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A Framework for Guaranteeing Statistial QoS

(Extended Version)

Martin Reisslein, Member, IEEE, Keith W. Ross, Senior Member, IEEE, Srinivas Rajagopal

Abstrat|Continuous{media traÆ (i.e., audio and video)

an tolerate some loss but has rigid delay onstraints. A nat-

ural QoS requirement for a ontinuous{media onnetion is

a presribed limit on the fration of traÆ that exeeds an

end{to{end delay onstraint. We propose and analyze a

framework that provides suh a statistial QoS guarantee to

traÆ in a paket{swithed network. Providing statistial

guarantees in a network is a notoriously diÆult problem

beause traÆ ows lose their original statistial harater-

izations at the outputs of queues. Our sheme uses bu�erless

statistial multiplexing ombined with asaded leaky{bukets

for smoothing and traÆ ontrating. This sheme along

with a novel method for bounding the loss probability gives

a tratable framework for providing end{to{end statistial

QoS. Using MPEG video traes, we present numerial re-

sults that ompare the onnetion{arrying apaity of our

sheme with that of guaranteed servie shemes (i.e., no

loss) using GPS and RCS. Our numerial work indiates

that our sheme an support signi�antly more onnetions

without introduing signi�ant traÆ loss.

Keywords: Bu�erless Multiplexing, Call Admission Con-

trol, End{to{End QoS, Multimedia TraÆ, Regulated Traf-

�, Statistial Multiplexing, Statistial QoS, TraÆ Smooth-

ing.

I. Introdution

Continuous{media networking appliations are inreas-

ingly popular in the Internet. These appliations inlude

Internet phone, real{time video onferening, and stream-

ing stored audio and video. But beause the Internet

provides only a best{e�ort servie, the Quality of Ser-

vie (QoS) pereived by a user is inonsistent and unpre-

ditable. In partiular, the QoS for a ontinuous{media

session is often poor when the links between ommuniat-

ing entities are ongested or subjet to sudden and unpre-

ditable traÆ surges.

It is therefore desirable to introdue new servies into

the Internet that an guarantee QoS to ontinuous{media

appliations. The subjet of providing QoS guarantees in

paket{swithed networks has been a major area of re-

searh over the past 10{20 years, both inside and outside
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of the Internet researh ommunity. One of the proposi-

tions that has resulted from this researh is a spei�ation

for guaranteed QoS [47℄. When an appliation uses this

servie, the appliation's pakets have guaranteed bounds

on delays with no paket loss. The guaranteed QoS servie

is a natural outgrowth of a body of researh in the area of

delay bound alulations for queueing networks with regu-

lated traÆ [7℄, [8℄, [34℄, [35℄, [58℄, [57℄, [18℄, [27℄, [4℄, [26℄.

It an be argued, however, that guaranteeing absolutely

no paket loss is overly onservative for ontinuous{media

appliations, whih an typially tolerate a small rate of

loss. In fat, users may not pereive any quality degra-

dation when there is infrequent paket loss, espeially if

the reeiver employs error onealment tehniques (e.g.,

see [53℄). Furthermore, shemes that guarantee no loss typ-

ially have a low onnetion{arrying apaity for bursty

ontinuous{media traÆ (e.g., VBR video or speeh with

silene detetion) [43℄, [20℄, [21℄, [19℄. Alternatively stated,

the no{loss shemes neessitate a high degree of bandwidth

over provisioning.

This raises two important questions. First, is it possible

to develop a omprehensive framework that provides statis-

tial QoS guarantees in a network, that is, bounds on the

fration of traÆ that exeeds an end{to{end delay on-

straint? Providing statistial guarantees in a network on-

text is a notoriously diÆult problem beause traÆ ows

lose their original statistial haraterizations at the out-

puts of queues. And if yes, an this statistial{QoS sheme

have signi�antly better onnetion{arrying apaity than

a guaranteed QoS sheme? In this artile we �rst develop

a framework that provides statistial QoS guarantees in a

network setting. We also argue that our approah typially

has signi�antly better onnetion{arrying apaity than

a deterministi guaranteed QoS sheme.

In order to guarantee deterministi or statistial QoS,

onnetions need to make ontrats with the network in

order to limit, in some sense, the amount of traÆ the on-

netions send into the network over intervals of time. Only

by making and enforing ontrats an a network expet

to be able to provide guarantees. Leaky bukets, being

relatively easy to implement, are onvenient mehanisms

for de�ning and enforing traÆ ontrats. Soures that

onform to leaky{buket haraterizations are said to be

regulated soures. In reent years, several researh teams

have arefully studied the problem of providing statistial

QoS guarantees to regulated soures that are multiplexed

in a single shared bu�er [15℄[33℄[37℄. With shared bu�er

multiplexers, however, it is diÆult (if not impossible) to

tightly haraterize a onnetion's traÆ one the traÆ
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passes through the shared bu�er. Therefore, the existing

solutions do not extend to the network environment in a

satisfatory manner.

