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A Framework for Guaranteeing Statisti
al QoS

(Extended Version)

Martin Reisslein, Member, IEEE, Keith W. Ross, Senior Member, IEEE, Srinivas Rajagopal

Abstra
t|Continuous{media traÆ
 (i.e., audio and video)


an tolerate some loss but has rigid delay 
onstraints. A nat-

ural QoS requirement for a 
ontinuous{media 
onne
tion is

a pres
ribed limit on the fra
tion of traÆ
 that ex
eeds an

end{to{end delay 
onstraint. We propose and analyze a

framework that provides su
h a statisti
al QoS guarantee to

traÆ
 in a pa
ket{swit
hed network. Providing statisti
al

guarantees in a network is a notoriously diÆ
ult problem

be
ause traÆ
 
ows lose their original statisti
al 
hara
ter-

izations at the outputs of queues. Our s
heme uses bu�erless

statisti
al multiplexing 
ombined with 
as
aded leaky{bu
kets

for smoothing and traÆ
 
ontra
ting. This s
heme along

with a novel method for bounding the loss probability gives

a tra
table framework for providing end{to{end statisti
al

QoS. Using MPEG video tra
es, we present numeri
al re-

sults that 
ompare the 
onne
tion{
arrying 
apa
ity of our

s
heme with that of guaranteed servi
e s
hemes (i.e., no

loss) using GPS and RCS. Our numeri
al work indi
ates

that our s
heme 
an support signi�
antly more 
onne
tions

without introdu
ing signi�
ant traÆ
 loss.

Keywords: Bu�erless Multiplexing, Call Admission Con-

trol, End{to{End QoS, Multimedia TraÆ
, Regulated Traf-

�
, Statisti
al Multiplexing, Statisti
al QoS, TraÆ
 Smooth-

ing.

I. Introdu
tion

Continuous{media networking appli
ations are in
reas-

ingly popular in the Internet. These appli
ations in
lude

Internet phone, real{time video 
onferen
ing, and stream-

ing stored audio and video. But be
ause the Internet

provides only a best{e�ort servi
e, the Quality of Ser-

vi
e (QoS) per
eived by a user is in
onsistent and unpre-

di
table. In parti
ular, the QoS for a 
ontinuous{media

session is often poor when the links between 
ommuni
at-

ing entities are 
ongested or subje
t to sudden and unpre-

di
table traÆ
 surges.

It is therefore desirable to introdu
e new servi
es into

the Internet that 
an guarantee QoS to 
ontinuous{media

appli
ations. The subje
t of providing QoS guarantees in

pa
ket{swit
hed networks has been a major area of re-

sear
h over the past 10{20 years, both inside and outside
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of the Internet resear
h 
ommunity. One of the proposi-

tions that has resulted from this resear
h is a spe
i�
ation

for guaranteed QoS [47℄. When an appli
ation uses this

servi
e, the appli
ation's pa
kets have guaranteed bounds

on delays with no pa
ket loss. The guaranteed QoS servi
e

is a natural outgrowth of a body of resear
h in the area of

delay bound 
al
ulations for queueing networks with regu-

lated traÆ
 [7℄, [8℄, [34℄, [35℄, [58℄, [57℄, [18℄, [27℄, [4℄, [26℄.

It 
an be argued, however, that guaranteeing absolutely

no pa
ket loss is overly 
onservative for 
ontinuous{media

appli
ations, whi
h 
an typi
ally tolerate a small rate of

loss. In fa
t, users may not per
eive any quality degra-

dation when there is infrequent pa
ket loss, espe
ially if

the re
eiver employs error 
on
ealment te
hniques (e.g.,

see [53℄). Furthermore, s
hemes that guarantee no loss typ-

i
ally have a low 
onne
tion{
arrying 
apa
ity for bursty


ontinuous{media traÆ
 (e.g., VBR video or spee
h with

silen
e dete
tion) [43℄, [20℄, [21℄, [19℄. Alternatively stated,

the no{loss s
hemes ne
essitate a high degree of bandwidth

over provisioning.

This raises two important questions. First, is it possible

to develop a 
omprehensive framework that provides statis-

ti
al QoS guarantees in a network, that is, bounds on the

fra
tion of traÆ
 that ex
eeds an end{to{end delay 
on-

straint? Providing statisti
al guarantees in a network 
on-

text is a notoriously diÆ
ult problem be
ause traÆ
 
ows

lose their original statisti
al 
hara
terizations at the out-

puts of queues. And if yes, 
an this statisti
al{QoS s
heme

have signi�
antly better 
onne
tion{
arrying 
apa
ity than

a guaranteed QoS s
heme? In this arti
le we �rst develop

a framework that provides statisti
al QoS guarantees in a

network setting. We also argue that our approa
h typi
ally

has signi�
antly better 
onne
tion{
arrying 
apa
ity than

a deterministi
 guaranteed QoS s
heme.

In order to guarantee deterministi
 or statisti
al QoS,


onne
tions need to make 
ontra
ts with the network in

order to limit, in some sense, the amount of traÆ
 the 
on-

ne
tions send into the network over intervals of time. Only

by making and enfor
ing 
ontra
ts 
an a network expe
t

to be able to provide guarantees. Leaky bu
kets, being

relatively easy to implement, are 
onvenient me
hanisms

for de�ning and enfor
ing traÆ
 
ontra
ts. Sour
es that


onform to leaky{bu
ket 
hara
terizations are said to be

regulated sour
es. In re
ent years, several resear
h teams

have 
arefully studied the problem of providing statisti
al

QoS guarantees to regulated sour
es that are multiplexed

in a single shared bu�er [15℄[33℄[37℄. With shared bu�er

multiplexers, however, it is diÆ
ult (if not impossible) to

tightly 
hara
terize a 
onne
tion's traÆ
 on
e the traÆ
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passes through the shared bu�er. Therefore, the existing

solutions do not extend to the network environment in a

satisfa
tory manner.

Although our approa
h also uses leaky bu
ket regula-

tors, it provides meaningful statisti
al guarantees in a net-

work 
ontext. The QoS guarantees provided by our s
heme


an be roughly stated as follows: the fra
tion of traÆ


that ex
eeds a spe
i�
 end{to{end delay 
onstraint is be-

low a pres
ribed bound. The s
heme allows ea
h 
onne
-

tion to have its own end{to{end delay 
onstraint and its

own bound on the fra
tion of traÆ
 that ex
eeds this de-

lay limit. Su
h a statisti
al QoS guarantee is parti
ularly

appropriate for 
ontinuous{media traÆ
, whereby times-

tamping and a playout bu�er 
an ensure the 
ontinuous

playout of video or audio without jitter [38℄. Our traf-

�
 management s
heme has the following 
omponents: (i)

ea
h 
onne
tion's traÆ
 is smoothed at the 
onne
tion's

input as mu
h as allowed by the 
onne
tion's delay 
on-

straint; (ii) all nodes within the network employ bu�erless

statisti
al multiplexing; (iii) admission 
ontrol is based on

the worst{
ase assumption that sour
es are adversarial to

the extent permitted by the 
onne
tion's regulator, while


on
urrently assuming the 
onne
tions generate traÆ
 in-

dependently. A 
riti
al devi
e in our is s
heme is a novel

bound for a 
onne
tion's traÆ
 loss at a single node.

Our s
heme has the following features:

� Admission 
ontrol is solely based on the 
onne
tions' reg-

ulator parameters, whi
h are poli
able. It is not based on

more 
omplex, diÆ
ult{to{poli
e statisti
al 
hara
teriza-

tions.

� It allows for statisti
al multiplexing in the network while

meeting the QoS requirements. The smoothing at the input

in
reases the statisti
al multiplexing gain.

� It allows for per{
onne
tion QoS requirements: the 
on-

ne
tions 
an have vastly di�erent delay and loss require-

ments.

� Be
ause the multiplexing is bu�erless, the swit
hes re-

quire only small input bu�ers (when traÆ
 is pa
ketized),

thereby redu
ing swit
h 
ost.

� A 
onne
tion's traÆ
 
hara
terization does not 
hange

as the traÆ
 passes through a bu�erless multiplexer, that

is, the traÆ
 leaving the network node 
onforms to the

same regulator 
onstraints as the traÆ
 entering the node.

This feature is parti
ularly useful when analyzing multihop

networks.

The statisti
al multiplexing within the network in
reases

the 
onne
tion 
arrying 
apa
ity of the network signi�-


antly at the expense of minis
ule losses in the network.

We provide numeri
al examples that demonstrate that by

allowing for very small losses of the order of 10

�7

(whi
h


an be e�e
tively hidden by error 
on
ealment te
hniques

[53℄) our s
heme 
an typi
ally support two to three times

the number of 
onne
tions that deterministi
 servi
e dis
i-

plines (GPS, RCS, et
.) 
an support.

The problem of providing end{to{end statisti
al QoS

guarantees in a network has re
eived a great deal of atten-

tion in re
ent years. The early works [23℄, [3℄ in this area

derive probabilisti
 bounds on the delay of 
ows in a net-

work, while [44℄ dis
usses a 
on
eptual framework for QoS

assuran
es in a network. A s
heme whi
h is able to pro-

vide end{to{end statisti
al QoS in a network of Generalized

Pro
essor Sharing (GPS) s
hedulers is developed in [14℄.

End{to{end statisti
al QoS guarantees are also provided

by the s
heme proposed in [25℄, whi
h employs TraÆ
{

Controlled Rate{Monotoni
 Priority S
heduling [24℄. Our

approa
h was developed independently of [14℄, [25℄ and was

�rst presented in [41℄, [42℄. In this arti
le we extend our

approa
h and present it in a 
omprehensive manner. The

GPS based s
heme [14℄ is further re�ned in [22℄. S
hemes

for providing end{to{end statisti
al QoS in a network of

Earliest Deadline First (EDF) s
hedulers are developed in

[1℄, [49℄. A 
omparison of the EDF based s
hemes and the

GPS based s
hemes is 
ondu
ted in [50℄. An approa
h that

statisti
ally bounds the burstiness of 
ows in a network is

presented in [51℄. A framework for a
hieving end{to{end

statisti
al QoS through 
oordinated network s
heduling is

devised in [29℄. In [16℄ aggregation of 
ows in 
ore routers

of the Internet is exploited to de
ompose the network and

analyze the end{to{end queuing behavior using tools de-

veloped for the analysis of a single queue. Finally, there

have been several e�orts to extend the deterministi
 net-

work 
al
ulus [7℄, [8℄, [9℄, [4℄, [26℄, whi
h relies to a large

extend on arrival envelopes and servi
e 
urves, to proba-

bilisti
 network servi
es. Di�erent de�nitions of probabilis-

ti
 servi
e 
urves have been studied in [10℄, [36℄. A prob-

abilisti
 network 
al
ulus for a 
lass of so{
alled \dynami


F{servers" is developed in [4℄. A 
al
ulus for providing

end{to{end statisti
al QoS is developed and evaluated in

[2℄, [30℄. This 
al
ulus employs e�e
tive servi
e 
urves and

applies in rather general settings.

This arti
le is organized as follows. In Se
tion II we for-

mally de�ne the 
as
aded leaky{bu
ket regulators and the

statisti
al QoS requirement. We also dis
uss the smoothers

at the network ingresses and des
ribe our network model.

In Se
tion III we fo
us on a single node. We determine the

worst{
ase traÆ
 and outline our smoothing and admission


ontrol pro
edure. We also 
onsider general smoothers and

show that the optimal smoother is a single{bu�er smoother

whi
h smoothes traÆ
 as mu
h as the delay limit permits.

