf-

fic Smoothing.

I. INTRODUCTION

O

VER the past ten years, significant research effort has ad-

dressed the important problem of guaranteeing QoS to

multimedia traffic in a packet–switched network. The goal has

been to develop traffic management schemes that allow for high

link utilizations while simultaneously guaranteeing that the QoS

requirements of the ongoing connections are met. It is gener-

ally agreed that high link utilizations can only be achieved by

allowing traffic to be statistically multiplexed, i.e., by allow-

ing each connection’s traffic to have a small amount of loss and

exploiting the statistical independence of the connections’ traf-

fic [1][2][3][4]. It is also the view of many researchers that

QoS can only be guaranteed by requiring the traffic to be reg-

ulated (e.g., by leaky buckets) at the edges of the network [5][6]

[7][8][9][10][11].

In recent years the problem of providing QoS guarantees to

regulated sources which are statistically multiplexed in a shared

buffer has been carefully studied [9][10][11]. The existing so-

lutions, however, do not extend to the network environment in

a satisfactory manner. Also in recent years, the problem of pro-

viding end–to–end deterministic guarantees to regulated traffic

in networks has been adequately solved [12][13][7][8]. The de-

Supported partially by NSF grant NCR96–12781.

This work was performed while the authors were with the Department of Sys-
tems Engineering of the University of Pennsylvania.

terministic QoS guarantees, however, typically imply a small

connection–carryingcapacity for networks with bursty multime-

dia traffic. In this paper we lay the groundwork for a traffic–

management architecture that provides end–to–end statistical

QoS guarantees. We focus our attention to a network consisting

of a single node in this paper. We extend the traffic management

to networks in a subsequent paper [14].

In this paper we view traffic as fluid. The fluid model, which

closely approximates a packetized model with small packets,

permits us to focus on the central issues and significantly sim-

plifies notation. We suppose that the traffic sent into the node by

each connection is regulated by a connection–specific cascade

of leaky buckets. A cascade of leaky buckets is more general

than the two–leaky–bucket regulator, commonly used in the lit-

erature [9][10], and can more accurately characterize a source’s

traffic. Moreover, cascaded–leaky–bucket traffic can easily be

policed. For admission control, all that we know about a con-

nection’s traffic is its regulator constraint defined by its cascade

of leaky buckets; in particular, we do not have available statisti-

cal characterizations of the traffic.

We also assume that the following natural QoS requirement

is in force: the fraction of traffic that exceeds a specific delay

limit must be below a prescribed bound. Traffic which over-

flows at a buffer is considered as having infinite delay, and there-

fore violates the QoS requirement. Importantly, we permit each

connection to have its own limit on the nodal delay and its own

bound on the fraction of traffic that exceeds this delay limit. This

QoS requirement is particularly appropriate for multimedia traf-

fic, whereby timestamping and a playout buffer can ensure the

continuous playout of video or audio without jitter.

Given each connection’s traffic characterization and its QoS

requirement, we address the following problem: How should

we manage the traffic and perform admission control in or-

der to guarantee QoS while maintaining a large connection–

admission region? We advocate the following simple and prag-

matic scheme: (i) smooth each connection’s traffic at the con-

nection’s input as much as allowed by the connection’s delay

constraint; (ii) employ bufferless statistical multiplexing within

the node; (iii) base admission control on the worst–case assump-

tion that sources are adversarial to the extent permitted by the

connection’s regulator, while concurrently assuming the connec-

tions generate traffic independently. This scheme enjoys the fol-

lowing features:



� Admission control is solely based on the connections’ reg-

ulator parameters, which are policable. It is not based on

more complex, difficult–to–police statistical characteriza-

tions.

� It allows for statistical multiplexing at the node while meet-

ing the QoS requirements. The smoothing at the input in-

creases the statistical multiplexing gain.

� It allows for per–connectionQoS requirements: the connec-

tions can have vastly different delay and loss requirements.

� Because the multiplexing is bufferless, the switch re-

quires only small input buffers (when traffic is packetized),

thereby reducing switch cost.

� A connection’s traffic characterization does not change as

the traffic passes through the bufferless multiplexer.

It is this last feature that is particularly useful when extending

the traffic management scheme to a multihop network [14]. With

our scheme the traffic leaving the network node conforms to the

same regulator constraints as the traffic entering the node. With

shared buffer multiplexers it is difficult (if not impossible) to

tightly characterize a connection’s traffic once the traffic passes

through a shared buffer.

This paper is organized as follows. In Section II we formally

define the cascaded leaky–bucket regulators and the QoS re-

quirement. In Section III we determine the worst–case traffic

for a single–link and outline our smoothing and admission con-

trol procedure. We also consider general smoothers and show

that the optimal smoother is a single–buffer smoother which

smoothes traffic as much as the delay limit permits. In Section IV

we present numerical results using MPEG–encoded traces. In

Section V we compare our scheme to designs based on buffered

statistical multiplexing. We conclude in Section VI.

II. REGULATED TRAFFIC AND THE QOS REQUIREMENT

In this paper we focus on a single node consisting of a buffer-

less multiplexer that feeds into a link of capacity C. We view

traffic as fluid, i.e., packets are infinitesimal. Consider a set of

J connections. Each connection j has an associated regulator

function, denoted by E
j

(t), t � 0. The regulator function con-

strains the amount of traffic that the jth connection can send

into the node over all time intervals. Specifically, if A
j

(t) is the

amount of traffic that the jth connection sends to the node over

the interval [0; t], then A
j

(�) is required to satisfy

A

j

(t+ �) �A

j

(�) � E

j

(t) for all � � 0; t � 0: (1)

A popular regulator is the simple regulator, which consists of a

peak–rate controller in series with a leaky bucket; for the simple

regulator, the regulator function takes the following form:

E

j

(t) = minf�

1

j

t; �

2

j

+ �

2

j

tg:

For a given source type, the bound on the traffic provided by the

simple regulator may be loose and lead to overly conservative

admission control decisions. For many source types (e.g., for

VBR video), it is possible to get a tighter bound on the traffic and

dramatically increase the admission region. In particular, regu-

lator functions of the form

E

j

(t) = minf�

1

j

t; �

2

j

+ �

2

j

t; : : : ; �

L

j

j

+ �

L

j

j

tg (2)

are easily implemented with cascaded leaky buckets; it is shown

in (see [6]) that the additional leaky buckets can lead to sub-

stantially larger admission regions for deterministic multiplex-

ing. We shall show that this is also true for statistical multiplex-

ing. Throughout this paper we assume that each regulator has

the form (2). Without loss of generality we may assume that

�

1

j

> �

2

j

> � � � > �

L

j

j

and �2
j

< �

3

j

< � � � < �

L

j

j

. For ease

of notation, we set �
j

= �

L

j

j

. Note that for connection–j traffic,

the long–run average rate is no greater than �
j

and the peak–rate

is never greater than �1
j

.

Each connection also has a QoS requirement. In this paper

we consider a QoS requirement that is particularly appropriate

for multimedia traffic, such as audio and video traffic. Specifi-

cally, each connection has a connection–specific delay limit and

a connection–specific loss bound. Denote d
j

and �
j

for the delay

limit and loss bound for the jth connection. Any traffic that over-

flows at a buffer is considered to have infinite delay, and there-

fore violates the delay limit. The QoS requirement is as follows:

for each connection j, the long–run fraction of traffic that is de-

layed by more than d
j

seconds must be less than �
j

.