Although our approah also uses leaky buket regula-

tors, it provides meaningful statistial guarantees in a net-

work ontext. The QoS guarantees provided by our sheme

an be roughly stated as follows: the fration of traÆ

that exeeds a spei� end{to{end delay onstraint is be-

low a presribed bound. The sheme allows eah onne-

tion to have its own end{to{end delay onstraint and its

own bound on the fration of traÆ that exeeds this de-

lay limit. Suh a statistial QoS guarantee is partiularly

appropriate for ontinuous{media traÆ, whereby times-

tamping and a playout bu�er an ensure the ontinuous

playout of video or audio without jitter [38℄. Our traf-

� management sheme has the following omponents: (i)

eah onnetion's traÆ is smoothed at the onnetion's

input as muh as allowed by the onnetion's delay on-

straint; (ii) all nodes within the network employ bu�erless

statistial multiplexing; (iii) admission ontrol is based on

the worst{ase assumption that soures are adversarial to

the extent permitted by the onnetion's regulator, while

onurrently assuming the onnetions generate traÆ in-

dependently. A ritial devie in our is sheme is a novel

bound for a onnetion's traÆ loss at a single node.

Our sheme has the following features:

� Admission ontrol is solely based on the onnetions' reg-

ulator parameters, whih are poliable. It is not based on

more omplex, diÆult{to{polie statistial harateriza-

tions.

� It allows for statistial multiplexing in the network while

meeting the QoS requirements. The smoothing at the input

inreases the statistial multiplexing gain.

� It allows for per{onnetion QoS requirements: the on-

netions an have vastly di�erent delay and loss require-

ments.

� Beause the multiplexing is bu�erless, the swithes re-

quire only small input bu�ers (when traÆ is paketized),

thereby reduing swith ost.

� A onnetion's traÆ haraterization does not hange

as the traÆ passes through a bu�erless multiplexer, that

is, the traÆ leaving the network node onforms to the

same regulator onstraints as the traÆ entering the node.

This feature is partiularly useful when analyzing multihop

networks.

The statistial multiplexing within the network inreases

the onnetion arrying apaity of the network signi�-

antly at the expense of minisule losses in the network.

We provide numerial examples that demonstrate that by

allowing for very small losses of the order of 10

�7

(whih

an be e�etively hidden by error onealment tehniques

[53℄) our sheme an typially support two to three times

the number of onnetions that deterministi servie disi-

plines (GPS, RCS, et.) an support.

The problem of providing end{to{end statistial QoS

guarantees in a network has reeived a great deal of atten-

tion in reent years. The early works [23℄, [3℄ in this area

derive probabilisti bounds on the delay of ows in a net-

work, while [44℄ disusses a oneptual framework for QoS

assuranes in a network. A sheme whih is able to pro-

vide end{to{end statistial QoS in a network of Generalized

Proessor Sharing (GPS) shedulers is developed in [14℄.

End{to{end statistial QoS guarantees are also provided

by the sheme proposed in [25℄, whih employs TraÆ{

Controlled Rate{Monotoni Priority Sheduling [24℄. Our

approah was developed independently of [14℄, [25℄ and was

�rst presented in [41℄, [42℄. In this artile we extend our

approah and present it in a omprehensive manner. The

GPS based sheme [14℄ is further re�ned in [22℄. Shemes

for providing end{to{end statistial QoS in a network of

Earliest Deadline First (EDF) shedulers are developed in

[1℄, [49℄. A omparison of the EDF based shemes and the

GPS based shemes is onduted in [50℄. An approah that

statistially bounds the burstiness of ows in a network is

presented in [51℄. A framework for ahieving end{to{end

statistial QoS through oordinated network sheduling is

devised in [29℄. In [16℄ aggregation of ows in ore routers

of the Internet is exploited to deompose the network and

analyze the end{to{end queuing behavior using tools de-

veloped for the analysis of a single queue. Finally, there

have been several e�orts to extend the deterministi net-

work alulus [7℄, [8℄, [9℄, [4℄, [26℄, whih relies to a large

extend on arrival envelopes and servie urves, to proba-

bilisti network servies. Di�erent de�nitions of probabilis-

ti servie urves have been studied in [10℄, [36℄. A prob-

abilisti network alulus for a lass of so{alled \dynami

F{servers" is developed in [4℄. A alulus for providing

end{to{end statistial QoS is developed and evaluated in

[2℄, [30℄. This alulus employs e�etive servie urves and

applies in rather general settings.

This artile is organized as follows. In Setion II we for-

mally de�ne the asaded leaky{buket regulators and the

statistial QoS requirement. We also disuss the smoothers

at the network ingresses and desribe our network model.