In Se
tion III-B we evaluate our smoothing/bu�erless mul-

tiplexing s
heme in the 
ontext of a single node numeri
ally

using tra
es of MPEG en
oded video. In Se
tion III-C we


ompare our s
heme to designs based on bu�ered statisti-


al multiplexing. In Se
tion IV we analyze multihop net-

works. In Se
tion IV-A we 
ompare the performan
e of our

smoothing/bu�erless multiplexing s
heme with that of de-

terministi
 servi
e dis
iplines in multihop networks. In Se
-

tion V we dis
uss how the responsibilities of smoothing, 
all

admission 
ontrol and traÆ
 poli
ing 
an be shared by the

appli
ation and the network when our smoothing/bu�erless

multiplexing s
heme is employed. We 
on
lude in Se
-

tion VI.
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II. Regulated Traffi
 and the Statisti
al QoS

Requirement

In this arti
le we study networks 
onsisting of inter-


onne
ted bu�erless nodes. We assume a virtual 
ir
uit,


onne
tion{oriented network and view traÆ
 as 
uid, that

is, pa
kets are in�nitesimal. The 
uid model, whi
h 
losely

approximates a pa
ketized model with small pa
kets, per-

mits us to fo
us on the 
entral issues and signi�
antly sim-

pli�es notation.

Ea
h 
onne
tion j entering the network has an asso
iated

regulator fun
tion (also often referred to as arrival envelope

in the literature), denoted by E

j

(t), t � 0. The regulator

fun
tion 
onstrains the amount of traÆ
 that 
onne
tion j


an send into the network over all time intervals. Spe
if-

i
ally, if A

j

(t) is the amount of traÆ
 that 
onne
tion j

sends into the network over the interval [0; t℄, then A

j

(t) is

required to satisfy

A

j

(t+ �)�A

j

(�) � E

j

(t) 8� � 0; t � 0: (1)

A popular regulator is the simple regulator, whi
h 
on-

sists of a peak rate 
ontroller in series with a leaky bu
ket;

for the simple regulator, the regulator fun
tion takes the

following form:

E

j

(t) = minf�

1

j

t; �

2

j

+ �

2

j

tg:

For a given sour
e type, the bound on the traÆ
 provided

by the simple regulator may be loose and lead to overly


onservative admission 
ontrol de
isions. For many sour
e

types (e.g., for VBR video), it is possible to get a tighter

bound on the traÆ
 and dramati
ally in
rease the admis-

sion region. In parti
ular, regulator fun
tions of the form

E

j

(t) = minf�

1

j

t; �

2

j

+ �

2

j

t; : : : ; �

L

j

j

+ �

L

j

j

tg (2)

are easily implemented with 
as
aded leaky bu
kets; it is

shown in [54℄ that the additional leaky bu
kets 
an lead

to substantially larger admission regions for multiplexing

with deterministi
 QoS. We shall show that this is also

true to some extend for multiplexing with a statisti
al QoS

requirement. Spe
i�
ally, we shall demonstrate that with

three properly sele
ted leaky bu
kets, we 
an a
hieve the

maximum admission region. With two 
arefully sele
ted

leaky bu
kets we 
an a
hieve most of this admission region;

however, in most 
ases these two leaky bu
kets di�er from

the simple regulator in that both leaky bu
kets have a non{

zero bu
ket depth � (see Appendix B for details).

Throughout this arti
le we assume that ea
h regulator

has the form (2). Without loss of generality we may assume

that �

1

j

> �

2

j

> � � � > �

L

j

j

and �

2

j

< �

3

j

< � � � < �

L

j

j

. For

ease of notation, we set �

j

= �

L

j

j

. Note that for 
onne
tion{

j traÆ
, the long{run average rate is no greater than �

j

and

the peak rate is never greater than �

1

j

.

Ea
h 
onne
tion also has a QoS requirement. We 
on-

sider a QoS requirement that is parti
ularly appropriate

for multimedia traÆ
 that has stringent end{to{end de-

lay requirements but 
an tolerate some loss. Spe
i�
ally,

ea
h 
onne
tion has a 
onne
tion{spe
i�
 delay limit and

a 
onne
tion{spe
i�
 loss bound. Let d

j

and �

j

denote the

delay limit and loss bound for 
onne
tion j. Any traÆ


that over
ows at one of the bu�erless links in the network

is 
onsidered to have in�nite delay, and therefore violates

the delay limit. The QoS requirement is as follows: the

long{run fra
tion of 
onne
tion{j traÆ
 that is delayed by

more than d

j

se
onds must be less than �

j

.

This QoS requirement 
an assure 
ontinuous, uninter-

rupted playba
k for a multimedia 
onne
tion as follows.

Ea
h pa
ket (whi
h we assume to be in�nitesimally small

in our 
uid analysis) is time{stamped at the sour
e. If

a pa
ket from 
onne
tion j is time{stamped with value

x, the pa
ket (if not lost in the node) arrives at the re-


eiver no later than x+ d

j

. The re
eiver delays playout of

the pa
ket until time x + d

j

. Thus, by in
luding a bu�er

at ea
h re
eiver, the re
eiver 
an playba
k a multimedia

stream without jitter with a �xed delay of d

j

and with a

loss probability of at most �

j

.

The �rst aspe
t of our strategy is to pass ea
h 
on-

ne
tion's traÆ
 through a bu�ered smoother at the 
on-

ne
tion's input to the network. We design the smoother

for 
onne
tion j so that the 
onne
tion{j traÆ
 is never

delayed by more than d

j

in the smoother. After having

smoothed a 
onne
tion's traÆ
, we pass the smoothed traf-

�
 to the network, and the traÆ
 follows its route through

the network. At ea
h link along its route, the 
onne
tion's

traÆ
 is statisti
ally multiplexed with traÆ
 from other


onne
tions. The se
ond aspe
t of our strategy is to remove

all of the bu�ers inside the network; that is, we use bu�er-

less statisti
al multiplexing rather than bu�ered multiplex-

ing before ea
h link in the network. In our 
uid model, a


onne
tion's traÆ
 that arrives to a bu�erless link either


ows through the link without any delay or over
ows at

the link, and therefore has in�nite delay. The QoS require-

ment of a 
onne
tion j is met if the fra
tion of 
onne
tion{

j traÆ
 that over
ows any of the links along the route of


onne
tion j is less than �

j

. Also, note that provided the

loss at ea
h link is small, we 
an reasonably approximate

a 
onne
tion's traÆ
 at the output of the multiplexer as

being identi
al to its traÆ
 at the input of the multiplexer.

In other words, a 
onne
tion that satis�es a 
ertain regu-

lator 
onstraint at the input of a node satis�es the same

regulator 
onstraint at the output of the node.

For the smoother at the input of 
onne
tion j to the net-

work we initially use a bu�er whi
h serves traÆ
 at rate 


�

j

.

When the smoother bu�er is nonempty, traÆ
 is drained

from the bu�er at rate 


�

j

. When the smoother bu�er is

empty and 
onne
tion{j's traÆ
 is arriving at a rate less

than 


�

j

, traÆ
 leaves the bu�er exa
tly at the rate at whi
h

it enters the bu�er. For the 
uid model and QoS 
riterion

of this arti
le we shall show that more 
omplex smoothers


onsisting of 
as
aded leaky bu
kets do not improve per-

forman
e.

Using the theory developed in [7℄, it 
an be shown that

the maximum delay in the smoother is

max

t�0

(

E

j

(t)




�

j

� t

)

:
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node 1

C

1

-

node 2

C

2

- -

node N

C

N

-q q q

Fig. 1. Multihop network with N nodes.

We set the smoother rate to




�

j

= min

�




j

� 0 : max

t�0

�

E

j

(t)




j

� t

�

� d

j

�

; (3)

where d

j

is the delay requirement for 
onne
tion j. Sin
e

the bu�erless nodes inside the network introdu
e no addi-

tional delay, traÆ
 from 
onne
tion j that 
ows through

the network without loss has an end{to{end delay of no

more than d

j

. It is straightforward to show from (3) that

the smoother rate 
an be expressed as




�

j

= max

t�0

E

j

(t)

d

j

+ t

: (4)

Intuitively, 


�

j

is the smallest smoother rate that guaran-

tees (deterministi
ally) that the traÆ
 is delayed by no

more than d

j

in the smoother. When 
onsidering a plot of

the regulator fun
tion E

j

(t) and the straight line 


�

j

t as a

fun
tion of time t, 


�

j

is the smallest slope 


�

j

su
h that the

maximum horizontal distan
e between E

j

(t) and 


�

j

t is less

than or equal to d

j

.

A. Network Model

An important 
hara
teristi
 of our framework is that it

provides statisti
al QoS guarantees in a network. We shall

illustrate this 
hara
teristi
 in the 
ontext of a multihop

network with intervening lo
al traÆ
 
ows. Consider a

multihop network with N nodes, as shown in Figure 1.

Ea
h node is a bu�erless multiplexer, that is, bu�ering is

not permitted at ea
h of the N nodes. Let C

n

denote

the transmission rate for the link between the nth and the

(n+ 1)st node.

One 
onne
tion, whi
h we label 
onne
tion 0, passes

through all N nodes. All of the other 
onne
tions pass

through exa
tly one node. We denote I(n) for the set of


onne
tions that pass through node n. We assume through-

out that the traÆ
 generated by the streams is mutually

independent. In this paper we shall show how an end{to{

end statisti
al guarantee 
an be provided to 
onne
tion{0.

To this end, we �rst solve the single{node 
ase in the fol-

lowing se
tion.

We note that in the 
onsidered network, the multiplexed

streams are independent at ea
h node. This independen
e

is exploited in our 
al
ulation of the bound on the loss

probability, whi
h in turn is the basis for our 
all admis-

sion rule. In a more general network, where several streams

(that are independent at the network ingress) traverse sev-

eral nodes together, 
orrelations may be introdu
ed among

the streams. However, the bu�erless multiplexers intro-

du
e 
orrelations among the streams only in 
ase there is

loss, i.e., when the aggregate arrival rate of the streams

ex
eeds the link 
apa
ity. Otherwise, i.e., when there is no

E

jI(1)j�1

(t)

E

0

(t)

-

-




�

0




�

jI(1)j�1

r

r

r

�

�

�

�>

Z

Z

Z

Z~

node 1

bu�erless

multiplexer

C

1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 2. Node 1 is a bu�erless multiplexer. The independent smoothed

streams in I(1) are multiplexed onto the output link of 
apa
ity

C

1

.

loss, the streams are not \aware" of ea
h other, and the

independen
e is preserved. We expe
t that in the typi
al

network operating regime the probability of loss is kept

quite small, say on the order of 10

�7

to 10

�5

, by employ-

ing the 
all admission rule developed in this arti
le. Thus,

there are typi
ally only minis
ule 
orrelations introdu
ed

when several 
ows traverse a number of 
ommon nodes.

We expe
t that these minis
ule 
orrelations have a negli-

gible impa
t on the 
al
ulation of the bound on the loss

probability.

III. Guaranteeing Statisti
al QoS: Single Node

Analysis

In this se
tion we determine the worst{
ase traÆ
 and

derive the optimal smoothing strategy. For this purpose

we initially fo
us on a parti
ular node n; 1 � n � N .

jI(n)j smoothed streams are multiplexed onto the output

link of 
apa
ity C

n

. Ea
h of the 
onne
tions j; j 2 I(n),

has a regulator fun
tion E

j

(t) and QoS parameters d

j

and

�

j

. Now regard the arrival pro
ess of stream j to its

smoother as a sto
hasti
 pro
ess. Let (A

j

(t); t � 0) de-

note the arrival pro
ess of the unsmoothed stream j, and

let (A

j

(t; !); t � 0) denote a realization of the sto
has-

ti
 pro
ess. Also let A

n

(t) = (A

j

(t); j 2 I(n)), and

let (A

n

(t); t � 0) be the asso
iated ve
tor sto
hasti


arrival pro
ess. We say that the ve
tor arrival pro
ess

(A

n

(t); t � 0) is feasible if (i) the 
omponent arrival pro-


esses (A

j

(t); t � 0); j 2 I(n), are independent, and (ii)

for ea
h j 2 I(n), ea
h realization (A

j

(t; !); t � 0) satis�es

the regulator 
onstraint

A

j

(t+ �; !)�A

j

(�; !) � E

j

(t) 8 � � 0; t � 0:

Denote A

n

for the set of all feasible ve
tor arrival pro
esses

(A

n

(t); t � 0). For a �xed feasible ve
tor arrival pro
ess

(A

n

(t); t � 0), let U

j

(t) be the rate at whi
h traÆ
 from


onne
tion j leaves the asso
iated smoother at time t, and

let U

j

be the 
orresponding steady{state random variable.