This QoS requirement can assure continuous, uninterrupted

playback for a multimedia connection as follows. Each bit (or

packet for packetized traffic) is time–stamped at the source. If a

bit from connection j is time–stamped with value x, the bit (if

not lost in the node) arrives at the receiver no later than x+ d

j

.

The receiver delays playout of the bit until time x + d

j

. Thus,

by including a buffer at each receiver, the receiver can playback

a multimedia stream without jitter with a fixed delay of d
j

and

with bit loss probability of at most �
j

.

The strategy that we take in this paper is to pass each connec-

tion’s traffic through a smoother at the connection’s input to the

node. We design the smoother for the jth connection so that the

jth connection’s traffic is never delayed at the smoother by more

than d
j

. After having smoothed a connection’s traffic, we pass

the smoothed traffic to the node. At the link the connection’s

traffic is multiplexed with traffic from other connections. The

second aspect of our strategy is to remove all of the buffers in

the node; that is, we use bufferless statistical multiplexing rather

than buffered multiplexing before the link. In our fluid model, a

connection’s traffic that arrives to a bufferless link either flows

through the link without any delay or overflows at the link, and

therefore has infinite delay. In order to satisfy the jth connec-

tion’s QoS requirement, it therefore suffices that the fraction of

connection–j traffic that overflows the link be less than �
j

. Also,

if the loss at the link is small, we can reasonably approximate

a connection’s traffic at the output of the multiplexer as being

identical to its traffic at the input to the multiplexer. In other

words, a connection that satisfies the regulator constraint E
j

(t)

at the input of the node satisfies the same regulator constraint

E

j

(t) at the output of the node. Our scheme extends therefore

in a straightforward manner from a single node to a general net-

work of bufferless multiplexers with smoothers at the network

ingresses [14]. Our approach is illustrated in Figure 1.

For the smoother at the jth connection’s input, initially we use

a buffer which serves the traffic at rate c�
j

. When the smoother

buffer is nonempty, traffic is drained from the smoother at rate

c

�

j

. When the smoother buffer is empty and connection–j’s traf-
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Fig. 1. The traffic of the jth connection is characterized by the regulator func-

tion E

j

(t). The traffic is passed through a smoother with rate c

�

j

and then

multiplexed onto a link with capacity C.

fic is arriving at a rate less than c�
j

, traffic leaves the smoother ex-

actly at the rate at which it enters the buffer. For the fluid model

and QoS criterion of this paper we shall show that more complex

smoothers consisting of cascaded leaky buckets do not improve

performance.

Using the theory developed in [15], it can be shown that the

maximum delay at the smoother is

max

t�0

(

E

j

(t)

c

�

j

� t

)

: (3)

Also, because the bufferless multiplexer and link introduce no

delays, traffic from the jth connection that flows through the

node without loss has the maximum delay of the smoother. We

set the smoother rate to

c

�

j

= min

�

c

j

� 0 : max

t�0

�

E

j

(t)

c

j

� t

�

� d

j

�

; (4)

so that the traffic that passes through the node (i.e., traffic which

does not overflow at the link) is not delayed by more than d
j

. It

is straightforward to show from (4) that the smoother rate can be

expressed as

c

�

j

= max

t�0

E

j

(t)

d

j

+ t

: (5)

III. GUARANTEEING STATISTICAL QOS

We focus in this paper on a single link with J connections.

Connection j has a regulator constraint function E
j

(t) and QoS

parameters d
j

and �

j

. Now regard the jth arrival process as a

stochastic process. Let (A
j

(t); t � 0) denote the jth arrival

process, and let (A
j

(t; !); t � 0) denote a realization of the

stochastic process. Also letA(t) = (A

1

(t); : : : ; A

J

(t)), and let

(A(t); t � 0) be the associated vector stochastic arrival pro-

cess. We say that the vector arrival process (A(t); t � 0) is

feasible if (i) the component arrival processes (A
j

(t); t � 0),

j = 1; : : : ; J , are independent, and (ii) for each j = 1; : : : ; J ,

each realization (A

j

(t; !); t � 0) satisfies the regulator con-

straint

A

j

(t+ �; !)�A

j

(�; !) � E

j

(t) for all � � 0; t � 0: (6)

Denote A for the set of all feasible vector arrival processes

(A(t); t � 0).

Our first goal is to develop a straightforward procedure to de-

termine whether the QoS requirements are met for all possible

feasible stochastic arrival processes. For a fixed feasible vector

arrival process (A(t); t � 0), let U
j

(t) be the rate at which

traffic from the jth connection leaves the associated smoother

at time t, and let U
j

be the corresponding steady–state random

variable. Consider multiplexing the traffic streams U
j

(t); j =

1; : : : ; J onto a bufferless multiplexer of rate C. The long–run

average fraction of traffic lost by connection j is

P

info

loss

(j) =

E

�

(

P

J

k=1

U

k

� C)

+

U

j

P

J

k=1

U

k

�

E[U

j

]

: (7)

In the definition of P info

loss

(j) we make the natural assumption

that traffic loss at the bufferless multiplexer is split between the

sources in a manner proportional to the rate at which the sources

send traffic into the multiplexer. Note that P info

loss

(j) keeps track

of loss for each individual connection.

Although P info

loss

(j) is an appealing performance measure, we

have found it to be mathematically unwieldy. Instead ofP info

loss

(j)

we shall work with a bound on P info

loss

(j) which is more tractable

and which preserves the essential characteristics of the origi-

nal performance measure. Noting that the term in the expec-

tation of the numerator of equation (7) is non–zero only when
P

J

k=1

U

k

> C, we obtain:

P

info

loss

(j) �

E

h

(

P

J

k=1

U

k

� C)

+

U

j

i

C �E[U

j

]

:= P

loss

(j): (8)

In most practical circumstances the QoS requirement specifies

traffic loss to be miniscule, on the order of �
j

= 10

�6 or less.

Thus we expect the bound to be very tight: during the rare event

when
P

J

j=1

U

j

exceedsC, we expect
P

J

j=1

U

j

to be very close

to C. Henceforth, we focus on the bound P
loss

(j), and we refer

toP
loss

(j) as the loss probability for the jth connection . We em-

phazise here that the bound (8) is a crucial and important step for

the techniques taken in this paper. To our knowledge, no other

authors have made direct use of this important bound. In Section

5 we provide numerical results which show that P
loss

(j) is very

nearly equal to the actual loss probability P info

loss

(j).

By taking the supremum over all the feasible vector stochastic

processes, we obtain the following worst–case loss probability of

the jth connection:

�

�

j

= sup

A

E

h

(

P

J

k=1

U

k

� C)

+

U

j

i

C � E[U

j

]

(9)

If ��
j

� �

j

for all j = 1; : : : ; J , then the QoS requirements are

guaranteed to be met for all feasible vector arrival processes, that

is, for all independent arrival processes whose sample paths sat-

isfy the regulator constraints. In our strategy, at connection ad-

mission we determine whether ��
j

� �

j

for all j = 1; : : : ; J

will continue to hold when adding the new connection. If not,

the connection is rejected. Thus, we need to develop an effi-

cient method to compute the bounds ��
1

; : : : ; �

�

J

. As a first step

in computing these bounds, we need to explicitly determine the

random variables U
1

; : : : ; U

J

that attain the supremum in (9).