In Setion III we fous on a single node. We determine the

worst{ase traÆ and outline our smoothing and admission

ontrol proedure. We also onsider general smoothers and

show that the optimal smoother is a single{bu�er smoother

whih smoothes traÆ as muh as the delay limit permits.

In Setion III-B we evaluate our smoothing/bu�erless mul-

tiplexing sheme in the ontext of a single node numerially

using traes of MPEG enoded video. In Setion III-C we

ompare our sheme to designs based on bu�ered statisti-

al multiplexing. In Setion IV we analyze multihop net-

works. In Setion IV-A we ompare the performane of our

smoothing/bu�erless multiplexing sheme with that of de-

terministi servie disiplines in multihop networks. In Se-

tion V we disuss how the responsibilities of smoothing, all

admission ontrol and traÆ poliing an be shared by the

appliation and the network when our smoothing/bu�erless

multiplexing sheme is employed. We onlude in Se-

tion VI.
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II. Regulated Traffi and the Statistial QoS

Requirement

In this artile we study networks onsisting of inter-

onneted bu�erless nodes. We assume a virtual iruit,

onnetion{oriented network and view traÆ as uid, that

is, pakets are in�nitesimal. The uid model, whih losely

approximates a paketized model with small pakets, per-

mits us to fous on the entral issues and signi�antly sim-

pli�es notation.

Eah onnetion j entering the network has an assoiated

regulator funtion (also often referred to as arrival envelope

in the literature), denoted by E

j

(t), t � 0. The regulator

funtion onstrains the amount of traÆ that onnetion j

an send into the network over all time intervals. Speif-

ially, if A

j

(t) is the amount of traÆ that onnetion j

sends into the network over the interval [0; t℄, then A

j

(t) is

required to satisfy

A

j

(t+ �)�A

j

(�) � E

j

(t) 8� � 0; t � 0: (1)

A popular regulator is the simple regulator, whih on-

sists of a peak rate ontroller in series with a leaky buket;

for the simple regulator, the regulator funtion takes the

following form:

E

j

(t) = minf�

1

j

t; �

2

j

+ �

2

j

tg:

For a given soure type, the bound on the traÆ provided

by the simple regulator may be loose and lead to overly

onservative admission ontrol deisions. For many soure

types (e.g., for VBR video), it is possible to get a tighter

bound on the traÆ and dramatially inrease the admis-

sion region. In partiular, regulator funtions of the form

E

j

(t) = minf�

1

j

t; �

2

j

+ �

2

j

t; : : : ; �

L

j

j

+ �

L

j

j

tg (2)

are easily implemented with asaded leaky bukets; it is

shown in [54℄ that the additional leaky bukets an lead

to substantially larger admission regions for multiplexing

with deterministi QoS. We shall show that this is also

true to some extend for multiplexing with a statistial QoS

requirement. Spei�ally, we shall demonstrate that with

three properly seleted leaky bukets, we an ahieve the

maximum admission region. With two arefully seleted

leaky bukets we an ahieve most of this admission region;

however, in most ases these two leaky bukets di�er from

the simple regulator in that both leaky bukets have a non{

zero buket depth � (see Appendix B for details).

Throughout this artile we assume that eah regulator

has the form (2). Without loss of generality we may assume

that �

1

j

> �

2

j

> � � � > �

L

j

j

and �

2

j

< �

3

j

< � � � < �

L

j

j

. For

ease of notation, we set �

j

= �

L

j

j

. Note that for onnetion{

j traÆ, the long{run average rate is no greater than �

j

and

the peak rate is never greater than �

1

j

.

Eah onnetion also has a QoS requirement. We on-

sider a QoS requirement that is partiularly appropriate

for multimedia traÆ that has stringent end{to{end de-

lay requirements but an tolerate some loss. Spei�ally,

eah onnetion has a onnetion{spei� delay limit and

a onnetion{spei� loss bound. Let d

j

and �

j

denote the

delay limit and loss bound for onnetion j. Any traÆ

that overows at one of the bu�erless links in the network

is onsidered to have in�nite delay, and therefore violates

the delay limit. The QoS requirement is as follows: the

long{run fration of onnetion{j traÆ that is delayed by

more than d

j

seonds must be less than �

j

.

This QoS requirement an assure ontinuous, uninter-

rupted playbak for a multimedia onnetion as follows.

Eah paket (whih we assume to be in�nitesimally small

in our uid analysis) is time{stamped at the soure. If

a paket from onnetion j is time{stamped with value

x, the paket (if not lost in the node) arrives at the re-

eiver no later than x+ d

j

. The reeiver delays playout of

the paket until time x + d

j

. Thus, by inluding a bu�er

at eah reeiver, the reeiver an playbak a multimedia

stream without jitter with a �xed delay of d

j

and with a

loss probability of at most �

j

.