Note that the streams U

j

; j 2 I(n), may have traversed

a number of bu�erless nodes before rea
hing node n. The

bu�erless nodes do not delay or alter the traÆ
 streams

(ex
ept for minis
ule losses due to link over
ow whi
h are

negligible in typi
al networking s
enarios). Consider mul-

tiplexing the streams U

j

; j 2 I(n), onto the bu�erless link
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of 
apa
ity C

n

. The long{run average fra
tion of traÆ


lost by 
onne
tion j is

P

info;n

loss

(j) =

E

h

(

P

i2I(n)

U

i

� C

n

)

+

U

j

P

i2I(n)

U

i

i

E[U

j

℄

; (5)

where (x)

+

= max(0; x). The de�nition of P

info;n

loss

(j) relies

on the natural assumption that traÆ
 loss at multiplexer n

is split between the sour
es in a manner proportional to the

rate at whi
h the sour
es send traÆ
 into the multiplexer.

Note that P

info;n

loss

(j) keeps tra
k of loss for ea
h individual


onne
tion.

Although P

info;n

loss

(j) is an appealing performan
e mea-

sure, we have found it to be mathemati
ally unwieldy. In-

stead of P

info;n

loss

(j) we shall work with a bound on P

info;n

loss

(j)

whi
h is more tra
table and whi
h preserves the essential


hara
teristi
s of the original performan
e measure. Noting

that the term in the expe
tation of the numerator is non{

zero only when

P

i2I(n)

U

i

> C

n

, we obtain the following

bound on P

info;n

loss

(j):

P

info;n

loss

(j) �

E

h

(

P

i2I(n)

U

i

� C

n

)

+

U

j

i

C

n

�E[U

j

℄

:= P

n

loss

(j): (6)

In most pra
ti
al 
ir
umstan
es the QoS requirement spe
-

i�es traÆ
 loss to be minis
ule, on the order of �

j

= 10

�6

or less. Thus we expe
t the bound to be very tight: In

the rare event when the aggregate demand for bandwidth

P

i2I(n)

U

i

ex
eeds the link 
apa
ity C

n

,

P

i2I(n)

U

i

is typ-

i
ally very 
lose to C

n

. In Se
tion III-B we provide numer-

i
al results whi
h show that P

n

loss

(j) is very nearly equal to

the a
tual loss probability P

info;n

loss

(j). Hen
eforth, we fo
us

on the bound P

n

loss

(j), and we refer to P

n

loss

(j) as the loss

probability for 
onne
tion j at node n. We emphasize here

that the bound (6) is a 
ru
ial and important step for the

te
hniques taken in this paper. To our knowledge, no other

authors have made dire
t use of this important bound.

By taking the supremum over all the feasible ve
tor

sto
hasti
 pro
esses, we obtain the following worst{
ase

loss probability for 
onne
tion j at node n:

�

�n

j

= sup

A

n

E

h

(

P

i2I(n)

U

i

� C

n

)

+

U

j

i

C

n

� E[U

j

℄

: (7)

The loss probability of 
onne
tion j at node n is guaranteed

to be bounded by �

�n

j

for all feasible ve
tor arrival pro
esses

in A

n

, that is, for all independent arrival pro
esses whose

sample paths satisfy the regulator 
onstraints.

As a �rst step in 
omputing the �

�n

j

's, we need to ex-

pli
itly determine the random variables U

j

; j 2 I(n), that

attain the supremum in (7).

Lemma 1: Let U

�

j

; j 2 I(n), be independent random

variables, with U

�

j

having distribution

U

�

j

=

(




�

j

with probability

�

j




�

j

0 with probability 1�

�

j




�

j

:

There exists a feasible ve
tor arrival pro
ess whi
h pro-

du
es the steady{state rate variables U

�

j

; j 2 I(n), at the

smoother outputs.

Proof: The proof is by 
onstru
tion. For ea
h j 2

I(n) let

t

j

=

�

2

j

�

1

j

� �

2

j

and

T

j

=

�

1

j

�

2

j

(�

1

j

� �

2

j

)�

j

:

Also let �

j

; j 2 I(n), be independent random variables

with �

j

uniformly distributed over [0; T

j

℄. For ea
h j 2 I(n)

let b

j

(t) be a deterministi
 periodi
 fun
tion with period T

j

su
h that

b

j

(t) =

�

�

1

j

0 � t < t

j

0 t

j

� t � T

j

:

For ea
h j 2 I(n) de�ne an sto
hasti
 arrival pro
ess as

A

j

(t) =

Z

t

0

b

j

(s+ �

j

)ds:

Thus ea
h 
omponent arrival pro
ess (A

j

(t); t � 0) is gen-

erated by a periodi
 on{o� sour
e; pro
ess j has peak rate

�

1

j

and average rate �

j

. By sending ea
h 
omponent pro-


ess (A

j

(t); t � 0) into its respe
tive smoother, we obtain

an on{o� pro
ess whose peak rate is 


�

j

and whose average

rate is �

j

. This on{o� pro
ess is not altered by passing

through bu�erless nodes. Also, the 
omponent pro
esses

are independent; thus the ve
tor arrival pro
ess produ
es

the steady{state random variables U

�

j

; j 2 I(n), at the

smoother outputs.

It remains to show that ea
h realization of (A

j

(t); t � 0)

satis�es the regulator 
onstraint (1). It follows immediately

from the de�nition of b

j

(t) that

Z

t

0

b

j

(s)ds � E

j

(t) for all 0 � t � T

j

: (8)

We 
an, in fa
t, show that

Z

t

0

b

j

(s)ds � E

j

(t) for all t � 0: (9)

To see this 
onsider any arbitrary t = nT

j

+ s, where n is

some non{negative integer and 0 � s � T

j

. We have

Z

t

0

b

j

(s)ds =

Z

T

j

0

b

j

(s)ds+ � � �+

Z

nT

j

(n�1)T

j

b

j

(s)ds +

Z

nT

j

+s

nT

j

b

j

(s)ds

� nT

j

�

j

+ E

j

(s)

� [E

j

(nT

j

+ s)� E

j

(s)℄ + E

j

(s)

= E

j

(t) :

The �rst inequality follows from (8) and from the fa
t that

the average rate of b

j

(t) over any period of length T

j

is �

j

.
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The se
ond inequality follows be
ause the slope of E

j

(t) is

never less than �

j

. This establishes (9). Finally be
ause

b

j

(t) is non{in
reasing over ea
h of its periods, we have

Z

t+�

�

b

j

(s)ds �

Z

t

0

b

j

(s)ds for all � � 0; t � 0: (10)

Combining (9) and (10) proves that ea
h realization of

(A

j

(t); t � 0) satis�es the regulator 
onstraint (1).

We now show that the random variables U

�

j

; j 2 I(n),

attain the supremum in (7). This result will lead to a sim-

ple pro
edure for 
al
ulating the worst{
ase loss probabili-

ties �

�

j

; j 2 I(n). To this end, we will need to make use of a


on
ept from sto
hasti
 ordering. A random variable X is

said to be smaller than a random variable Y in the sense of

the in
reasing 
onvex sto
hasti
 (i
s) ordering, written as

X �

i
x

Y , if E[h(X)℄ � E[h(Y )℄ for all in
reasing, 
onvex

fun
tions h(�).

Theorem 1: For ea
h j 2 I(n), the worst{
ase loss prob-

ability for 
onne
tion j at node n is

�

�n

j

=

E

h

(

P

i2I(n)

U

�

i

� C

n

)

+

U

�

j

i

C

n

� E[U

�

j

℄

Proof: Let U

n

be the set of all random ve
tors

(U

j

; j 2 I(n)) su
h that

1. U

j

; j 2 I(n), are independent.

2. 0 � E[U

j

℄ � �

j

and 0 � U

j

� 


�

j

for all j 2 I(n).

All feasible ve
tor arrival pro
esses in A

n

give steady{state

rate variables that belong to U

n

. Let (U

j

; j 2 I(n)) be

a random ve
tor in U

n

. Let U =

P

i2I(n)

U

i

and U

�

=

P

i2I(n)

U

�

i

. We need to show that

E[(U � C

n

)

+

U

j

℄

C

n

�E[U

j

℄

�

E[(U

�

� C

n

)

+

U

�

j

℄

C

n

�E[U

�

j

℄

: (11)

Fix k, with k 2 I(n), and 
onsider the random ve
tor

(

^

U

j

; j 2 I(n)) su
h that

^

U

k

= U

�

k

and

^

U

j

= U

j

for j 6= k.

Note that (

^

U

j

; j 2 I(n)) 2 U

n

. We �rst show that for ea
h

�xed j,

E[(U � C

n

)

+

U

j

℄

C

n

�E[U

j

℄

�

E[(

^

U � C

n

)

+

^

U

j

℄

C

n

�E[

^

U

j

℄

: (12)

Consider the 
ase i 6= j. Let V = U � U

i

� U

j

. Let

F

V

(�) and F

U

j

(�) be the distribution fun
tions for V and

U

j

. Noting that U

i

, U

j

and V are independent, we have

E[(U � C

n

)

+

U

j

℄ = E[(U

i

+ V + U

j

� C

n

)

+

U

j

℄

=

Z

1

0

Z

1

0

E[(U

i

+ v + u� C

n

)

+

u℄

dF

V

(v)dF

U

j

(u)

The fun
tion f(x) = (x+ v+ u�C

n

)

+

u within the expe
-

tation is an in
reasing, 
onvex fun
tion in x for ea
h �xed

v and u. Thus, be
ause U

i

�

i
x

^

U

i

(e.g., see Proposition

1.5.1 in [52℄), we have

E[(U

i

+ v + u� C

n

)

+

u℄ � E[(

^

U

i

+ v + u� C

n

)

+

u℄

for all v and u. Combining the above two equations gives

E[(U � C

n

)

+

U

j

℄ � E[(

^

U � C

n

)

+

^

U

j

℄;

whi
h, when 
ombined with E[

^

U

j

℄ = E[U

j

℄, gives (12).

Now 
onsider the 
ase i = j. Let W = U � U

i

. Using

U

i

� 


�

i

, the independen
e of W and U

i

, and the indepen-

den
e of W and

^

U

i

, we obtain

E[(U � C

n

)

+

U

i

℄

C

n

�E[U

i

℄

=

E[(W + U

i

� C

n

)

+

U

i

℄

C

n

� E[U

i

℄

�

E[(W + 


�

i

� C

n

)

+

℄

C

n

E[U

i

℄

E[U

i

℄

=

E[(W + 


�

i

� C

n

)

+

℄

C

n

E[

^

U

i

℄

E[

^

U

i

℄

=

E[(W + 


�

i

� C

n

)

+

^

U

i

℄

C

n

� E[

^

U

i

℄

:

Also

E[(

^

U � C

n

)

+

^

U

i

℄ = E[(W +

^

U

i

� C

n

)

+

^

U

i

℄

= E[(W + 


�

i

� C

n

)

+

^

U

i

℄:

Combining the above two equations gives (12) for i = j.

Thus (12) holds for all i 2 I(n). Therefore, start-

ing with the original ve
tor (U

0

; U

1

; : : : ; U

jI(n)j�1

) 2 U

n

we 
an repla
e U

0

with U

�

0

and obtain a new ve
tor in

U

n

su
h that (12) holds. Rename this new ve
tor as

(U

0

; U

1

; : : : ; U

jI(n)j�1

). We 
an repeat the pro
edure, this

time repla
ing U

1

with U

�

1

, and again obtaining a new ve
-

tor in U

n

su
h that (12) holds. Performing this pro
edure

for all i = 0; 1; : : : ; jI(n)j � 1 gives (11).