Lemma 1: Let U�
1

; : : : ; U

�

J

be independent random variables,

with U�
j

having distribution

U

�

j

=

(

c

�

j

with probability
�

j

c

�

j

0 with probability 1�

�

j

c

�

j

:

There exists a feasible vector arrival process which produces the

steady–state rate variables U�
1

; : : : ; U

�

J

at the smoother outputs.

Proof: The proof is by construction. For each j =

1; : : : ; J , let

t

j

=

�

2

j

�

1

j

� �

2

j

and

T

j

=

�

1

j

�

2

j

(�

1

j

� �

2

j

)�

j

:

Also let �
1

; : : : ; �

J

be independent random variables with �
j

uni-

formly distributed over [0; T
j

]. Let b
j

(t) be a deterministic peri-

odic function with period T
j

such that

b

j

(t) =

�

�

1

j

0 � t < t

j

0 t

j

� t � T

j

:

Define the jth arrival stochastic process as

A

j

(t) =

Z

t

0

b

j

(s+ �

j

)ds:

Thus each component arrival process (A

j

(t); t � 0) is gen-

erated by a periodic on–off source; the jth process has peak–

rate �1
j

and average rate �
j

. By sending each component process

(A

j

(t); t � 0) into its respective smoother, we obtain an on–

off process whose peak–rate is c�
j

and whose average rate is �
j

.

Also, the component processes are independent; thus the vec-

tor arrival process produces the steady–state random variables

U

�

1

; : : : ; U

�

J

at the smoother outputs.

It remains to show that each realization of (A
j

(t); t � 0)

satisfies the regulator constraint (6). It follows immediately from

the definition of b
j

(t) that

Z

t

0

b

j

(s)ds � E

j

(t) for all 0 � t � T

j

: (10)

We can, in fact, show that

Z

t

0

b

j

(s)ds � E

j

(t) for all t � 0: (11)

To see this consider any arbitrary t = nT

j

+ s, where n is some

non–negative integer and 0 � s � T

j

. We have

Z

t

0

b

j

(s)ds =

Z

T

j

0

b

j

(s)ds+ : : :+

Z

nT

j

(n�1)T

j

b

j

(s)ds

+

Z

nT

j

+s

nT

j

b

j

(s)ds

� nT

j

�

j

+ E

j

(s)

� [E

j

(nT

j

+ s)� E

j

(s)] + E

j

(s)

= E

j

(t) :

The first inequality follows from (10) and from the fact that the

average rate of b
j

(t) over any period of length T
j

is �
j

. The sec-

ond inequality follows because the slope of E
j

(t) is never less

than �

j

. This establishes (11). Finally because b

j

(t) is non–

increasing over each of its periods, we have

Z

t+�

�

b

j

(s)ds �

Z

t

0

b

j

(s)ds for all � � 0; t � 0: (12)

Combining (11) and (12) proves that each

realization of (A
j

(t); t � 0) satisfies the regulator constraint

(6).

We now show that the random variablesU�
1

; : : : ; U

�

J

attain the

supremum in (9). This result will lead to a simple procedure for

calculating the worst–case loss probabilities ��
1

; : : : ; �

�

J

. To this

end, we will need to make use of a concept from stochastic or-

dering. A random variableX is said to be smaller than a random

variable Y in the sense of the increasing convex stochastic (ics)

ordering, written as X �

icx

Y , if E[h(X)] � E[h(Y )] for all

increasing, convex functions h(�).

Theorem 1: For each j = 1; 2; : : : ; J , the worst–case loss

probability for the jth connection is

�

�

j

=

E

h

(

P

J

k=1

U

�

k

� C)

+

U

�

j

i

C �E[U

�

j

]

Proof: Let U be the set of all random vectors (U
1

; : : : U

J

)

such that

1. U
j

, j = 1; 2; : : : ; J are independent.

2. 0 � E[U

j

] � �

j

and 0 � U

j

� c

�

j

for all j = 1; 2; ; : : : ; J .

All feasible vector arrival processes in A give steady–state rate

variables that belong to U . Let (U
1

; : : : ; U

J

) be a random vector

in U . Let U = U

1

+ � � � + U

J

and U� = U

�

1

+ � � � + U

�

J

. We

need to show that

E[(U � C)

+

U

j

]

CE[U

j

]

�

E[(U

�

� C)

+

U

�

j

]

CE[U

�

j

]

: (13)

Fix i, with 1 � i � J , and consider the random vector

(

^

U

1

; : : : ;

^

U

J

) such that ^

U

i

= U

�

i

and ^

U

j

= U

j

for j 6= i. Note

that ( ^U
1

; : : : ;

^

U

J

) 2 U . We first show that for each fixed j,

E[(U � C)

+

U

j

]

CE[U

j

]

�

E[(

^

U � C)

+

^

U

j

]

CE[

^

U

j

]

: (14)

Consider the case i 6= j. Let V = U � U

i

� U

j

. Let dF
V

(�)

and dF
U

j

(�) be the distribution functions for V and U
j

. Noting

that U
i

, U
j

and V are independent, we have

E[(U � C)

+

U

j

] = E[(U

i

+ V + U

j

� C)

+

U

j

]

=

Z

1

0

Z

1

0

E[(U

i

+ v + u� C)

+

u]dF

V

(v)dF

U

j

(u)

The function f(x) = (x+v+u�C)

+

uwithin the expectation is

an increasing, convex function in x for each fixed v and u. Thus,

becauseU
i

�

icx

^

U

i

(e.g., see Proposition 1.5.1 in [16]), we have

E[(U

i

+ v + u� C)

+

u] � E[(

^

U

i

+ v + u� C)

+

u]



for all v and u. Combining the above two equations gives

E[(U � C)

+

U

j

] � E[(

^

U � C)

+

^

U

j

];

which, when combined with E[

^

U

j

] = E[U

j

], gives (14).

Now consider the case i = j. Let W = U � U

i

. Using U
i

�

c

�

i

, the independence of W and U
i

, and the independence of W

and ^

U

i

, we obtain

E[(U � C)

+

U

i

]

CE[U

i

]

=

E[(W + U

i

� C)

+

U

i

]

CE[U

i

]

�

E[(W + c

�

i

� C)

+

]

C

E[U

i

]

E[U

i

]

=

E[(W + c

�

i

� C)

+

]

C

E[

^

U

i

]

E[

^

U

i

]

=

E[(W + c

�

i

� C)

+

^

U

i

]

CE[

^

U

i

]

:

Also

E[(

^

U � C)

+

^

U

i

] = E[(W +

^

U

i

� C)

+

^

U

i

]

= E[(W + c

�

i

� C)

+

^

U

i

]:

Combining the above two equations gives (14) for i = j.

Thus (14) holds for all i = 1; : : : ; J . Therefore, starting with

the original vector (U
1

; : : : ; U

J

) 2 U we can replace U
1

with

U

�

1

and obtain a new vector in U such that (14) holds. Rename

this new vector as (U

1

; : : : ; U

J

). We can repeat the procedure,

this time replacingU
2

withU�
2

, and again obtaining a new vector

in U such that (14) holds. Performing this procedure for all i =

1; : : : ; J gives (13).