The �rst aspet of our strategy is to pass eah on-

netion's traÆ through a bu�ered smoother at the on-

netion's input to the network. We design the smoother

for onnetion j so that the onnetion{j traÆ is never

delayed by more than d

j

in the smoother. After having

smoothed a onnetion's traÆ, we pass the smoothed traf-

� to the network, and the traÆ follows its route through

the network. At eah link along its route, the onnetion's

traÆ is statistially multiplexed with traÆ from other

onnetions. The seond aspet of our strategy is to remove

all of the bu�ers inside the network; that is, we use bu�er-

less statistial multiplexing rather than bu�ered multiplex-

ing before eah link in the network. In our uid model, a

onnetion's traÆ that arrives to a bu�erless link either

ows through the link without any delay or overows at

the link, and therefore has in�nite delay. The QoS require-

ment of a onnetion j is met if the fration of onnetion{

j traÆ that overows any of the links along the route of

onnetion j is less than �

j

. Also, note that provided the

loss at eah link is small, we an reasonably approximate

a onnetion's traÆ at the output of the multiplexer as

being idential to its traÆ at the input of the multiplexer.

In other words, a onnetion that satis�es a ertain regu-

lator onstraint at the input of a node satis�es the same

regulator onstraint at the output of the node.

For the smoother at the input of onnetion j to the net-

work we initially use a bu�er whih serves traÆ at rate 

�

j

.

When the smoother bu�er is nonempty, traÆ is drained

from the bu�er at rate 

�

j

. When the smoother bu�er is

empty and onnetion{j's traÆ is arriving at a rate less

than 

�

j

, traÆ leaves the bu�er exatly at the rate at whih

it enters the bu�er. For the uid model and QoS riterion

of this artile we shall show that more omplex smoothers

onsisting of asaded leaky bukets do not improve per-

formane.

Using the theory developed in [7℄, it an be shown that

the maximum delay in the smoother is

max

t�0

(

E

j

(t)



�

j

� t

)

:
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Fig. 1. Multihop network with N nodes.

We set the smoother rate to



�

j

= min

�



j

� 0 : max

t�0

�

E

j

(t)



j

� t

�

� d

j

�

; (3)

where d

j

is the delay requirement for onnetion j. Sine

the bu�erless nodes inside the network introdue no addi-

tional delay, traÆ from onnetion j that ows through

the network without loss has an end{to{end delay of no

more than d

j

. It is straightforward to show from (3) that

the smoother rate an be expressed as



�

j

= max

t�0

E

j

(t)

d

j

+ t

: (4)

Intuitively, 

�

j

is the smallest smoother rate that guaran-

tees (deterministially) that the traÆ is delayed by no

more than d

j

in the smoother. When onsidering a plot of

the regulator funtion E

j

(t) and the straight line 

�

j

t as a

funtion of time t, 

�

j

is the smallest slope 

�

j

suh that the

maximum horizontal distane between E

j

(t) and 

�

j

t is less

than or equal to d

j

.

A. Network Model

An important harateristi of our framework is that it

provides statistial QoS guarantees in a network. We shall

illustrate this harateristi in the ontext of a multihop

network with intervening loal traÆ ows. Consider a

multihop network with N nodes, as shown in Figure 1.

Eah node is a bu�erless multiplexer, that is, bu�ering is

not permitted at eah of the N nodes. Let C

n

denote

the transmission rate for the link between the nth and the

(n+ 1)st node.

One onnetion, whih we label onnetion 0, passes

through all N nodes. All of the other onnetions pass

through exatly one node. We denote I(n) for the set of

onnetions that pass through node n. We assume through-

out that the traÆ generated by the streams is mutually

independent. In this paper we shall show how an end{to{

end statistial guarantee an be provided to onnetion{0.

To this end, we �rst solve the single{node ase in the fol-

lowing setion.

We note that in the onsidered network, the multiplexed

streams are independent at eah node. This independene

is exploited in our alulation of the bound on the loss

probability, whih in turn is the basis for our all admis-

sion rule. In a more general network, where several streams

(that are independent at the network ingress) traverse sev-

eral nodes together, orrelations may be introdued among

the streams. However, the bu�erless multiplexers intro-

due orrelations among the streams only in ase there is

loss, i.e., when the aggregate arrival rate of the streams

exeeds the link apaity. Otherwise, i.e., when there is no

E

jI(1)j�1

(t)

E

0

(t)

-

-



�

0



�

jI(1)j�1

r

r

r

�

�

�

�>

Z

Z

Z

Z~

node 1

bu�erless

multiplexer

C

1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 2. Node 1 is a bu�erless multiplexer. The independent smoothed

streams in I(1) are multiplexed onto the output link of apaity

C

1

.

loss, the streams are not \aware" of eah other, and the

independene is preserved. We expet that in the typial

network operating regime the probability of loss is kept

quite small, say on the order of 10

�7

to 10

�5

, by employ-

ing the all admission rule developed in this artile. Thus,

there are typially only minisule orrelations introdued

when several ows traverse a number of ommon nodes.