Exploiting the fa
t that the U

�

j

's are Bernoulli random

variables, we 
an simplify the expression for �

�n

j

:

�

�n

j

=

E

h

(

P

i2I(n)�fjg

U

�

i

+ 


�

j

� C

n

)

+

i

C

n

: (13)

These bounds 
an be 
omputed by 
onvolving the distri-

butions of the independent random variables. An approxi-

mate 
onvolution algorithm is des
ribed in [28℄. However,


onvolution often leads to numeri
al problems. We there-

fore apply the Large Deviation (LD) approximation, whi
h

is known to be a

urate and also 
omputationally very eÆ-


ient [43℄, [13℄, [15℄, [40℄, to the expe
tation in the numer-

ator. Towards this end, let �

U

�

i

(s) denote the logarithm of

the moment generating of U

�

i

:

�

U

�

i

(s) := lnE[e

sU

�

i

℄:

We de�ne

U

�

:=

X

i2I(n)�fjg

U

�

i

:

Note that

�

U

�

(s) =

X

i2I(n)�fjg

�

U

�

i

(s)
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by the independen
e of the U

�

i

's. The large deviation (LD)

approximation gives the following approximation for �

�n

j

[43℄

1

C

n

s

?

2

p

2��

00

U

�

(s

?

)

e

�s

?

(C

n

�


�

j

)+�

U

�(s

?

)

;

where s

?

is the unique solution to

�

0

U

�

(s

?

) = C

n

� 


�

j

:

In summary, (13) is a simple expression for the worst{
ase

loss probability of 
onne
tion j at node n; this expres-

sion involves the independent Bernoulli random variables

U

�

j

; j 2 I(n), whose distributions we know expli
itly. The

LD approximation for (13) is highly a

urate and is eas-

ily 
al
ulated. We note that an admission rule based on

on{line traÆ
 measurements for the smoothing/bu�erless

multiplexing s
heme proposed in this arti
le is studied in

[39℄.

At this jun
ture we note some important related work

by Doshi [11℄, [12℄. He studies worst{
ase, unsmoothed

traÆ
 that maximizes an aggregate loss ratio, where the

aggregation is taken over all sour
es. For this 
riterion he

dis
overs a number of anomalies; in parti
ular, extremal

on{o� sour
es are not always worst 
ase. With our bound

P

n

loss

(j) (6) the loss is maximized by the extremal on{o�

sour
es, whi
h greatly simpli�es admission 
ontrol. Fur-

thermore, as we show in this arti
le, smoothing of traÆ



an signi�
antly expand the admission region.

A. The Optimal Smoother

Up to this point we have assumed that the smoother for

ea
h 
onne
tion j 
onsists of a single bu�er that limits the

peak rate of the smoother output to 


�

j

. In this subse
tion

we study more general smoothers, namely, smoothers that


onsist of a 
as
ade of leaky bu
kets. The smoother for


onne
tion j, de�ned by a fun
tion S

j

(t), 
onstrains the

amount of traÆ
 that 
an enter the network over any time

interval. Spe
i�
ally, if B

j

(t) is the amount of traÆ
 leav-

ing smoother j over the interval [0; t℄, then B

j

(t) is required

to satisfy

B

j

(t+ �)�B

j

(�) � S

j

(t) for all t � 0; � � 0:

We assume throughout this se
tion that the smoother fun
-

tions are of the form

S

j

(t) = min

1�k�M

j

fs

k

j

+ r

k

j

tg (14)

with r

1

j

> r

2

j

> � � � > r

M

j

j

and 0 = s

1

j

< s

2

j

< � � � < s

M

j

j

.

These pie
ewise linear, 
on
ave smoother fun
tions 
an be

easily implemented by a 
as
ade of leaky bu
kets. The

single{bu�er smoother de�ned in Se
tion 2 is a spe
ial 
ase

with M

j

= 1; s

1

j

= 0 and r

1

j

= 


�

j

.

We say that a set of smoothers (S

j

(t); j 2 I(n)) is

feasible if the maximum delay in
urred at smoother j is

� d

j

for all j 2 I(n). By de�nition the set of smoothers

(


�

j

t; j 2 I(n)) studied earlier is feasible. Now �x a fea-

sible set of smoothers (S

j

(t); j 2 I(n)), and let the reg-

ulated traÆ
 from the 
onne
tions in I(n) pass through

these smoothers. Let

�

n

j

= sup

A

n

E

h

(

P

J

i2I(n)

U

i

� C

n

)

+

U

j

i

C

n

� E[U

j

℄

(15)

be the asso
iated worst{
ase loss probability for 
onne
tion

j at node n. Re
all that �

�n

j

is the same worst{
ase loss

probability but with the traÆ
 passing through the set of

smoothers (


�

j

t; j 2 I(n)). The proof of the following result

is provided in the appendix.

Theorem 2: �

�n

j

� �

n

j

for all j 2 I(n). Thus the single{

bu�er smoothers with 


j

= 


�

j

minimize the worst{
ase loss

probability over all feasible sets of smoothers.

It follows from Theorem 2 that the more 
omplex

smoothers 
onsisting of 
as
aded leaky bu
kets do not in-


rease the 
onne
tion 
arrying 
apa
ity of node n. Thus

without loss of performan
e, we may use the simple

smoothers of the form (


j

t; j 2 I(n)). Furthermore, The-

orem 2 veri�es the intuition that in order to maximize

the admission region of node n the smoother rates are as

small as the delay 
onstraints permit, that is, 


j

= 


�

j

for

j 2 I(n).

B. Numeri
al Experiments for a Single Node

In this se
tion we evaluate the smoothing/bu�erless mul-

tiplexing s
heme in the 
ontext of a single node. We set

N = 1 and fo
us on the network 
onsisting of smoothers

and one bu�erless multiplexer as depi
ted in Figure 2. We

set the 
apa
ity of the output link to C

1

= 45 Mbps. In

this single node s
enario admission 
ontrol is parti
ularly

simple: we evaluate �

�1

j

(13) using the LD approximation

and verify whether �

�1

j

� �

j

8j 2 I(1). We evaluate our

s
heme using tra
es from MPEG en
oded movies. We ob-

tained the frame size tra
es, whi
h give the number of bits

in ea
h video frame, from the publi
 domain [45℄. (We are

aware that these are low resolution tra
es and some 
riti
al

frames are dropped; nevertheless, the tra
es are extremely

bursty.) The movies were 
ompressed with the Group of

Pi
tures (GOP) pattern IBBPBBPBBPBB at a frame rate

of F = 24 frames/se
 [45℄. Ea
h of the tra
es has M =

40,000 frames, 
orresponding to about 28 minutes. The

mean number of bits per frame and the peak{to{mean ra-

tio are given in Table I. Let x

m

; m = 1; : : : ;M , denote

TABLE I

Statisti
s of MPEG{1 tra
es.

Tra
e Mean (bit) Mean Peak/Mean

bits/frame kbits/se


lambs 7,312 171.2 18.4

mr.bean 17,647 423.5 13.0

the size of the mth frame in bits. We 
onvert the dis
rete

frame size tra
e to a 
uid 
ow by transmitting the mth

frame at rate x

m

F over the interval [(m� 1)=F;m=F ℄.
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We 
ompute the empiri
al envelope and the 
on
ave hull

of ea
h tra
e using the algorithms of Wrege et al. [54℄.

Based on the 
on
ave hull of ea
h video we 
ompute the

minimal smoother rate 


�

j

. We also apply the heuristi
 of

Appendix B to the 
on
ave hull in order to �nd the opti-

mal leaky bu
ket 
hara
terization with 2 and more leaky

bu
kets. We then 
ompute the minimal smoother rate 


�

j

based on these 
on
ise leaky bu
ket 
hara
terizations.

Assuming worst{
ase on{o� traÆ
, the smoother out-

puts are statisti
ally multiplexed onto the bu�erless link.

We set �

j

= 10

�7

for all 
onne
tions. In Figure 3 we plot

the number of admissible video 
onne
tions as a fun
tion of

the delay bound. The graph gives the number of admissible

video 
onne
tions when the videos are 
hara
terized by the


on
ave hull or the optimal leaky bu
ket 
hara
terization

with 2 leaky bu
kets (whi
h is obtained with the heuristi


of Appendix B). We observe from the plots that the op-

timal leaky bu
ket 
hara
terization with 2 leaky bu
kets

admits almost as many video 
onne
tions as the more a
-


urate 
on
ave hull 
hara
terization. The 
urves for 3 or

more leaky bu
kets 
oin
ide with the 
urve for the 
on
ave

hull.

In the next experiment we 
ompare the admission region

of our approa
h with the admission region obtained with

the deterministi
 admission 
ontrol 
ondition of Wrege et

al. [54℄. The approa
h of Wrege et al. is to feed the un-

smoothed traÆ
 into a bu�ered multiplexer. The deter-

ministi
 admission 
ontrol 
ondition guarantees that no

bit is delayed by more than the prespe
i�ed delay limit

in the multiplexer bu�er (and it also guarantees that no

bit is lost). Our approa
h, on the other hand, exploits the

independen
e of traÆ
 emanating from the 
onne
tions in

I(1). The videos are passed through simple smoothers with




j

= 


�

j

. The smoother outputs | assuming worst{
ase

on{o� traÆ
 | are then statisti
ally multiplexed onto the

bu�erless link (see Figure 2). We set �

j

= 10

�7

for all


onne
tions. Losses this small have essentially no impa
t

on the per
eived video quality and 
an be easily hidden by

error 
on
ealment te
hniques [53℄.

In Figure 4 we plot the number of admissible lambs 
on-

ne
tions as a fun
tion of the delay bound. The graph gives

the number of lambs 
onne
tions that are admitted with

the our approa
h (RRR) when 2 or 3 leaky bu
kets (LB)

are used to 
hara
terize the video tra
e. As we just saw

in Figure 3 the optimal leaky bu
ket 
hara
terization with

3 leaky bu
kets admits as many 
onne
tions as the 
on-


ave hull, the most a

urate, 
on
ave 
hara
terization of

the video; using more leaky bu
kets does not in
rease the

admission region. We also plot the number of lambs 
on-

ne
tions that are admitted with the bu�ered deterministi


multiplexing approa
h of Wrege et al. (KLZ) when 2, 3,

8 or 16 leaky bu
kets are used to 
hara
terize the tra
e.

We observe that for delays on the order of 0.5 se
onds or

more, the number of admissible 
onne
tions signi�
antly

in
reases as the number of leaky bu
kets used to des
ribe

the tra
e in
reases. The approa
h of Wrege et al. thus

greatly bene�ts from a more a

urate 
hara
terization of

the video | a
hieved by more leaky bu
kets.
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Fig. 4. Number of lambs 
onne
tions as a fun
tion of the delay bound

and the number of leaky bu
kets (LB). Plots shown are for Wrege

et al. (KLZ) and our approa
h (RRR).

The main result of this experiment, however, is that our

approa
h allows for more than twi
e the number 
onne
-

tions than does the approa
h of Wrege et al. For example,

for a delay bound of 1.1 se
onds, Wrege et al. admit 69


onne
tions ( = 29.6 % average link utilization) with 16

leaky bu
kets while our approa
h admits 146 
onne
tions

( = 62.7 % average link utilization) with 3 leaky bu
kets.

We obtain this dramati
 in
rease in the admission region

by exploiting the independen
e of the sour
es and allowing

for a small loss probability.

In Figure 5 we 
onsider multiplexing two di�erent

movies, beans and lambs, ea
h with its own delay 
on-

straint. We again 
onsider a single node with C

1

= 45

Mbps. We use delay bounds of d

lambs

= 125 ms or 1.25

se
onds and d

bean

= 125 ms or 1.25 se
onds, giving four


ombinations. Both videos are 
hara
terized by 3 leaky

bu
kets. We assume that both video 
onne
tions have the

QoS requirement that the fra
tion of traÆ
 that is delayed

by more than the imposed delay limit is less than 10

�7

. For

the Wrege et al. plot we use Earliest Deadline First (EDF)

s
heduling. We see that for all four 
ases, the admission

region for our approa
h is dramati
ally larger.