Using the fact that U�
j

is a Bernoulli random variable, we ob-

tain from Theorem 1 the following expression for the bound of

P

loss

(j):

�

�

j

=

E

h

(

P

k 6=j

U

�

k

+ c

�

j

� C)

+

i

C

: (15)

We can compute these bounds directly by convolving the distri-

butions of the independent random variables. An efficient ap-

proximate convolution algorithm is presented in [17]. We can

also obtain an accurate approximation for the right–hand side of

(15) by applying large deviation theory to the expectation in the

numerator: To this end let

�

U

�

k

(s) := lnE[e

sU

�

k

]:

Note that �
U

�

k

(s) is the logarithm of the moment generating

function for U�
k

. We define

U

�

=

X

k 6=j

U

�

k

:

Note that

�

U

�

(s) =

X

k 6=j

�

U

�

k

(s)

by the independence of the U�
k

’s. The large deviation (LD) ap-

proximation gives the following approximation for ��
j

[1]

1

Cs

?

2

p

2��

00

U

�

(s

?

)

e

�s

?

(C�c

�

j

)+�

U

�(s

?

)

;

where s? is the unique solution to

�

0

U

�

(s

?

) = C � c

�

j

:

The LD approximation is known to be very accurate [1], [4],

[18], [9], [19] and is also computationally very efficient. We use

the LD approximation for the numerical studies in this paper.

In summary, (15) is a simple expression for the worst–case

loss probability �

�

j

; this simple expression involves the inde-

pendent Bernoulli random variables U�
1

; : : : ; U

�

J

, whose distri-

butions we know explicitly. The LD approximation for (15) is

highly accurate and is easily calculated. For admission control,

we advocate using the LD approximation to calculate �

�

j

and

then verifying the QoS requirement, i.e., verifying in real–time

whether ��
j

� �

j

for all j = 1; : : : ; J .

At this juncture we note some important related work by Doshi

[20]. He studies worst–case, unsmoothed traffic that maximizes

an aggregate loss ratio, where the aggregation is taken over all

sources. For this criterion he discovers a number of anomalies;

in particular, extremal on–off sources are not always worst case.

With our bound P

loss

(j) (8) the loss is maximized by the ex-

tremal on–off sources, which greatly simplifies admission con-

trol. Furthermore, as we show in this paper, smoothing of traffic

can significantly expand the admission region.

A. The Optimal Smoother

Up to this point we have assumed that the smoother for each

connection j consists of a single buffer that limits the peak–rate

of the smoother output to c�
j

. In this subsection we study more

general smoothers, namely, smoothers that consist of a cascade

of leaky buckets. The smoother for connection j, defined by a

function S

j

(t), constrains the amount of traffic that can enter

the network over any time interval. Specifically, if B
j

(t) is the

amount of traffic leaving smoother j over the interval [0; t], then

B

j

(t) is required to satisfy

B

j

(t+ �)�B

j

(�) � S

j

(t) for all t � 0; � � 0:

We assume throughout this section that the smoother functions

are of the form

S

j

(t) = min

1�k�M

j

fs

k

j

+ r

k

j

tg (16)

with r

1

j

> r

2

j

> � � � > r

M

j

j

and 0 = s

1

j

< s

2

j

< � � � < s

M

j

j

.

These piecewise linear, concave smoother functions can be eas-

ily implemented by a cascade of leaky buckets. The single–

buffer smoother defined in Section 2 is a special case with M
j

=

1; s

1

j

= 0 and r1
j

= c

�

j

.

We say that a set of smoothers (S

1

(t); :::; S

J

(t)) is feasible

if the maximum delay incurred at smoother j is � d

j

for all

j = 1; : : : ; J . By definition the set of smoothers (c�
1

t; : : : ; c

�

J

t)

studied earlier is feasible. Now fix a feasible set of smoothers

(S

1

(t); : : : ; S

J

(t)), and let the regulated traffic from the J con-

nections pass through these smoothers. Let

�

j

= sup

A

E

h

(

P

J

k=1

U

k

� C)

+

U

j

i

C �E[U

j

]

(17)



be the associated worst–case loss probability. Recall that ��
j

is

the same worst–case loss probability but with the traffic passing

through the set of smoothers (c�
1

t; : : : ; c

�

J

t). The proof of the fol-

lowing result is provided in the appendix.

Theorem 2: �

�

j

� �

j

for all j = 1; : : : ; J . Thus the single–

buffer smoothers with c

j

= c

�

j

minimize the worst–case loss

probability over all feasible sets of smoothers.

It follows from Theorem 2 that the more complex smoothers

consisting of cascaded leaky buckets do not increase the con-

nection carrying capacity of the network. Thus without loss

of performance, we may use the simple smoothers of the form

(c

1

t; : : : ; c

J

t). Furthermore, Theorem 2 verifies the intuition

that in order to maximize the admission region the smoother rates

are as small as the delay constraints permit, that is, c
j

= c

�

j

for

j = 1; : : : ; J .

B. A Heuristic for Finding a Leaky Bucket Characterization of

Prerecorded Sources

In this subsection we discuss how to obtain a good characteri-

zation E
j

(t) of a source for a given restriction L
j

on the number

of leaky buckets. For any given characterization E
j

(t) we use

at the network edge a single–buffer smoother with rate c�
j

given

by (5). Our goal is to find a characterization E
j

(t) that has at

most L
j

slopes (i.e., L
j

cascaded leaky buckets) and attempts to

minimize both �
j

and c�
j

. From Theorem 2 we know that min-

imizing �

j

and c

�

j

minimizes the worst–case loss probabilities,

and thereby maximizes the connection–carrying capacity of the

network.

We develop the heuristic for determining the characterization

E

j

(t) in the context of prerecorded sources. These sources in-

clude full–length movies, music video clips and educational ma-

terial for video–on–demand (VoD) and other multimedia appli-

cations. It is well known how to compute the empirical envelope

for prerecorded sources [6], [21]. The empirical envelope gives

the tightest bound on the amount of traffic that can emanate from

a prerecorded source over any time interval. The empirical enve-

lope is however not necessarily concave, and therefore we may

not be able to characterize it by a cascade of leaky buckets. How-

ever, applying the algorithms of Knightly et al. [6] or Grahams

Scan [22], we can compute the concave hull of the empirical en-

velope. The concave hull for connection–j traffic, denoted by

H

j

(t), takes the form

H

j

(t) = min

1�i�K

j

f�

i

j

+ �

i

j

tg: (18)

Here,K
j

denotes the number of piecewise linear segments in the

concave hull. Without loss of generality we may assume �1
j

<

�

2

j

< � � � < �

K

j

j

and �1
j

> �

2

j

> � � � > �

K

j

j

.

The number of segments in the concave hull can be rather

large. The “Silence of The Lambs” video segment used in our

numerical experiments, for instance, has a concave hull consist-

ing of 39 segments. This implies that 39 leaky bucket pairs are

required to police the tightest concave characterization of the

“Silence of The Lambs” video segment. Our goal is to find a

more succinct characterization of prerecorded sources in order

to simplify call admission control and traffic policing.

Suppose that a source is allowed to use L
j

(L

j

< K

j

) leaky

buckets to characterize its traffic. We now present a heuristic for

the following problem: Given a source’s concave hull H
j

(t) =

min

1�i�K

j

f�

i

j

+�

i

j

tg and the delay limit d
j

, findL
j

leaky buck-

ets (out of the K
j

leaky bucket pairs in the concave hull) that

maximize the admission region.