We expet that these minisule orrelations have a negli-

gible impat on the alulation of the bound on the loss

probability.

III. Guaranteeing Statistial QoS: Single Node

Analysis

In this setion we determine the worst{ase traÆ and

derive the optimal smoothing strategy. For this purpose

we initially fous on a partiular node n; 1 � n � N .

jI(n)j smoothed streams are multiplexed onto the output

link of apaity C

n

. Eah of the onnetions j; j 2 I(n),

has a regulator funtion E

j

(t) and QoS parameters d

j

and

�

j

. Now regard the arrival proess of stream j to its

smoother as a stohasti proess. Let (A

j

(t); t � 0) de-

note the arrival proess of the unsmoothed stream j, and

let (A

j

(t; !); t � 0) denote a realization of the stohas-

ti proess. Also let A

n

(t) = (A

j

(t); j 2 I(n)), and

let (A

n

(t); t � 0) be the assoiated vetor stohasti

arrival proess. We say that the vetor arrival proess

(A

n

(t); t � 0) is feasible if (i) the omponent arrival pro-

esses (A

j

(t); t � 0); j 2 I(n), are independent, and (ii)

for eah j 2 I(n), eah realization (A

j

(t; !); t � 0) satis�es

the regulator onstraint

A

j

(t+ �; !)�A

j

(�; !) � E

j

(t) 8 � � 0; t � 0:

Denote A

n

for the set of all feasible vetor arrival proesses

(A

n

(t); t � 0). For a �xed feasible vetor arrival proess

(A

n

(t); t � 0), let U

j

(t) be the rate at whih traÆ from

onnetion j leaves the assoiated smoother at time t, and

let U

j

be the orresponding steady{state random variable.

Note that the streams U

j

; j 2 I(n), may have traversed

a number of bu�erless nodes before reahing node n. The

bu�erless nodes do not delay or alter the traÆ streams

(exept for minisule losses due to link overow whih are

negligible in typial networking senarios). Consider mul-

tiplexing the streams U

j

; j 2 I(n), onto the bu�erless link
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of apaity C

n

. The long{run average fration of traÆ

lost by onnetion j is

P

info;n

loss

(j) =

E

h

(

P

i2I(n)

U

i

� C

n

)

+

U

j

P

i2I(n)

U

i

i

E[U

j

℄

; (5)

where (x)

+

= max(0; x). The de�nition of P

info;n

loss

(j) relies

on the natural assumption that traÆ loss at multiplexer n

is split between the soures in a manner proportional to the

rate at whih the soures send traÆ into the multiplexer.

Note that P

info;n

loss

(j) keeps trak of loss for eah individual

onnetion.

Although P

info;n

loss

(j) is an appealing performane mea-

sure, we have found it to be mathematially unwieldy. In-

stead of P

info;n

loss

(j) we shall work with a bound on P

info;n

loss

(j)

whih is more tratable and whih preserves the essential

harateristis of the original performane measure. Noting

that the term in the expetation of the numerator is non{

zero only when

P

i2I(n)

U

i

> C

n

, we obtain the following

bound on P

info;n

loss

(j):

P

info;n

loss

(j) �

E

h

(

P

i2I(n)

U

i

� C

n

)

+

U

j

i

C

n

�E[U

j

℄

:= P

n

loss

(j): (6)

In most pratial irumstanes the QoS requirement spe-

i�es traÆ loss to be minisule, on the order of �

j

= 10

�6

or less. Thus we expet the bound to be very tight: In

the rare event when the aggregate demand for bandwidth

P

i2I(n)

U

i

exeeds the link apaity C

n

,

P

i2I(n)

U

i

is typ-

ially very lose to C

n

. In Setion III-B we provide numer-

ial results whih show that P

n

loss

(j) is very nearly equal to

the atual loss probability P

info;n

loss

(j). Heneforth, we fous

on the bound P

n

loss

(j), and we refer to P

n

loss

(j) as the loss

probability for onnetion j at node n. We emphasize here

that the bound (6) is a ruial and important step for the

tehniques taken in this paper. To our knowledge, no other

authors have made diret use of this important bound.

By taking the supremum over all the feasible vetor

stohasti proesses, we obtain the following worst{ase

loss probability for onnetion j at node n:

�

�n

j

= sup

A

n

E

h

(

P

i2I(n)

U

i

� C

n

)

+

U

j

i

C

n

� E[U

j

℄

: (7)

The loss probability of onnetion j at node n is guaranteed

to be bounded by �

�n

j

for all feasible vetor arrival proesses

in A

n

, that is, for all independent arrival proesses whose

sample paths satisfy the regulator onstraints.