In Figure 6 we 
ompare the a
tual loss probability at

node 1, P

info;1

loss

(j) given by (5) with our bound for loss

probability, P

1

loss

(j), given by (6). We obtain P

info;1

loss

(j)

and P

1

loss

(j) by simulation, and assume worst{
ase on{o�

traÆ
. We also verify the a

ura
y of the large deviation

approximation for P

1

loss

(j). In Figure 6 we plot the loss

probabilities as a fun
tion of the number of 
onne
tions

being multiplexed onto the C

1

= 45 Mbps link. We 
on-

sider the s
enario where the videos have a delay bound of

1 se
ond and are 
hara
terized by 3 leaky bu
kets. We ob-

serve that the bound on the loss probability P

1

loss

(j) (solid

line) tightly bounds the a
tual loss probability P

info;1

loss

(j)

(dotted line). We also observe that the LD approximation

(dashed line) 
losely approximates the simulation results.
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Fig. 3. Number of video 
onne
tions as a fun
tion of the delay bound. The videos are 
hara
terized by the 
on
ave hull or the optimal leaky

bu
ket 
hara
terization with 2 leaky bu
kets. The bound on the loss probability is 10

�7

.
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Fig. 5. Admission region for the multiplexing of lambs and bean 
onne
tions over a 45 Mbps link.

C. Comparison with Bu�ered Statisti
al Multiplexing

The numeri
al results of the previous se
tion show that

for a single node our approa
h allows for dramati
ally more


onne
tions than bu�ered deterministi
 multiplexing. In

this se
tion we brie
y 
onsider bu�ered multiplexing with

an allowan
e of small loss probabilities, whi
h we refer to

as bu�ered statisti
al multiplexing. Consider the bu�ered

analogy of the single{link bu�erless system studied in Se
-
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Fig. 6. The simulation veri�es that the bound on the loss probability P

1

loss

(j) tightly bounds the a
tual loss probability P

info;1

loss

(j). The plots

further 
on�rm the a

ura
y of the Large Deviation (LD) approximation. We use a delay bound of 1 se
ond and 
hara
terize the videos

by 3 leaky bu
kets. The link rate is 45 Mbps. The plots give the loss probability as a fun
tion of the number of ongoing 
onne
tions.

E

jI(n)j�1

(t)

E

0

(t)

q

q

q

�

�

�

�>

Z

Z

Z

Z~

C

1

� -

B

1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 7. The traÆ
 of 
onne
tion j is 
hara
terized by the regulator

fun
tion E

j

(t) and fed dire
tly, i.e. unsmoothed, into a bu�ered

multiplexer.

tion III-B. The link has 
apa
ity C

1

and is pre
eded by a

�nite bu�er of 
apa
ity B

1

. Let the same 
onne
tions in

I(1) arrive to this system; spe
i�
ally the 
onne
tions in

I(1) are independent and 
onne
tion j; j 2 I(1), is regu-

lated by a given regulator fun
tion E

j

(t). The traÆ
 from

the 
onne
tions in I(1) passes dire
tly into the bu�ered

multiplexer, i.e., the traÆ
 is not pre{smoothed before ar-

riving at the bu�er. This bu�ered system is illustrated in

Figure 7. Assuming that traÆ
 is served FIFO, the maxi-

mum delay in this system is d = B

1

=C

1

. Suppose that the

bu�er over
ow probability is 
onstrained to be no greater

than �.

It is a diÆ
ult and 
hallenging problem to a

urately


hara
terize the admission region for a bu�ered multiplexer

whi
h multiplexes regulated traÆ
 and whi
h allows for

statisti
al multiplexing. Elwalid et al. in [15℄ made signi�-


ant progress in this dire
tion. They 
onsider the bu�ered

multiplexer for the spe
ial 
ase of regulators with two leaky

bu
kets, i.e., for E

j

(t) = minf�

1

j

t; �

j

+ �

j

tg. (In our nu-

meri
al 
omparisons, we extend their theory to the 
ase

of multiple 
as
aded leaky bu
kets.) In order to make

the bu�ered multiplexer mathemati
ally tra
table they as-

sign ea
h 
onne
tion its own virtual bu�er/trunk system.

Ea
h virtual bu�er/trunk system is allo
ated bu�er b

0;j

and bandwidth e

0;j

. The allo
ations are based on the bu�er

and bandwidth resour
es (B

1

and C

1

, respe
tively) and on

the regulator parameters (�

j

, �

1

j

, and �

j

) for the input traf-

�
. It turns out that the bandwidth e

0;j

is exa
tly the 


�

j

obtained by setting d

j

= d = B

1

=C

1

in (4). After some

analysis Elwalid et al. obtain the following bound on the

fra
tion of time during whi
h loss o

urs at the bu�ered

multiplexer:

P

EMW

loss

= P (

X

j2I(1)

U

�

j

> C

1

):

where U

�

j

; j 2 I(1), are exa
tly the same random inde-

pendent random variables that o

ur in Theorem 1. (To


al
ulate the asso
iated 


�

j

; j 2 I(1), set d

j

= d = B

1

=C

1

for ea
h 
onne
tion j.)

This observation indi
ates that our smoother/bu�erless

multiplexer system has remarkable similarities with the

bu�ered system in [15℄. Spe
i�
ally, for a �xed maximum

delay d in the bu�ered system, we 
an design a bu�er-

less system with pre{smoothers whi
h has the same max-

imum delay and whi
h has an admission region based on

the same set of independent random variables U

�

j

; j 2

I(1). The pre{smoothers essentially implement the virtual

bu�er/trunk systems introdu
ed by Elwalid et al. For a

maximum loss probability of � the admission region for the

bu�ered multiplexer is de�ned by

P (

X

j2I(1)

U

�

j

> C

1

) � �;

whereas the admission region for the bu�erless system is

E[(

P

i2I(1)

U

�

i

� C

1

)

+

U

�

j

℄

C

1

� E[U

�

j

℄

� �:
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Fig. 8. Number of lambs 
onne
tions as a fun
tion of the delay

bound. The lambs video is des
ribed by 3 leaky bu
kets. Plots

shown are for Elwalid et al. (EMW) and our approa
h (RRR).

The di�eren
e in the number of admissible 
onne
tions is due to

the di�erent notions of loss probability.

Although these admission regions are di�erent, they are

based on exa
tly the same independent random variables

U

�

j

; j 2 I(1). The di�eren
e in these admission regions is

an artifa
t of using two di�erent notions of loss probability:

while in this arti
le we use \fra
tion of traÆ
 lost", the

arti
le [15℄ uses \the fra
tion of time during whi
h loss

o

urs". If the same notions of loss were used, then the

admission regions would be identi
al. Figure 8 gives the

number of lambs 
onne
tions that are admitted with the

approa
h of Elwalid et al. (EMW) [15℄ and our approa
h

(RRR) when 3 leaky bu
kets are used to 
hara
terize the

tra
e. We assume C

1

= 45 Mbps and set �

j

= 10

�7

for all


onne
tions.

Thus, in the 
ontext of a single node our bu�erless

system has essentially the same admission region as the

bu�ered system in [15℄ for a �xed worst{
ase delay d and

loss probability �. While being no more diÆ
ult to perform


all admission, we believe that the bu�erless system has

some important advantages over the bu�ered system: (i)

no bu�er is needed at the multiplexer (for pa
ketized traÆ
,

a relatively small bu�er would be needed); (ii) the bu�er-

less approa
h allows for a per{
onne
tion QoS requirement,

whereas the bu�ered system imposes the same QoS require-

ment on all 
onne
tions; and (iii), perhaps most impor-

tantly, networks are quite tra
table for bu�erless links, as

we 
an reasonably approximate a 
onne
tion's traÆ
 at the

output of the multiplexer as being identi
al to its traÆ
 at

the input to the multiplexer. This fa
t is exploited in the

next se
tion where we analyze our s
heme for general mul-

tihop networks.

We 
on
lude this se
tion by noting that the bu�ered

system does have some advantages over the bu�erless sys-

tem. First, although both systems have the same worst{


ase delay, the bu�ered system has a lower average delay.

(Note, however, that multimedia appli
ations are typi
ally

designed for a delay bound.) Se
ond, due to statisti
al

bu�er sharing among streams, the bu�ered system has the

potential to admit more streams (see [56℄ for a quantita-

tive evaluation of this potential). However, exploiting this

potential requires admission rules that are typi
ally more


omplex (e.g., [33℄, [37℄, [55℄).

IV. Guaranteeing Statisti
al QoS: Multihop

Analysis

We now turn our attention to the entire multihop net-

work. Without loss of generality we fo
us on 
onne
tion 0

traversing nodes 1 through N . At the output of any of

the nodes, 
onne
tion 0 has a peak rate no larger than 


�

0

and an average rate no larger than �

0

. We 
an therefore

use (13) to 
al
ulate the worst{
ase loss probability �

�n

0

at

any of the bu�erless multiplexers n; n = 1; : : : ; N . The

end{to{end loss probability of 
onne
tion 0 is bounded by

the sum of the worst{
ase loss probabilities of the individ-

ual hops along 
onne
tion 0's path, that is, the loss in the

network is bounded by

P

N

n=1

�

�n

0

.

We note here that the single bu�er serving traÆ
 at rate




�

j

whi
h was shown to minimize �

�n

j

at a single node n

in Theorem 2 also minimizes the sum of the �

�n

j

. To see

this, re
all that the design of the smoother for 
onne
tion j

depends only on the 
onne
tion parameters (the regulator

fun
tion E

j

(t) and the delay limit d

j

). Therefore, the same

smoother minimizes the �

�n

j

at every node n along 
onne
-

tion j's path. As a 
onsequen
e the single bu�er smoother

with rate 


�

0

minimizes

P

N

n=1

�

�n

0

, the bound on the overall

fra
tion of over
owing 
onne
tion{0 traÆ
 in the network.

The end{to{end QoS requirement of 
onne
tion 0 is met

if

N

X

n=1

�

�n

0

� �

0

: (16)

For admission 
ontrol, we must ensure that (16) holds for

all 
onne
tions. Spe
i�
ally, we must partition | either

stati
ally or dynami
ally | the loss 
onstraint �

j

among

the nodes traversed by ea
h of the 
onne
tions. This prob-

lem is of independent interest and is dis
ussed in Se
-

tions 5.10 and 5.11 of [46℄.

We have thus provided a framework for providing end{

to{end statisti
al QoS guarantees for a multihop network.

The framework 
onsists of input smoothers at the network

ingresses and bu�erless statisti
al multiplexing within the

network. In
reasing the number of nodes a 
onne
tion

traverses in
reases the loss probability but not the delay.

Roughly speaking, the network loss probability for a 
on-

ne
tion is approximately the loss probability of a typi
al

node multiplied by the number of nodes through whi
h a


onne
tion passes. Be
ause the loss probability of a node

is dimensioned to be on the order of 10

�6

or less, the in-


reased loss is only of minor importan
e.

We note at this jun
ture that

P

N

n=1

�

�n

0

also provides a

bound on the probability that a bit of 
onne
tion 0 experi-

en
es an end{to{end delay of more than d

0

in the network.

More formally, with D

0

denoting the end{to{end delay in-


urred by a bit of 
onne
tion 0 in the network, we have

P (D

0

> d

0

) �

N

X

n=1

�

�n

0

: (17)



12

Re
all from Se
tion II that by design a bit of 
onne
tion 0

is delayed by at most d

0

in the smoother. Bits that do

not over
ow at any of the bu�erless links in the network

in
ur no additional delay while bits that do over
ow are


onsidered to have in�nite delay. The bound (17) follows

by noting that

P

N

n=1

�

�n

0

is a bound on the fra
tion of

bits that do over
ow. We emphasize that the bound on

the probability that a bit violates a given delay limit is

minimized by smoothing as mu
h as the delay limit per-

mits at the network ingress. We 
ompare the performan
e

of our smoothing/bu�erless multiplexing s
heme with that

of deterministi
 traÆ
 management s
hemes in the next

subse
tion. These deterministi
 s
hemes are lossless and

guarantee that a spe
i�
 delay limit d

j

is never violated,

that is, they guarantee that D

j

� d

j

with probability one.