We illustrate our heuristic for the case L
j

= 2. For L
j

= 2

the traffic constraint function takes the form

E

j

(t) = minf�

a

j

j

+ �

a

j

j

t; �

b

j

j

+ �

b

j

j

tg

with 1 � a

j

; b

j

� K

j

; (19)

where the indices a
j

and b

j

are yet to be specified. Our strat-

egy is to first choose the leaky bucket that has the tightest bound

on the average rate (i.e., minimize �
j

), and then choose another

leaky bucket which minimizes the smoother rate c�
j

. Let rave
j

denote the average rate of the prerecorded source. We found in

our numerical experiments that some of the leaky bucket pairs in

the concave hull (particularly those with high indices) may have

slopes < r

ave

j

. We set b
j

= maxfi : �

i

j

� r

ave

j

; 1 � i � K

j

g.

In words, we use the highest indexed leaky bucket with a slope

larger than rave
j

to specify the sources’ average rate.

In order to find the leaky bucket indexed by a

j

we consider

all leaky buckets (�

i

j

; �

i

j

) with 1 � i < b

j

. We compute the

smoother rates obtained by combining each of the leaky buckets

(�

i

j

; �

i

j

); 1 � i < b

j

with the leaky bucket (�
b

j

j

; �

b

j

j

) and select

the index i that gives the smallest smoother rate — and thus the

largest admission region. More formally, let c�i
j

; 1 � i < b

j

,

denote the minimal smoother rate for traffic with regulator func-

tion E
j

(t) = minf�

i

j

+ �

i

j

t; �

b

j

j

+ �

b

j

j

tg and delay bound d
j

.

By (5) we have

c

�i

j

= max

t�0

minf�

i

j

+ �

i

j

t; �

b

j

j

+ �

b

j

j

tg

d

j

+ t

:

We can obtain a more explicit expression for c�i
j

. Since

minf�

i

j

+ �

i

j

t; �

b

j

j

+ �

b

j

j

tg =

(

�

i

j

+ �

i

j

t for 0 � t � t

i

�

b

j

j

+ �

b

j

j

t for t � t

i

with t
i

= (�

b

j

j

� �

i

j

)=(�

i

j

� �

b

j

j

), we have

c

�i

j

= max

"

max

0�t�t

i

�

i

j

+ �

i

j

t

d

j

+ t

; max

t�t

i

�

b

j

j

+ �

b

j

j

t

d

j

+ t

#

:

The expressions inside the max[�] can be further simplified. It

can be shown that

max

0�t�t

i

�

i

j

+ �

i

j

t

d

j

+ t

=

8

<

:

�

i

j

d

j

if d
j

�

�

i

j

�

i

j

�

i

j

+�

i

j

t

i

d

j

+t

i

; if d
j

�

�

i

j

�

i

j

and

max

t�t

i

�

b

j

j

+ �

b

j

j

t

d

j

+ t

=

8

>

>

<

>

>

:

�

i

j

+�

i

j

t

i

d

j

+t

i

; if d
j

�

�

b

j

j

�

b

j

j

�

b

j

j

d

j

if d
j

�

�

b

j

j

�

b

j

j

:

We set the smoother rate to min

1�i<b

j

c

�i

j

and set a
j

to the index

that attains this minimum.



We now briefly discuss how to find the optimal regulator func-

tion consisting of 3 or more leaky buckets. First, note that there

are

�

b

j

� 1

L

j

� 1

�

combinations of leaky bucket pairs to consider.

This can be computationally prohibitive. The heuristic can be

sped up by considering only regulator functions consisting of

L

j

� 1 consecutive leaky buckets of the concave hull and the

leaky bucket (�
b

j

j

�

b

j

j

). In the case L
j

= 3, for instance, we

compute the minimal smoother rates only for the regulator func-

tions E
j

(t) = minf�

i

j

+ �

i

j

t; �

i+1

j

+ �

i+1

j

t; �

b

j

j

+ �

b

j

j

tg with

1 � i < b

j

� 1. This speed–up of the heuristic can produce a

suboptimal regulator function. Our numerical experiments (see

Section IV), however, indicate that it works surprisingly well.

C. Interaction between Application and Network

In this subsection we discuss how the responsibilities of

smoothing, call admission control and traffic policing can be

shared by the application and the network. Call admission con-

trol is the responsibility of the network. Before accepting a new

connection, the network has to ensure that the QoS requirements

continue to hold for all established connections and the new con-

nection. Policing is also a network responsibility. The network

edge has to police all established connections in order to ensure

that all connections comply with their respective regulator func-

tion advertised at connection establishment. While call admis-

sion control and traffic policing are responsibilities of the net-

work, smoothing can be performed by either the application or

the network. We refer to the case where the application performs

the smoothing and sends the smoothed traffic to the network edge

as application smoothing. The case where the application sends

its unsmoothed traffic to the network edge and the network edge

performs the smoothing is referred to as network smoothing.

With application smoothing the application

internally smoothes its traffic. Based on the regulator function

of its traffic and the maximum delay it can tolerate, the applica-

tion finds the minimum smoother rate by applying (5). Since the

smoothing is done by the application, there is no need to reduce

the number of leaky buckets used to characterize the traffic by

applying the heuristic outlined in Section III-B. Instead, the con-

cave hull of a prerecorded source is used directly for dimension-

ing its smoother. The application advertises the regulator func-

tion E
j

(t) = minfc

�

j

t; �

L

j

j

+�

L

j

j

tg and the delay bound d
j

= 0

to the network. We remark that this dual leaky bucket regulator

function has been adopted by the ATM Forum [23] and is being

proposed for the Internet [24]. The network does not have to be

aware of the smoothing done by the application. The network

edge dimensions its own smoother based on E
j

(t) and d
j

= 0.

Since d
j

= 0 the networks’ smoother degenerates to a server

with rate c�
j

preceded by a buffer of size zero.

With network smoothing the application advertises its regula-

tor function and maximum tolerable delay to the network. Prere-

corded sources apply the heuristic of Section III-B when the net-

work restricts the number of leaky buckets to a number smaller

than the number of segments in the concave hull. The network

edge dimensions the smoother based on the regulator function

and delay bound supplied by the application. Call admission

control is based on the assumption of worst–case on–off traffic at

TABLE I

STATISTICS OF MPEG–1 TRACES.

Trace Mean (bit) Mean Peak/Mean

bits/frame kbits/sec

lambs 7,312 171.2 18.4

mr.bean 17,647 423.5 13.0

TABLE II

PARAMETERS OF THE OPTIMAL LEAKY BUCKET CHARACTERIZATION WITH

2 LEAKY BUCKETS AS A FUNCTION OF THE DELAY BOUND FOR THE LAMBS

TRACE. THE AVERAGE RATE IS CHARACTERIZED BY THE 34TH LEAKY

BUCKET, I.E., b
lambs

= 34, WITH PARAMETERS �
b

lambs

lambs

= 3; 157:8 KBYTE

AND �

b

lambs

lambs

= 208.8 KBIT/SEC FOR ALL DELAY BOUNDS.

d

lambs

a

lambs

�

a

lambs

lambs

�

a

lambs

lambs

c

�

lambs

sec. kByte kbit/sec kbit/sec

0 1 0 3474.8 3474.8

0.042 2 13.3 939.3 2535.5

0.125 2 13.3 939.3 939.0

0.250 4 23.5 802.2 801.9

0.500 8 43.5 711.0 710.8

1.000 10 69.9 676.9 674.7

the smoother output. The network edge polices the applications’

traffic before it enters the smoother and drops violating traffic.