As a �rst step in omputing the �

�n

j

's, we need to ex-

pliitly determine the random variables U

j

; j 2 I(n), that

attain the supremum in (7).

Lemma 1: Let U

�

j

; j 2 I(n), be independent random

variables, with U

�

j

having distribution

U

�

j

=

(



�

j

with probability

�

j



�

j

0 with probability 1�

�

j



�

j

:

There exists a feasible vetor arrival proess whih pro-

dues the steady{state rate variables U

�

j

; j 2 I(n), at the

smoother outputs.

Proof: The proof is by onstrution. For eah j 2

I(n) let

t

j

=

�

2

j

�

1

j

� �

2

j

and

T

j

=

�

1

j

�

2

j

(�

1

j

� �

2

j

)�

j

:

Also let �

j

; j 2 I(n), be independent random variables

with �

j

uniformly distributed over [0; T

j

℄. For eah j 2 I(n)

let b

j

(t) be a deterministi periodi funtion with period T

j

suh that

b

j

(t) =

�

�

1

j

0 � t < t

j

0 t

j

� t � T

j

:

For eah j 2 I(n) de�ne an stohasti arrival proess as

A

j

(t) =

Z

t

0

b

j

(s+ �

j

)ds:

Thus eah omponent arrival proess (A

j

(t); t � 0) is gen-

erated by a periodi on{o� soure; proess j has peak rate

�

1

j

and average rate �

j

. By sending eah omponent pro-

ess (A

j

(t); t � 0) into its respetive smoother, we obtain

an on{o� proess whose peak rate is 

�

j

and whose average

rate is �

j

. This on{o� proess is not altered by passing

through bu�erless nodes. Also, the omponent proesses

are independent; thus the vetor arrival proess produes

the steady{state random variables U

�

j

; j 2 I(n), at the

smoother outputs.

It remains to show that eah realization of (A

j

(t); t � 0)

satis�es the regulator onstraint (1). It follows immediately

from the de�nition of b

j

(t) that

Z

t

0

b

j

(s)ds � E

j

(t) for all 0 � t � T

j

: (8)

We an, in fat, show that

Z

t

0

b

j

(s)ds � E

j

(t) for all t � 0: (9)

To see this onsider any arbitrary t = nT

j

+ s, where n is

some non{negative integer and 0 � s � T

j

. We have

Z

t

0

b

j

(s)ds =

Z

T

j

0

b

j

(s)ds+ � � �+

Z

nT

j

(n�1)T

j

b

j

(s)ds +

Z

nT

j

+s

nT

j

b

j

(s)ds

� nT

j

�

j

+ E

j

(s)

� [E

j

(nT

j

+ s)� E

j

(s)℄ + E

j

(s)

= E

j

(t) :

The �rst inequality follows from (8) and from the fat that

the average rate of b

j

(t) over any period of length T

j

is �

j

.
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The seond inequality follows beause the slope of E

j

(t) is

never less than �

j

. This establishes (9). Finally beause

b

j

(t) is non{inreasing over eah of its periods, we have

Z

t+�

�

b

j

(s)ds �

Z

t

0

b

j

(s)ds for all � � 0; t � 0: (10)

Combining (9) and (10) proves that eah realization of

(A

j

(t); t � 0) satis�es the regulator onstraint (1).

We now show that the random variables U

�

j

; j 2 I(n),

attain the supremum in (7). This result will lead to a sim-

ple proedure for alulating the worst{ase loss probabili-

ties �

�

j

; j 2 I(n). To this end, we will need to make use of a

onept from stohasti ordering. A random variable X is

said to be smaller than a random variable Y in the sense of

the inreasing onvex stohasti (is) ordering, written as

X �

ix

Y , if E[h(X)℄ � E[h(Y )℄ for all inreasing, onvex

funtions h(�).

Theorem 1: For eah j 2 I(n), the worst{ase loss prob-

ability for onnetion j at node n is

�

�n

j

=

E

h

(

P

i2I(n)

U

�

i

� C

n

)

+

U

�

j

i

C

n

� E[U

�

j

℄

Proof: Let U

n

be the set of all random vetors

(U

j

; j 2 I(n)) suh that

1. U

j

; j 2 I(n), are independent.

2. 0 � E[U

j

℄ � �

j

and 0 � U

j

� 

�

j

for all j 2 I(n).

All feasible vetor arrival proesses in A

n

give steady{state

rate variables that belong to U

n

. Let (U

j

; j 2 I(n)) be

a random vetor in U

n

. Let U =

P

i2I(n)

U

i

and U

�

=

P

i2I(n)

U

�

i

. We need to show that

E[(U � C

n

)

+

U

j

℄

C

n

�E[U

j

℄

�

E[(U

�

� C

n

)

+

U

�

j

℄

C

n

�E[U

�

j

℄

: (11)

Fix k, with k 2 I(n), and onsider the random vetor

(

^

U

j

; j 2 I(n)) suh that

^

U

k

= U

�

k

and

^

U

j

= U

j

for j 6= k.