In order to fa
ilitate the 
omparison of the performan
e

with the deterministi
 ben
hmarks we make the following

simplifying assumptions about the traÆ
 streams and the

network. First, we assume that all streams are regulated

by a single leaky bu
ket; for the single leaky bu
ket, the

regulator fun
tion takes the following form:

E

j

(t) = �

j

+ �

j

t:

Note that the single leaky bu
ket regulator 
onstrains the

long{run average rate of 
onne
tion j to be no greater

than �

j

. The multihop analysis of our traÆ
 manage-

ment s
heme for more 
omplex regulators 
onsisting, for

instan
e, of a 
as
ade of leaky bu
kets is a straightforward

extension of the analysis presented here. However, GPS

whi
h we shall use as a ben
hmark to evaluate our s
heme,

has been analyzed extensively in [34℄, [35℄ for single leaky

bu
ket regulators. We will make use of some of those an-

alyti
al results in our performan
e evaluation and fo
us

therefore on single leaky bu
ket regulators throughout this

se
tion. For the regulator fun
tion E

j

(t) = �

j

+ �

j

t and

the delay limit d

j

we obtain from (4) the smoother rate




�

j

= max

�

�

j

d

j

; �

j

�

:

To further simplify the performan
e 
omparison we as-

sume that all streams in the network are homogeneous,

that is, all streams have the same leaky bu
ket parameters

and QoS requirement. (We emphasize that this assumption

is not needed in our framework; we only make it here to

fa
ilitate the 
omparison.) We set �

j

= �, �

j

= �, d

j

= d

and �

j

= � for all streams j in the network. This implies

that all 
onne
tions have the same smoother rates, that is,




�

j

= 


�

for all streams j. Also, all of the Bernoulli ran-

dom variables U

�

j

are now identi
ally distributed (but still

independent). When 
omparing the performan
e we again

fo
us on 
onne
tion 0 traversing nodes 1 through N . We

assume that ea
h of the nodes n; n = 1; : : : ; N , serves J

streams, that is, jI(n)j = J 8n = 1; : : : ; N . We also assume

that all output links in the network have the same 
apa
ity

C. With these simplifying assumptions the worst{
ase loss

probability of 
onne
tion 0 at a node is

�

�n

0

=

E

h

(

P

J�1

i=1

U

�

i

+ 


�

� C)

+

i

C

:= �

�

: (18)

The end{to{end loss probability of 
onne
tion 0 is given by

N�

�

. Now assume that 
onne
tion 0 is new and requests

a 
onne
tion traversing nodes 1 through N . The QoS re-

quirement of the new 
onne
tion 0 is satis�ed if �

�

� �=N .

Suppose that all other streams that traverse one of the

nodes n; n = 1; : : : ; N , have allo
ated a loss 
onstraint

larger than �=N to that node n. With this assumption

the QoS requirements of all other streams will 
ontinue to

hold if �

�

� �=N . Hen
e 
onne
tion 0 
an be admitted if

�

�

� �=N .

We use the maximum number of 
onne
tions ea
h of the

multiplexers 1 through N 
an 
arry without violating any

QoS 
ommitment as a measure of the performan
e of our

s
heme. Let J

�

denote this maximum number of 
onne
-

tions. We 
learly have:

J

�

= max

J2N

fJ : �

�

�

�

N

g;

where N denotes the set of natural numbers. Note that in

the des
ribed networking s
enario ea
h of the multiplex-

ers 1 through N is serving 
onne
tion 0 and J

�

� 1 fresh


onne
tions.

A. Comparison with Deterministi
 Servi
e Dis
iplines

In this se
tion we 
ompare the performan
e of our

smoothing/bu�erless multiplexing s
heme with that of de-

terministi
 servi
e dis
iplines. These deterministi
 servi
e

dis
iplines provide lossless servi
e and guarantee a deter-

ministi
 end{to{end delay bound. Of the deterministi
 ser-

vi
e dis
iplines dis
ussed in the literature, the Generalized

Pro
essor Sharing (GPS) [34℄, [35℄ and Rate{Controlled

Servi
e (RCS) [18℄ dis
iplines guarantee the smallest de-

lay bounds. GPS 
onsiders the route of a 
onne
tion as a

whole and is thus able to guarantee tighter bounds than

are a
hievable by adding worst{
ase delays at ea
h hop [7℄,

[8℄. RCS, whi
h is at the heart of the Guaranteed Servi
e

framework of the Internet [47℄, relies on traÆ
 shaping at

every hop and 
an guarantee the same delay bounds as

GPS. In fa
t it is shown in [18℄ that RCS has the poten-

tial of providing tighter delay bounds than GPS. However,

the problem of how to 
hoose the parameters of the RCS

dis
ipline in order to a
hieve these tighter delay bounds is

not addressed. Instead, the authors suggest to use the pa-

rameters indu
ed by the GPS dis
ipline. This ensures that

RCS 
an a

ept as many 
onne
tions as GPS (and some

more in a heterogeneous network). With the networking

s
enario that we have 
hosen for the performan
e 
om-

parison | homogeneous 
onne
tions, homogeneous nodes,


uid model | GPS and RCS have exa
tly the same per-

forman
e. We shall therefore 
ompare our s
heme's per-

forman
e with that of GPS. For this purpose we modify

the network depi
ted in Figures 1 and 2. We remove the

bu�ered smoothers at the network ingresses and repla
e

the bu�erless multiplexers with bu�ered GPS servers.
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Review of GPS

First, we brie
y review GPS [34℄, [35℄ and adapt the nota-

tion of [34℄, [35℄ to our network model. The GPS server n

serving the streams in I(n) is 
hara
terized by positive real

numbers w

n

j

; j 2 I(n). These numbers govern the allo
a-

tion of servi
e to ea
h of the streams. Let S

n

j

(�; t) denote

the amount of stream j traÆ
 served by server n during

an interval [�; t℄. The GPS poli
y guarantees that for any


onne
tion j 2 I(n) that is 
ontinuously ba
klogged in the

interval [�; t℄, that is, has a positive amount of traÆ
 in

server n's bu�er throughout the interval [�; t℄,

S

n

j

(�; t)

S

n

i

(�; t)

�

w

n

j

w

n

i

; i 2 I(n):

A 
onne
tion j that is ba
klogged is thus guaranteed a

minimum servi
e rate 
alled 
onne
tion j ba
klog 
learing

rate of

g

n

j

=

w

n

j

P

i2I(n)

w

n

i

C

n

by server n. The minimum 
onne
tion{0 ba
klog 
learing

rate along its route traversing nodes 1 through N is

g

0

= min

1�n�N

g

n

0

:

Let D

0

(t) be the end{to{end delay in
urred in the network

by a 
onne
tion{0 bit that arrives at time t. Furthermore,

let D

�

0

denote the maximum end{to{end delay of 
onne
-

tion 0 over all time and all feasible arrival pro
esses of all

streams sharing a server with 
onne
tion 0, formally:

D

�

0

= sup

[

1�n�N

A

n

max

t�0

D

0

(t):

A key result of [35℄ is the following deterministi
 bound on

the maximum end{to{end delay for 
onne
tion 0: if g

0

� �

0

then

D

�

0

�

�

0

g

0

:

We note that this bound does not require the independen
e

of the served traÆ
 streams. The independen
e of the traf-

�
 streams, however, is a prerequisite for our bound on the

loss probability. Given a spe
i�
 delay bound d

j

, �nding

the 
orresponding weights of the general GPS poli
y is a

very tedious pro
edure. This pro
edure is greatly simpli-

�ed by setting w

j

= �

j

for all traÆ
 streams. GPS with

this spe
ial assignment of weights is referred to as Rate

Proportional Pro
essor Sharing (RPPS). With RPPS the


onne
tion j ba
klog 
learing rate at server n is given by

g

n

j

=

�

n

j

P

i2I(n)

�

n

i

C

n

:

For ease of 
omparison with our smoothing/bu�erless

multiplexing s
heme we make the same simplifying assump-

tions we made at the end of Se
tion IV. In parti
ular, we

set �

j

= �, �

j

= � and d

j

= d for all 
onne
tions. We
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Fig. 9. Maximum number of 
onne
tions J

�

as a fun
tion of the num-

ber of hops N for smoothing/bu�erless multiplexing and GPS.

assume that all servers 1 through N serve J 
onne
tions

and have a 
apa
ity of C. With these simpli�
ations, the

minimum ba
k log 
learing rate of 
onne
tion 0 along its

route from node 1 to N is g

0

= C=J . The end{to{end

delay bound of 
onne
tion 0 is

D

�

0

� J�=C; (19)

provided the stability 
ondition C=J � � is satis�ed. We

are interested in the maximum number of 
onne
tions ea
h

server along the route of 
onne
tion 0 
an serve without vi-

olating the delay limit of 
onne
tion 0 or any other 
onne
-

tion. Let J

�

denote this maximum number of 
onne
tions.

From (19) and the the stability 
ondition we have:

J

�

= bmin

�

Cd

�

;

C

�

�


:

Note that J

�

does not depend on N , the number of nodes


onne
tion 0 traverses. We remark that for the example at

hand, 
onsisting of homogeneous 
onne
tions with homoge-

neous delay bounds, J

�

is the absolute maximum number of


onne
tions a deterministi
 servi
e dis
ipline 
an support;

no matter what deterministi
 servi
e dis
ipline (GPS, RCS,

et
.) is employed.

Numeri
al Results

In this se
tion we 
ompare the performan
e of the smooth-

ing/bu�erless multiplexing s
heme with that of GPS in

multihop networks numeri
ally. We have 
hosen the pa-

rameters � = 11; 925 Bytes, � = 150 Kbit/se
 and C =

45 Mbit/se
. For our smoothing/bu�erless multiplexing

s
heme we set the loss bound to � = 10

�7

. (These parame-

ters are also used for some some of the numeri
al examples

in [15℄.) In Figure 9 we plot the maximum number of 
on-

ne
tions J

�

that 
an be supported by the nodes 1 through

N without violating any QoS requirements as a fun
tion of

the number of hops, N . We do this for two delay bounds,

d = 20 mse
 and d = 0:2 se
onds. The maximum number

of 
onne
tions that 
an be supported by GPS is indepen-

dent of N ; J

�

= 9 for d = 20 mse
 and J

�

= 94 for d = 0:2

se
onds.



14

0

20

40

60

80

100

120

140

160

180

200

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

J*

d in seconds

smoothing/bufferless mux, N = 5 hops
smoothing/bufferless mux, N = 50 hops

GPS

Fig. 10. Maximum number of 
onne
tions J

�

as a fun
tion of the

delay bound d for smoothing/bu�erless multiplexing and GPS.

The GPS performan
e is independent of the number of traversed

hops.

Figure 10 depi
ts J

�

as a fun
tion of the delay bound d

for N = 5 hops and N = 50 hops. Again, note that the

GPS performan
e is independent of the number of hops.

Two points are espe
ially noteworthy about the plots.

First, with our smoothing/bu�erless multiplexing s
heme

the number of allowable 
onne
tions, J

�

, drops o� only

slowly as the number of traversed hops, N , in
reases. Se
-

ondly, our smoothing/bu�erless multiplexing s
heme dra-

mati
ally in
reases the 
onne
tion{
arrying 
apa
ity of the

network. We observe from Figure 9, for instan
e, that

for a delay bound of d = 20 mse
 and N = 15 hops our

s
heme 
an support more than three times the number of


onne
tions that GPS | or any other deterministi
 ser-

vi
e dis
ipline | 
an support. We a
hieve this remarkable

performan
e by �rst smoothing the traÆ
 at the network

edges and then statisti
ally multiplexing the smoothed traf-

�
 streams with minis
ule loss probabilities within the net-

work. The minis
ule losses of the order of 10

�7


an be ef-

fe
tively hidden by applying error 
on
ealment te
hniques

to the multimedia streams [53℄. The losses will therefore

not be noti
ed by the viewers/listeners.