IV. NUMERICAL EXPERIMENTS

In this section we evaluate the smoothing/bufferless multi-

plexing scheme proposed in this paper using traces from MPEG

encoded movies. In all experiments we consider a single buffer-

less multiplexer which feeds into a 45 Mbps link. We obtained

the frame size traces, which give the number of bits in each

video frame, from the public domain [25]. (We are aware that

these are low resolution traces and some critical frames are

dropped; nevertheless, the traces are extremely bursty.) The

movies were compressed with the Group of Pictures (GOP) pat-

tern IBBPBBPBBPBB at a frame rate of F = 24 frames/sec

[25]. Each of the traces has N = 40,000 frames, correspond-

ing to about 28 minutes. The mean number of bits per frame

and the peak–to–mean ratio are given in Table IV. Let x
n

; n =

1; : : : ; N , denote the size of the nth frame in bits. We convert

the discrete frame size trace to a fluid flow by transmitting the

nth frame at rate x
n

F over the interval [n� 1=F; n=F ].

We first evaluate the heuristic of Section III-B. We compute

the empirical envelope and the concave hull of each trace using

the algorithms of Knightly et al. [6]. Based on the concave hull

of each video we compute the minimal smoother rate c�
j

. We

also apply the heuristic of Section III-B to the concave hull in or-

der to find the optimal leaky bucket characterization with 2 and

more leaky buckets. (We apply the speed–up described in Sec-

tion III-B for the leaky bucket characterizations with 3 or more

leaky buckets.)

The heuristic of Section III-B produced the optimal leaky

bucket characterizations given in Table II for the lambs trace.

The table gives the index a
lambs

and the parameters of the leaky
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Fig. 2. Number of video connections as a function of the delay bound. The

videos are characterized by the concave hull or the optimal leaky bucket char-

acterization with 2 leaky buckets. The bound on the loss probability is 10�7 .

bucket (�
a

lambs

lambs

; �

a

lambs

lambs

) for various delay bounds. The aver-

age rate is characterized by the 34th leaky bucket in the concave

hull, i.e., b
lambs

= 34, for all delay bounds. The table also gives

the minimal smoother rates for the various delay bounds. For a

delay bound of zero, the smoother rate is set to the rate of the

first leaky bucket, i.e., the peak–rate of the trace. For d
lambs

=

0.042 sec (= 1=F ) the trace is characterized by the 2nd and 34th

leaky bucket of the concave hull (a
lambs

= 2; b

lambs

= 34).

Note that d
lambs

< �

a

lambs

lambs

=�

a

lambs

lambs

in this case and c

lambs

=

�

a

lambs

lambs

=d

lambs

. For d
lambs

� 0.125 sec we have d

lambs

>

�

a

lambs

lambs

=�

a

lambs

lambs

and c�
lambs

= (�

a

lambs

j

+ �

a

lambs

j

t

a

lambs

)=(d

j

+

t

a

lambs

).

Assuming worst–case on–off traffic, the smoother outputs are

statistically multiplexed onto the bufferless link as discussed in

the previous sections. We set �
j

= 10

�7 for all connections. In

Figure 2 we plot the number of admissible video connections as

a function of the delay bound. The graph gives the number of

admissible video connections when the videos are characterized

by the concave hull or the optimal leaky bucket characterization
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Fig. 3. Number of lambs connections as a function of the delay bound and the

number of leaky buckets (LB). Plots shown are for Knightly et al. (KLZ) and

our approach (RRR).

with 2 leaky buckets. We observe from the plots that the opti-

mal leaky bucket characterization with 2 leaky buckets admits

almost as many video connections as the more accurate concave

hull characterization. The curves for 3 or more leaky buckets co-

incide with the curve for the concave hull.

In the next experiment we compare the admission region of

our approach with the admission region obtained with the de-

terministic admission control condition of Knightly et al. [6].

Note that the deterministic approach of Knightly et al. is loss-

less and guarantees that no bit is delayed by more than the pre-

specified delay limit in the multiplexer buffer. Our approach,

on the other hand, exploits the independence of traffic emanat-

ing from the J connections. The videos are passed through sim-

ple smoothers with c

j

= c

�

j

. The smoother outputs — assum-

ing worst–case on–off traffic — are then statistically multiplexed

onto the bufferless link, as discussed in the preceding sections.

We set �
j

= 10

�7 for all connections. Losses this small have

essentially no impact on the perceived video quality and can be

easily hidden by error concealment techniques [26].

In Figure 3 we plot the number of admissible lambs connec-

tions as a function of the delay bound. The graph gives the

number of lambs connections that are admitted with the our ap-

proach (RRR) when 2 or 3 leaky buckets (LB) are used to char-

acterize the video trace. As we just saw in Figure 2 the opti-

mal leaky bucket characterization with 3 leaky buckets admits as

many connections as the concave hull, the most accurate, con-

cave characterization of the video; using more leaky buckets

does not increase the admission region. We also plot the num-

ber of lambs connections that are admitted with the approach of

Knightly et al. (KLZ) when 2, 3, 8 or 16 leaky buckets are used

to characterize the trace. We observe that for delays on the or-

der of 0.5 seconds or more, the number of admissible connec-

tions significantly increases as the number of leaky buckets used

to describe the trace increases. The approach of Knightly et al.

thus greatly benefits from a more accurate characterization of the

video — achieved by more leaky buckets.

The main result of this experiment, however, is that our ap-

proach allows for more than twice the number connections than

does the approach of Knightly et al. For example, for a delay
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Fig. 4. Admission region for the multiplexing of lambs and bean connections

over a 45 Mbps link.

bound of 1.1 seconds, Knightly et al. admit 69 connections ( =

29.6 % average link utilization) with 16 leaky buckets while our

approach admits 146 connections ( = 62.7 % average link uti-

lization) with 3 leaky buckets. We obtain this dramatic increase

in the admission region by exploiting the independence of the

sources and allowing for a small loss probability.

In Figure 4 we consider multiplexing two different movies,

beans and lambs, each with its own delay constraint. We again

assume a 45 Mbps link. We use delay bounds of d
lambs

= 125

ms or 1.25 seconds and d

bean

= 125 ms or 1.25 seconds, giv-

ing four combinations. Both videos are characterized by 3 leaky

buckets. We assume that both video connections have the QoS

requirement that the fraction of traffic that is delayed by more

than the imposed delay limit is less than 10

�7. For the Knightly

et al. plot we use Earliest Deadline First (EDF) scheduling. We

see that for all four cases, the admission region for our approach

is dramatically larger.