Note that (

^

U

j

; j 2 I(n)) 2 U

n

. We �rst show that for eah

�xed j,

E[(U � C

n

)

+

U

j

℄

C

n

�E[U

j

℄

�

E[(

^

U � C

n

)

+

^

U

j

℄

C

n

�E[

^

U

j

℄

: (12)

Consider the ase i 6= j. Let V = U � U

i

� U

j

. Let

F

V

(�) and F

U

j

(�) be the distribution funtions for V and

U

j

. Noting that U

i

, U

j

and V are independent, we have

E[(U � C

n

)

+

U

j

℄ = E[(U

i

+ V + U

j

� C

n

)

+

U

j

℄

=

Z

1

0

Z

1

0

E[(U

i

+ v + u� C

n

)

+

u℄

dF

V

(v)dF

U

j

(u)

The funtion f(x) = (x+ v+ u�C

n

)

+

u within the expe-

tation is an inreasing, onvex funtion in x for eah �xed

v and u. Thus, beause U

i

�

ix

^

U

i

(e.g., see Proposition

1.5.1 in [52℄), we have

E[(U

i

+ v + u� C

n

)

+

u℄ � E[(

^

U

i

+ v + u� C

n

)

+

u℄

for all v and u. Combining the above two equations gives

E[(U � C

n

)

+

U

j

℄ � E[(

^

U � C

n

)

+

^

U

j

℄;

whih, when ombined with E[

^

U

j

℄ = E[U

j

℄, gives (12).

Now onsider the ase i = j. Let W = U � U

i

. Using

U

i

� 

�

i

, the independene of W and U

i

, and the indepen-

dene of W and

^

U

i

, we obtain

E[(U � C

n

)

+

U

i

℄

C

n

�E[U

i

℄

=

E[(W + U

i

� C

n

)

+

U

i

℄

C

n

� E[U

i

℄

�

E[(W + 

�

i

� C

n

)

+

℄

C

n

E[U

i

℄

E[U

i

℄

=

E[(W + 

�

i

� C

n

)

+

℄

C

n

E[

^

U

i

℄

E[

^

U

i

℄

=

E[(W + 

�

i

� C

n

)

+

^

U

i

℄

C

n

� E[

^

U

i

℄

:

Also

E[(

^

U � C

n

)

+

^

U

i

℄ = E[(W +

^

U

i

� C

n

)

+

^

U

i

℄

= E[(W + 

�

i

� C

n

)

+

^

U

i

℄:

Combining the above two equations gives (12) for i = j.

Thus (12) holds for all i 2 I(n). Therefore, start-

ing with the original vetor (U

0

; U

1

; : : : ; U

jI(n)j�1

) 2 U

n

we an replae U

0

with U

�

0

and obtain a new vetor in

U

n

suh that (12) holds. Rename this new vetor as

(U

0

; U

1

; : : : ; U

jI(n)j�1

). We an repeat the proedure, this

time replaing U

1

with U

�

1

, and again obtaining a new ve-

tor in U

n

suh that (12) holds. Performing this proedure

for all i = 0; 1; : : : ; jI(n)j � 1 gives (11).

Exploiting the fat that the U

�

j

's are Bernoulli random

variables, we an simplify the expression for �

�n

j

:

�

�n

j

=

E

h

(

P

i2I(n)�fjg

U

�

i

+ 

�

j

� C

n

)

+

i

C

n

: (13)

These bounds an be omputed by onvolving the distri-

butions of the independent random variables. An approxi-

mate onvolution algorithm is desribed in [28℄. However,

onvolution often leads to numerial problems. We there-

fore apply the Large Deviation (LD) approximation, whih

is known to be aurate and also omputationally very eÆ-

ient [43℄, [13℄, [15℄, [40℄, to the expetation in the numer-

ator. Towards this end, let �

U

�

i

(s) denote the logarithm of

the moment generating of U

�

i

:

�

U

�

i

(s) := lnE[e

sU

�

i

℄:

We de�ne

U

�

:=

X

i2I(n)�fjg

U

�

i

:

Note that

�

U

�

(s) =

X

i2I(n)�fjg

�

U

�

i

(s)
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by the independene of the U

�

i

's. The large deviation (LD)

approximation gives the following approximation for �

�n

j

[43℄

1

C

n

s

?

2

p

2��

00

U

�

(s

?

)

e

�s

?

(C

n

�

�

j

)+�

U

�(s

?

)

;

where s

?

is the unique solution to

�

0

U

�

(s

?