V. Intera
tion between Appli
ation and

Network

In this se
tion we dis
uss how the responsibilities of

smoothing, 
all admission 
ontrol and traÆ
 poli
ing


an be shared by the appli
ation and the network when

our smoothing/bu�erless multiplexing s
heme is employed.

Call admission 
ontrol is the responsibility of the network.

Before a

epting a new 
onne
tion, the network has to en-

sure that the QoS requirements 
ontinue to hold for all

established 
onne
tions and the new 
onne
tion. Poli
ing

is also a network responsibility. The network edge has to

poli
e all established 
onne
tions in order to ensure that all


onne
tions 
omply with their respe
tive regulator fun
tion

advertised at 
onne
tion establishment. While 
all admis-

sion 
ontrol and traÆ
 poli
ing are responsibilities of the

network, smoothing 
an be performed by either the appli-


ation or the network. We refer to the 
ase where the ap-

pli
ation performs the smoothing and sends the smoothed

traÆ
 to the network edge as appli
ation smoothing. The


ase where the appli
ation sends its unsmoothed traÆ


to the network edge and the network edge performs the

smoothing is referred to as network smoothing.

With appli
ation smoothing the appli
ation internally

smoothes its traÆ
. Based on the regulator fun
tion of

its traÆ
 and the maximum delay it 
an tolerate, the

appli
ation �nds the minimum smoother rate by apply-

ing (4). Sin
e the smoothing is done by the appli
ation,

there is no need to redu
e the number of leaky bu
kets

used to 
hara
terize the traÆ
 by applying the heuris-

ti
 outlined in Appendix B. Instead, the 
on
ave hull of

a prere
orded sour
e is used dire
tly for dimensioning its

smoother. The appli
ation advertises the regulator fun
-

tion E

j

(t) = minf


�

j

t; �

L

j

j

+ �

L

j

j

tg and the delay bound

d

j

= 0 to the network. We remark that this dual leaky

bu
ket regulator fun
tion has been adopted by the ATM

Forum [17℄ and is being proposed for the Internet [48℄. The

network does not have to be aware of the smoothing done

by the appli
ation. The network edge dimensions its own

smoother based on E

j

(t) and d

j

= 0. Sin
e d

j

= 0 the

network's smoother degenerates to a server with rate 


�

j

pre
eded by a bu�er of size zero.

With network smoothing the appli
ation advertises its

regulator fun
tion and maximum tolerable delay to the

network. Prere
orded sour
es apply the heuristi
 of Ap-

pendix B when the network restri
ts the number of leaky

bu
kets to a number smaller than the number of seg-

ments in the 
on
ave hull. The network edge dimensions

the smoother based on the regulator fun
tion and delay

bound supplied by the appli
ation. Call admission 
ontrol

is based on the assumption of worst{
ase on{o� traÆ
 at

the smoother output. The network edge poli
es the ap-

pli
ations' traÆ
 before it enters the smoother and drops

violating traÆ
.

VI. Final Remarks

In this arti
le we have developed a framework for pro-

viding end{to{end statisti
al QoS guarantees in a network.

We have argued that it is preferable to smooth the traÆ
 at

the ingress and to perform bu�erless statisti
al multiplex-

ing within the network than to use shared{bu�er multiplex-

ing. For our s
heme we have determined the worst{
ase

traÆ
 and have outlined an admission 
ontrol pro
edure

based on the worst{
ase traÆ
. We have also expli
itly


hara
terized the optimal smoother.

Our results are parti
ularly relevant in light of the 
ur-

rent debate on servi
e dis
iplines for the Internet. Our

results indi
ate that an Internet o�ering ex
lusively Guar-

anteed Servi
e based on the RCS servi
e dis
ipline will be

severely underutilized. An Internet servi
e allowing for

small losses | su
h as the Predi
tive Servi
e framework

proposed in [5℄ | would be able to make eÆ
ient use of

the Internet resour
es and still provide the re
eivers with

an enjoyable multimedia experien
e. Su
h a statisti
al In-

ternet servi
e 
ould be based on our smoothing/bu�erless
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multiplexing traÆ
 management s
heme.

A
knowledgment: We gratefully a
knowledge intera
-

tions with Jim Roberts at the early stages of this resear
h.

Appendix A: Proof of Theorem 2

The purpose of this appendix is to provide a proof for The-

orem 2. But �rst we need to establish two lemmas.

Lemma 2: A ne
essary 
ondition for (S

j

(t); j 2 I(n)) to

be feasible is r

1

j

� 


�

j

for all j 2 I(n).

Proof: From [8℄, [9℄, [18℄ the maximum delay at

smoother j is

~

d

j

= max

t�0

f max

1�k�M

j

E

j

(t)� s

k

j

r

k

j

� tg: (20)

Suppose r

1

j

< 


�

j

for some j 2 I(n). Be
ause s

k

j

� 0 and

r

k

j

� r

1

j

for all k, it follows from (20) that

~

d

j

� max

t�0

f

E

j

(t)

r

1

j

� tg: (21)

And be
ause, by assumption, r

1

j

< 


�

j

, it follows from (21)

that

~

d

j

> max

t�0

f

E

j

(t)




�

i

� tg = d

j

;

where the last equality follows from (4).

Lemma 3: There exists a sto
hasti
 ve
tor arrival pro-


ess in A

n

that produ
es the steady-state rate variables

~

U

j

; j 2 I(n), with

~

U

j

having distribution

~

U

j

=

(

min(r

1

j

; �

1

j

) with probability

�

j

min(r

1

j

;�

1

j

)

0 with probability 1�

�

j

min(r

1

j

;�

1

j

)

at the smoother outputs.

Proof: For ea
h j 2 I(n), let t

j

= �

2

j

=(�

1

j

� �

2

j

) and

Æ

j

= s

2

j

=(r

1

j

�r

2

j

). At t = t

j

the slope of E

j

(t) 
hanges form

�

1

j

to �

2

j

< �

1

j

. Consequently, E

j

(t

j

) = �

1

j

t

j

is the maxi-

mum size burst that 
an be transmitted at rate �

1

j

, pro-

vided su

essive maximum size bursts are spa
ed at least

E

j

(t

j

)=�

j

� t

j

apart. Similarly, at t = Æ

j

the slope of S

j

(t)


hanges form r

1

j

to r

2

j

< r

1

j

. Consequently, S

j

(Æ

j

) = r

1

j

Æ

j

is the maximum size burst the smoother 
an pass at rate

r

1

j

, provided su

essive maximum size bursts are spa
ed at

least S

j

(Æ

j

)=r

M

j

j

� Æ

j

apart.

Let

~

b

j

(t) be a deterministi
 periodi
 fun
tion su
h that

~

b

j

(t) =

�

�

1

j

0 � t < t

on

j

0 t

on

j

� t � T

j

:

with on{time t

on

j

and period T

j

given in Table II. Also,

let �

j

; j 2 I(n), be independent random variables with �

j

uniformly distributed over [0; T

j

℄ and de�ne the sto
hasti


arrival pro
ess j as

~

A

j

(t) =

Z

t

0

~

b

j

(s+ �

j

)ds:

Thus ea
h 
omponent arrival pro
ess (

~

A

j

(t); t � 0) is gen-

erated by a periodi
 on{o� sour
e; pro
ess j has peak rate

�

1

j

and average rate �

j

. The argument in the proof of The-

orem 1 shows that the ve
tor pro
ess (

~

A(t); t � 0) is a

feasible pro
ess in A

n

.

It remains to show that by sending ea
h 
omponent pro-


ess (

~

A

j

(t); t � 0) into its respe
tive smoother we obtain

an on{o� pro
ess whose peak rate is min(r

1

j

; �

1

j

) and whose

average rate is �

j

. Spe
i�
ally, we now show that

~

A

j

(t)

produ
es

~

O

j

(t) =

R

t

0

~o

j

(s + �

j

)ds at the smoother output

where

~o

j

(t) =

�

min(r

1

j

; �

1

j

) 0 � t < �

on

j

0 �

on

j

� t � T

j

;

where the periods and on{times are given in Table II.

First, 
onsider the 
ase �

1

j

� r

1

j

and E

j

(t

j

) � S

j

(Æ

j

).

Clearly, t

on

j

� t

j

sin
e t

on

j

= S

j

(Æ

j

)=�

1

j

and t

j

= E

j

(t

j

)=�

1

j

and by assumption S

j

(Æ

j

) � E

j

(t

j

). This implies that

E

j

(t

on

j

) = �

1

j

t

on

j

. Hen
e

S

j

(�

on

j

) = E

j

(t

on

j

): (22)

Note furthermore that

t

on

j

� �

on

j

(23)

sin
e t

on

j

= S

j

(Æ

j

)=�

1

j

= r

1

j

Æ

j

=�

1

j

and by assumption

r

1

j

� �

1

j

. Be
ause of (22) and (23) and �

on

j

= Æ

j

the

smoother bursts at rate r

1

j

for a duration of �

on

j

when fed

with an input burst at rate �

1

j

for a duration of t

on

j

� t

j

.

Also, note that the smoother output has average rate

E

j

(t

on

j

)=T

j

= �

j

� r

M

j

j

, where the last inequality follows

from the stability 
ondition.

Next, 
onsider the 
ase �

1

j

� r

1

j

and E

j

(t

j

) < S

j

(Æ

j

). We

have

�

on

j

� Æ

j

(24)

sin
e �

on

j

= E

j

(t

j

)=r

1

j

and Æ

j

= S

j

(Æ

j

)=r

1

j

and by assump-

tion S

j

(Æ

j

) > E

j

(t

j

). Thus S

j

(�

on

j

) = r

1

j

�

on

j

. Hen
e

S

j

(�

on

j

) = E

j

(t

on

j

): (25)

Also,

t

on

j

� �

on

j

(26)

sin
e t

on

j

= E

j

(t

j

)=�

1

j

and �

on

j

= E

j

(t

j

)=r

1

j

and by assump-

tion �

1

j

> r

1

j

. Be
ause of (24), (25) and (26) the smoother

bursts at rate r

1

j

for a duration of �

on

j

when fed with an in-

put burst at rate �

1

j

for a duration of t

on

j

. The average rate

of the smoother output is E

j

(t

on

j

)=T

j

= �

j

� r

M

j

j

, where

the last inequality follows from the stability 
ondition.

Now 
onsider the 
ase �

1

j

< r

1

j

and E

j

(t

j

) � S

j

(Æ

j

). We

have t

on

j

� t

j

sin
e t

on

j

= S

j

(Æ

j

)=�

1

j

and t

j

= E

j

(t

j

)=�

1

j

and by assumption S

j

(Æ

j

) � E

j

(t

j

). This implies that

E

j

(t

on

j

) = �

1

j

t

on

j

. Hen
e

S

j

(Æ

j

) = E

j

(t

on

j

): (27)
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TABLE II

On{times and periods of

~

b

j

(t) and ~o

j

(t).

�

1

j

� r

1

j

�

1

j

< r

1

j

E

j

(t

j

) � S

j

(Æ

j

) E

j

(t

j

) < S

j

(Æ

j

) E

j

(t

j

) � S

j

(Æ

j

) E

j

(t

j

) < S

j

(Æ

j

)

T

j

S

j

(Æ

j

)=�

j

E

j

(t

j

)=�

j

S

j

(Æ

j

)=�

j

E

j

(t

j

)=�

j

t

on

j

S

j

(Æ

j

)=�

1

j

t

j

S

j

(Æ

j

)=�

1

j

t

j

�

on

j

Æ

j

E

j

(t

j

)=r

1

j

S

j

(Æ

j

)=�

1

j

t

j

Note furthermore that

Æ

j

� t

on

j

(28)

sin
e Æ

j

= S

j

(Æ

j

)=r

1

j

and t

on

j

= S

j

(Æ

j

)=�

1

j

and by assump-

tion r

1

j

> �

1

j

. Be
ause of (27), (28) and �

1

j

< r

1

j

(by as-

sumption) the smoother passes the input burst at rate �

1

j

for a duration of t

on

j

un
hanged. The average rate of the

smoother output is E

j

(t

on

j

)=T

j

= �

j

� r

M

j

j

, where the last

inequality follows from the stability 
ondition.