In Figure 5 we compare the actual loss probability, P info

loss

(j)

given by (7) with our bound for loss probability, P
loss

(j), given

by (8). We obtain P info

loss

(j) and P
loss

(j) by simulation, and as-

sume worst–case on-off traffic. We also verify the accuracy of

the large deviation approximation for P
loss

(j). In Figure 5 we

plot the loss probabilities as a function of the number of connec-

tions being multiplexed over a 45 Mbps link. We consider the

scenario where the videos have a delay bound of 1 second and are

characterized by 3 leaky buckets. We observe that the bound on

the loss probability Ploss(j) (solid line) tightly bounds the actual

loss probability P info
loss (j) (dotted line). We also observe that the

LD approximation (dashed line) closely approximates the simu-

lation results.

V. COMPARISON WITH BUFFERED STATISTICAL

MULTIPLEXING

The numerical results of the previous section show that our ap-

proach allows for dramatically more connections than buffered

150 155 160 165 170 175 180 185
10

−7

10
−6

10
−5

10
−4

10
−3

 number of lambs connections

 P
lo

ss

 Ploss(j), simulation

 Ploss
info (j), simulation

 Ploss(j), LD appr.

(a) lambs

50 55 60 65 70 75 80
10

−6

10
−5

10
−4

10
−3

10
−2

 number of bean connections

 P
lo

ss

 Ploss(j), simulation

 Ploss
info (j), simulation

 Ploss(j), LD appr.

(b) bean

Fig. 5. The simulation verifies that the bound on the loss probability Ploss(j)

tightly bounds the actual loss probability P

info
loss

(j). The plots further con-

firm the accuracy of the Large Deviation (LD) approximation. We use a de-

lay bound of 1 second and characterize the videos by 3 leaky buckets. The

link rate is 45 Mbps. The plots give the loss probability as a function of the

number of ongoing connections.

deterministic multiplexing. In this section we briefly consider

buffered multiplexing with an allowance of small loss probabili-

ties, which we refer to as buffered statistical multiplexing. Con-

sider the buffered analogy of the single-link bufferless system

studied in Section 3. The link has capacityC and is preceded by

a finite buffer of capacity B. Let the same J connections arrive

to this system; specifically the J connections are independent

and the jth connection is regulated by a given regulator function

E

j

(t). The traffic from the J connections passes directly into the

buffered multiplexer, i.e., the traffic is not pre–smoothed before

arriving at the buffer. This buffered system is illustrated in Fig-

ure 6. Assuming that traffic is served FIFO, the maximum delay
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Fig. 6. The traffic of connection j is characterized by the regulator function

E

j

(t) and fed directly, i.e. unsmoothed, into a buffered multiplexer.

in this system is d = B=C. Suppose that the buffer overflow

probability is constrained to be no greater than �.

It is a difficult and challenging problem to accurately char-

acterize the admission region for a buffered multiplexer which

multiplexes regulated traffic and which allows for statistical mul-

tiplexing. Elwalid et al. in [9] made significant progress in this

direction. They consider the buffered multiplexer for the spe-

cial case of regulators with two leaky buckets, i.e., for E
j

(t) =

minf�

1

j

t; �

j

+ �

j

tg. (In our numerical comparisons, we ex-

tend their theory to the case of multiple cascaded leaky buck-

ets.) In order to make the buffered multiplexer mathematically

tractable they assign each connection its own virtual buffer/trunk

system. Each virtual buffer/trunk system is allocated buffer b
0;j

and bandwidth e
0;j

. The allocations are based on the buffer and

bandwidth resources (B and C, respectively) and on the regu-

lator parameters (�
j

, �1
j

, and �

j

) for the input traffic. It turns

out that the bandwidth e
0;j

is exactly the c�
j

obtained by setting

d

j

= d = B=C in (4). After some analysis Elwalid et al. obtain

the following bound on the fraction of time during which loss

occurs at the buffered multiplexer:

P

EMW
loss = P (U

�

1

+ � � �+ U

�

J

� C):

whereU�
1

; : : : ; U

�

J

are exactly the same random independent ran-

dom variables that occur in Theorem 1. (To calculate the associ-

ated c�
1

; : : : ; c

�

J

, set d
j

= d = B=C for each connection j.)

This observation indicates that the bufferless system of this

paper has remarkably similarities with the buffered system in

[9]. Specifically, for a fixed maximum delay d in the buffered

system, we can design a bufferless system with pre–smoothers

which has the same maximum delay and which has an admission

region based on the same set of independent random variables

U

�

1

; : : : ; U

�

J

. The pre–smoothers essentially implement the vir-

tual buffer/trunk systems introduced by Elwalid et al. For a max-

imum loss probability of � the admission region for the buffered

multiplexer is defined by

P (U

�

1

+ � � �+ U

�

J

� C) � �

whereas the admission region for the bufferless system is

E[(

P

J

k=1

U

�

k

� C)

+

U

�

j

]

C �E[U

�

j

]

� �:

Although these admission regions are different, they are based

on exactly the same independent random variables U�
1

; : : : ; U

�

J

.

The difference in these admission regions is an artifact of using
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Fig. 7. Number of lambs connections as a function of the delay bound. The

lambs video is described by 3 leaky buckets. Plots shown are for Elwalid et

al. (EMW) and our approach(RRR). The difference in the number of admis-

sible connections is due to the different notions of loss probability.

two different notions of loss probability: while in this paper we

use “fraction of traffic lost”, the paper [9] uses “the fraction of

time during which loss occurs”. If the same notions of loss were

used, then the admission regions would be identical. Figure 7

gives the number of lambs connections that are admitted with the

approach of Elwalid et al. (EMW) [9] and our approach (RRR)

when 3 leaky buckets are used to characterize the trace. We as-

sume a 45 Mbps link and set �
j

= 10

�7 for all connections.

Thus, our bufferless system has essentially the same admis-

sion region as the buffered system in [9] for a fixed worst–case

delay d and loss probability �. While being no more difficult

to perform call admission, we believe that the bufferless system

has some important advantages over the buffered system: (i)

no buffer is needed at the multiplexer (for packetized traffic, a

relatively small buffer would be needed); (ii) the bufferless ap-

proach allows for a per–connection QoS requirement, whereas

the buffered system imposes the same QoS requirement on all

connections; and (iii), perhaps most importantly, networks are

quite tractable for bufferless links, as we can reasonably approx-

imate a connection’s traffic at the output of the multiplexer as be-

ing identical to its traffic at the input to the multiplexer.

On the other hand, the buffered system does have some ad-

vantages over the bufferless system. First, although both sys-

tems have the same worst–case delay, the buffered system will

have a lower average delay. Second, the admission region of [9]

can be increased using the techniques in [10] and [11] (at the ex-

pense of a much more complicated admission procedure). Be-

cause multimedia applications are typically designed for a delay

bound, and because the aforementioned increase in admission re-

gion is typically small, we feel that the advantages of the buffer-

less approach outweigh the advantages of the buffered approach.

VI. FINAL REMARKS

In this paper we have considered traffic management for mul-

timedia networking applications which permit a small amount of

loss and some bounded delay. We have argued that it is prefer-

able to smooth the traffic at the ingress and to perform buffer-

less statistical multiplexing within the node than to use shared–



buffer multiplexing. For our scheme we have determined the

worst–case traffic and have outlined an admission control pro-

cedure based on the worst–case traffic. We have also explicitly

characterized the optimal smoother.

As pointed out in Section III-C the smoothing can be per-

formed by either the network (at the network edge) or by the ap-

plications themselves. If the applications perform the smooth-

ing, then an application should smooth the traffic as much as per-

mitted by the delay constraint, and the network should offer a

service to the application which guarantees queueing–free de-

lays (delays only due to propagation and nodal processing) and

allows the application to specify a maximum tolerable loss rate.

The network node should perform statistical multiplexing in or-

der to maximize its connection–carrying capacity. To guarantee

QoS, admission control should suppose that the traffic is adver-

sarial to the extent permitted by the regulators and smoothers.

Throughout this paper we have studied a single–node net-

work. A subsequent paper addresses how the scheme can be ex-

tended to more general networks [14].

ACKNOWLEDGMENTS

We gratefully acknowledge interactions with Jim Roberts at

the early stages of this research.

APPENDIX

The purpose of this appendix is to provide a proof for Theorem

2. But first we need to establish two lemmas.

Lemma 2: A necessary condition for (S
1

(t); : : : ; S

J

(t)) to be

feasible is r1
j

� c

�

j

for all j = 1; : : : ; J .

Proof: From [27], [28], [7] the maximum delay at

smoother j is

~

d

j

= max

t�0

f max

1�k�M

j

E

j

(t)� s

k

j

r

k

j

� tg: (20)

Suppose r1
j

< c

�

j

for some j = 1; : : : ; J . Because sk
j

� 0 and

r

k

j

� r

1

j

for all k, it follows from (20) that

~

d

j

� max

t�0

f

E

j

(t)

r

1

j

� tg: (21)

And because, by assumption, r1
j

< c

�

j

, it follows from (21) that

~

d

j

> max

t�0

f

E

j

(t)

c

�

i

� tg = d

j

;

where the last equality follows from (4).

Lemma 3: There exists a stochastic vector arrival process in

A that produces the steady-state rate variables ~

U

1

; : : : ;

~

U

J

with
~

U

j

having distribution

~

U

j

=

(

min(r

1

j

; �

1

j

) with probability
�

j

min(r

1

j

;�

1

j

)

0 with probability 1�

�

j

min(r

1

j

;�

1

j

)

at the smoother outputs.

Proof: For each j = 1; : : : ; J , let t
j

= �

2

j

=(�

1

j

� �

2

j

) and

�

j

= s

2

j

=(r

1

j

� r

2

j

). At t = t

j

the slope of E
j

(t) changes form

�

1

j

to �

2

j

< �

1

j

. Consequently, E
j

(t

j

) = �

1

j

t

j

is the maximum

size burst that can be transmitted at rate �1
j

, provided successive

maximum size bursts are spaced at least E
j

(t

j

)=�

j

� t

j

apart.

Similarly, at t = �

j

the slope of S
j

(t) changes form r

1

j

to r2
j

<

r

1

j

. Consequently, S
j

(�

j

) = r

1

j

�

j

is the maximum size burst the

smoother can pass at rate r1
j

, provided successive maximum size

bursts are spaced at least S
j

(�

j

)=r

M

j

j

� �

j

apart.

Let ~b
j

(t) be a deterministic periodic function such that

~

b

j

(t) =

�

�

1

j

0 � t < ton
j

0 ton
j

� t � T

j

:

with on–time ton
j

and period T

j

given in Table III. Also, let

�

1

; : : : ; �

J

be independent random variables with �

j

uniformly

distributed over [0; T
j

] and define the jth stochastic arrival pro-

cess as

~

A

j

(t) =

Z

t

0

~

b

j

(s+ �

j

)ds:

Thus each component arrival process ( ~A
j

(t); t � 0) is gener-

ated by a periodic on-off source; the jth process has peak–rate

�

1

j

and average rate �
j

. The argument in the proof of Theorem 1

shows that the vector process ( ~A(t); t � 0) is a feasible process

in A.

It remains to show that by sending each component process

(

~

A

j

(t); t � 0) into its respective smoother we obtain an on-off

process whose peak–rate is min(r

1

j

; �

1

j

) and whose average rate

is �
j

. Specifically, we now show that ~

A

j

(t) produces ~

O

j

(t) =

R

t

0

~o

j

(s+ �

j

)ds at the smoother output where

~o

j

(t) =

�

min(r

1

j

; �

1

j

) 0 � t < �on
j

0 �on
j

� t � T

j

;

where the periods and on–times are given in Table III.

First, consider the case �1
j

� r

1

j

and E
j

(t

j

) � S

j

(�

j

). Clearly,

ton
j

� t

j

since ton
j

= S

j

(�

j

)=�

1

j

and t
j

= E

j

(t

j

)=�

1

j

and by as-

sumption S
j

(�

j

) � E

j

(t

j

). This implies that E
j

(ton
j

) = �

1

j

ton
j

.

Hence

S

j

(�on
j

) = E

j

(ton
j

): (22)

Note furthermore that

ton
j

� �on
j

(23)

since ton
j

= S

j

(�

j

)=�

1

j

= r

1

j

�

j

=�

1

j

and by assumption r

1

j

�

�

1

j

. Because of (22) and (23) and �on
j

= �

j

the smoother bursts

at rate r1
j

for a duration of �on
j

when fed with an input burst at

rate �1
j

for a duration of ton
j

� t

j

. Also, note that the smoother

output has average rate E
j

(ton
j

)=T

j

= �

j

� r

M

j

j

, where the last

inequality follows from the stability condition.

Because of page limitations we omit the discussion of the

other three cases identified in Table III. They are dealt with in

a similar fashion; see [29] for details.

Proof of Theorem 2: Using Lemma 3 and mimicking the proof

of Theorem 1 we obtain

�

j

=

E

h

(

P

J

k=1

~

U

k

� C)

+

~

U

j

i

C � E[

~

U

j

]

;



TABLE III

ON–TIMES AND PERIODS OF ~b
j

(t) AND ~o

j

(t).

�

1

j

� r

1

j

�

1

j

< r

1

j

E

j

(t

j

) � S

j

(�

j

) E

j

(t

j

) < S

j

(�

j

) E

j

(t

j

) � S

j

(�

j

) E

j

(t

j

) < S

j

(�

j

)

T

j

S

j

(�

j

)=�

j

E

j

(t

j

)=�

j

S

j

(�

j

)=�

j

E

j

(t

j

)=�

j

ton
j

S

j

(�

j

)=�

1

j

t

j

S

j

(�

j

)=�

1

j

t

j

�on
j

�

j

E

j

(t

j

)=r

1

j

S

j

(�

j

)=�

1

j

t

j

where ~

U

1

; : : : ;

~

U

J

are defined in Lemma 3. Using the fact that
~

U

j

is a Bernoulli random variable, we obtain from the above ex-

pression

�

j

=

E

h

(

P

k 6=j

~

U

k

+min(r

1

j

; �

1

j

)� C)

+

i

C

�

E

h

(

P

k 6=j

~

U

k

+ c

�

j

� C)

+

i

C

; (24)

where the last inequality follows from Lemma 2.

From (15) and (24) it remains to show that

E[(

X

k 6=j

U

�

k

+ c

�

j

� C)

+

] � E[(

X

k 6=j

~

U

k

+ c

�

j

� C)

+

]: (25)

From Lemma 2 and Proposition 1.5.1 in [16]

U

�

k

�

icx

~

U

k

for all k = 1; : : : ; J: (26)

The inequality (25) follows from (26), the independence of

U

�

1

; : : : ; U

�

J

and an argument that parallels the argument in the

proof of Theorem 1. 2
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