Finally, 
onsider the 
ase �

1

j

< r

1

j

and E

j

(t

j

) < S

j

(Æ

j

).

These two assumptions imply that the smoother 
an pass

the input burst of size E

j

(t

j

) at rate �

1

j

. The average rate

of the smoother output is E

j

(t

on

j

)=T

j

= �

j

� r

M

j

j

, where

the last inequality follows from the stability 
ondition.

Proof of Theorem 2: Using Lemma 3 and mimi
king the

proof of Theorem 1 we obtain

�

n

j

=

E

h

(

P

i2I(n)

~

U

i

� C

n

)

+

~

U

j

i

C

n

� E[

~

U

j

℄

;

where

~

U

j

; j 2 I(n), are de�ned in Lemma 3. Using the

fa
t that

~

U

j

is a Bernoulli random variable, we obtain from

the above expression

�

j

=

E

h

(

P

i2I(n)�fjg

~

U

i

+min(r

1

j

; �

1

j

)� C

n

)

+

i

C

n

�

E

h

(

P

i2I(n)�fjg

~

U

i

+ 


�

j

� C

n

)

+

i

C

n

; (29)

where the last inequality follows from Lemma 2.

From (13) and (29) it remains to show that

E[(

X

i2I(n)�fjg

U

�

i

+ 


�

j

� C

n

)

+

℄ �

E[(

X

i2I(n)�fjg

~

U

i

+ 


�

j

� C

n

)

+

℄: (30)

From Lemma 2 and Proposition 1.5.1 in [52℄

U

�

i

�

i
x

~

U

i

for all i 2 I(n): (31)

The inequality (30) follows from (31), the independen
e of

U

�

j

; j 2 I(n), and an argument that parallels the argument

in the proof of Theorem 1. 2

Appendix B: A Heuristi
 for Finding a Leaky

Bu
ket Chara
terization of Prere
orded

Sour
es

In this appendix we dis
uss how to obtain a good 
hara
-

terization E

j

(t) of a sour
e for a given restri
tion L

j

on

the number of leaky bu
kets. For any given 
hara
teri-

zation E

j

(t) we use at the network edge a single{bu�er

smoother with rate 


�

j

given by (4). Our goal is to �nd a


hara
terization E

j

(t) that has at most L

j

slopes (i.e., L

j


as
aded leaky bu
kets) and attempts to minimize both �

j

and 


�

j

. From Theorem 2 we know that minimizing �

j

and




�

j

minimizes the worst{
ase loss probabilities, and thereby

maximizes the 
onne
tion{
arrying 
apa
ity of a parti
ular

node.

We develop the heuristi
 for determining the 
hara
-

terization E

j

(t) in the 
ontext of prere
orded sour
es.

These sour
es in
lude full{length movies, musi
 video 
lips

and edu
ational material for video{on{demand (VoD) and

other multimedia appli
ations. It is well known how to


ompute the empiri
al envelope for prere
orded sour
es

[32℄, [54℄, [31℄. The empiri
al envelope gives the tightest

bound on the amount of traÆ
 that 
an emanate from a

prere
orded sour
e over any time interval. The empiri
al

envelope is however not ne
essarily 
on
ave, and therefore

we may not be able to 
hara
terize it by a 
as
ade of leaky

bu
kets. However, applying the algorithms of Wrege et al.

[54℄ or Grahams S
an [6℄, we 
an 
ompute the 
on
ave hull

of the empiri
al envelope. The 
on
ave hull for 
onne
tion{

j traÆ
, denoted by H

j

(t), takes the form

H

j

(t) = min

1�i�K

j

f�

i

j

+ �

i

j

tg: (32)

Here, K

j

denotes the number of pie
ewise linear segments

in the 
on
ave hull. Without loss of generality we may

assume �

1

j

< �

2

j

< � � � < �

K

j

j

and �

1

j

> �

2

j

> � � � > �

K

j

j

.

The number of segments in the 
on
ave hull 
an be rather

large. The \Silen
e of The Lambs" video segment used

in our numeri
al experiments, for instan
e, has a 
on
ave

hull 
onsisting of 39 segments. This implies that 39 leaky

bu
ket pairs are required to poli
e the tightest 
on
ave


hara
terization of the \Silen
e of The Lambs" video seg-

ment. Our goal is to �nd a more su

in
t 
hara
terization

of prere
orded sour
es in order to simplify 
all admission


ontrol and traÆ
 poli
ing.

Suppose that a sour
e is allowed to use L

j

(L

j

< K

j

)

leaky bu
kets to 
hara
terize its traÆ
. We now present a

heuristi
 for the following problem: Given a sour
e's 
on-


ave hull H

j

(t) = min

1�i�K

j

f�

i

j

+ �

i

j

tg and the delay limit
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d

j

, �nd L

j

leaky bu
kets (out of the K

j

leaky bu
ket pairs

in the 
on
ave hull) that maximize the admission region.

We illustrate our heuristi
 for the 
ase L

j

= 2. For

L

j

= 2 the traÆ
 
onstraint fun
tion takes the form

E

j

(t) = minf�

a

j

j

+ �

a

j

j

t; �

b

j

j

+ �

b

j

j

tg with 1 � a

j

; b

j

� K

j

; (33)

where the indi
es a

j

and b

j

are yet to be spe
i�ed. Our

strategy is to �rst 
hoose the leaky bu
ket that has the

tightest bound on the average rate (i.e., minimize �

j

),

and then 
hoose another leaky bu
ket whi
h minimizes the

smoother rate 


�

j

. Let r

ave

j

denote the average rate of the

prere
orded sour
e. We found in our numeri
al experi-

ments that some of the leaky bu
ket pairs in the 
on
ave

hull (parti
ularly those with high indi
es) may have slopes

less than r

ave

j

. We set b

j

= maxfi : �

i

j

� r

ave

j

; 1 � i � K

j

g.

In words, we use the highest indexed leaky bu
ket with a

slope larger than r

ave

j

to spe
ify the sour
e's average rate.

In order to �nd the leaky bu
ket indexed by a

j

we 
on-

sider all leaky bu
kets (�

i

j

; �

i

j

) with 1 � i < b

j

. We


ompute the smoother rates obtained by 
ombining ea
h

of the leaky bu
kets (�

i

j

; �

i

j

); 1 � i < b

j

with the leaky

bu
ket (�

b

j

j

; �

b

j

j

) and sele
t the index i that gives the small-

est smoother rate | and thus the largest admission re-

gion. More formally, let 


�i

j

; 1 � i < b

j

, denote the

minimal smoother rate for traÆ
 with regulator fun
tion

E

j

(t) = minf�

i

j

+ �

i

j

t; �

b

j

j

+ �

b

j

j

tg and delay bound d

j

. By

(4) we have




�i

j

= max

t�0

minf�

i

j

+ �

i

j

t; �

b

j

j

+ �

b

j

j

tg

d

j

+ t

:

We 
an obtain a more expli
it expression for 


�i

j

. Sin
e

minf�

i

j

+�

i

j

t; �

b

j

j

+�

b

j

j

tg =

(

�

i

j

+ �

i

j

t for 0 � t � t

i

�

b

j

j

+ �

b

j

j

t for t � t

i

with t

i

= (�

b

j

j

� �

i

j

)=(�

i

j

� �

b

j

j

), we have




�i

j

= max

"

max

0�t�t

i

�

i

j

+ �

i

j

t

d

j

+ t

; max

t�t

i

�

b

j

j

+ �

b

j

j

t

d

j

+ t

#

:

The expressions inside the max[�℄ 
an be further simpli�ed.

It 
an be shown that

max

0�t�t

i

�

i

j

+ �

i

j

t

d

j

+ t

=

8

<

:

�

i

j

d

j

if d

j

�

�

i

j

�

i

j

�

i

j

+�

i

j

t

i

d

j

+t

i

; if d

j

�

�

i

j

�

i

j

and

max

t�t

i

�

b

j

j

+ �

b

j

j

t

d

j

+ t

=

8

>

>

<

>

>

:

�

i

j

+�

i

j

t

i

d

j

+t

i

; if d

j

�

�

b

j

j

�

b

j

j

�

b

j

j

d

j

if d

j

�

�

b

j

j

�

b

j

j

:

We set the smoother rate to min

1�i<b

j




�i

j

and set a

j

to the

index that attains this minimum.

We now brie
y dis
uss how to �nd the optimal regula-

tor fun
tion 
onsisting of 3 or more leaky bu
kets. First,

note that there are

�

b

j

� 1

L

j

� 1

�


ombinations of leaky

bu
ket pairs to 
onsider. This 
an be 
omputationally

prohibitive. The heuristi
 
an be sped up by 
onsider-

ing only regulator fun
tions 
onsisting of L

j

� 1 
onse
u-

tive leaky bu
kets of the 
on
ave hull and the leaky bu
ket

(�

b

j

j

; �

b

j

j

). In the 
ase L

j

= 3, for instan
e, we 
ompute

the minimal smoother rates only for the regulator fun
-

tions E

j

(t) = minf�

i

j

+ �

i

j

t; �

i+1

j

+ �

i+1

j

t; �

b

j

j

+ �

b

j

j

tg with

1 � i < b

j

� 1. This speed{up of the heuristi
 
an produ
e

a suboptimal regulator fun
tion. Our numeri
al experi-

ments (see Se
tion III-B), however, indi
ate that it works

surprisingly well.

We evaluate the heuristi
 using the tra
es of Se
tion III-

B. The heuristi
 produ
ed the optimal leaky bu
ket 
har-

a
terizations given in Table III for the lambs tra
e. The

TABLE III

Parameters of the optimal leaky bu
ket 
hara
terization

with 2 leaky bu
kets as a fun
tion of the delay bound for

the lambs tra
e. The average rate is 
hara
terized by the

34th leaky bu
ket, i.e., b

lambs

= 34, with parameters

�

b

lambs

lambs

= 3; 157:8 kByte and �

b

lambs

lambs

= 208.8 kbit/se
 for all

delay bounds.

d

lambs

a

lambs

�

a

lambs

lambs

�

a

lambs

lambs




�

lambs

se
. kByte kbit/se
 kbit/se


0 1 0 3474.8 3474.8

0.042 2 13.3 939.3 2535.5

0.125 2 13.3 939.3 939.0

0.250 4 23.5 802.2 801.9

0.500 8 43.5 711.0 710.8

1.000 10 69.9 676.9 674.7

table gives the index a

lambs

and the parameters of the leaky

bu
ket (�

a

lambs

lambs

; �

a

lambs

lambs

) for various delay bounds. The av-

erage rate is 
hara
terized by the 34th leaky bu
ket in the


on
ave hull, i.e., b

lambs

= 34, for all delay bounds. The

table also gives the minimal smoother rates for the vari-

ous delay bounds. For a delay bound of zero, the smoother

rate is set to the rate of the �rst leaky bu
ket, i.e., the peak

rate of the tra
e. For d

lambs

= 0.042 se
 (= 1=F ) the tra
e

is 
hara
terized by the 2nd and 34th leaky bu
ket of the


on
ave hull (a

lambs

= 2; b

lambs

= 34). Note that d

lambs

<

�

a

lambs

lambs

=�

a

lambs

lambs

in this 
ase and 


�

lambs

= �

a

lambs

lambs

=d

lambs

. For

d

lambs

� 0.125 se
 we have d

lambs

> �

a

lambs

lambs

=�

a

lambs

lambs

and




�

lambs

= (�

a

lambs

j

+ �

a

lambs

j

t

a

lambs

)=(d

j

+ t

a

lambs

).
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