) = C

n

� 

�

j

:

In summary, (13) is a simple expression for the worst{ase

loss probability of onnetion j at node n; this expres-

sion involves the independent Bernoulli random variables

U

�

j

; j 2 I(n), whose distributions we know expliitly. The

LD approximation for (13) is highly aurate and is eas-

ily alulated. We note that an admission rule based on

on{line traÆ measurements for the smoothing/bu�erless

multiplexing sheme proposed in this artile is studied in

[39℄.

At this junture we note some important related work

by Doshi [11℄, [12℄. He studies worst{ase, unsmoothed

traÆ that maximizes an aggregate loss ratio, where the

aggregation is taken over all soures. For this riterion he

disovers a number of anomalies; in partiular, extremal

on{o� soures are not always worst ase. With our bound

P

n

loss

(j) (6) the loss is maximized by the extremal on{o�

soures, whih greatly simpli�es admission ontrol. Fur-

thermore, as we show in this artile, smoothing of traÆ

an signi�antly expand the admission region.

A. The Optimal Smoother

Up to this point we have assumed that the smoother for

eah onnetion j onsists of a single bu�er that limits the

peak rate of the smoother output to 

�

j

. In this subsetion

we study more general smoothers, namely, smoothers that

onsist of a asade of leaky bukets. The smoother for

onnetion j, de�ned by a funtion S

j

(t), onstrains the

amount of traÆ that an enter the network over any time

interval. Spei�ally, if B

j

(t) is the amount of traÆ leav-

ing smoother j over the interval [0; t℄, then B

j

(t) is required

to satisfy

B

j

(t+ �)�B

j

(�) � S

j

(t) for all t � 0; � � 0:

We assume throughout this setion that the smoother fun-

tions are of the form

S

j

(t) = min

1�k�M

j

fs

k

j

+ r

k

j

tg (14)

with r

1

j

> r

2

j

> � � � > r

M

j

j

and 0 = s

1

j

< s

2

j

< � � � < s

M

j

j

.

These pieewise linear, onave smoother funtions an be

easily implemented by a asade of leaky bukets. The

single{bu�er smoother de�ned in Setion 2 is a speial ase

with M

j

= 1; s

1

j

= 0 and r

1

j

= 

�

j

.

We say that a set of smoothers (S

j

(t); j 2 I(n)) is

feasible if the maximum delay inurred at smoother j is

� d

j

for all j 2 I(n). By de�nition the set of smoothers

(

�

j

t; j 2 I(n)) studied earlier is feasible. Now �x a fea-

sible set of smoothers (S

j

(t); j 2 I(n)), and let the reg-

ulated traÆ from the onnetions in I(n) pass through

these smoothers. Let

�

n

j

= sup

A

n

E

h

(

P

J

i2I(n)

U

i

� C

n

)

+

U

j

i

C

n

� E[U

j

℄

(15)

be the assoiated worst{ase loss probability for onnetion

j at node n. Reall that �

�n

j

is the same worst{ase loss

probability but with the traÆ passing through the set of

smoothers (

�

j

t; j 2 I(n)). The proof of the following result

is provided in the appendix.

Theorem 2: �

�n

j

� �

n

j

for all j 2 I(n). Thus the single{

bu�er smoothers with 

j

= 

�

j

minimize the worst{ase loss

probability over all feasible sets of smoothers.

It follows from Theorem 2 that the more omplex

smoothers onsisting of asaded leaky bukets do not in-

rease the onnetion arrying apaity of node n. Thus

without loss of performane, we may use the simple

smoothers of the form (

j

t; j 2 I(n)). Furthermore, The-

orem 2 veri�es the intuition that in order to maximize

the admission region of node n the smoother rates are as

small as the delay onstraints permit, that is, 

j

= 

�

j

for

j 2 I(n).

B. Numerial Experiments for a Single Node

In this setion we evaluate the smoothing/bu�erless mul-

tiplexing sheme in the ontext of a single node. We set

N = 1 and fous on the network onsisting of smoothers

and one bu�erless multiplexer as depited in Figure 2. We

set the apaity of the output link to C

1

= 45 Mbps. In

this single node senario admission ontrol is partiularly

simple: we evaluate �

�1

j

(13) using the LD approximation

and verify whether �

�1

j

� �

j

8j 2 I(1). We evaluate our

sheme using traes from MPEG enoded movies. We ob-

tained the frame size traes, whih give the number of bits

in eah video frame, from the publi domain [45℄. (We are

aware that these are low resolution traes and some ritial

frames are dropped; nevertheless, the traes are extremely

bursty.) The movies were ompressed with the Group of

Pitures (GOP) pattern IBBPBBPBBPBB at a frame rate

of F = 24 frames/se [45℄. Eah of the traes has M =

40,000 frames, orresponding to about 28 minutes. The

mean number of bits per frame and the peak{to{mean ra-

tio are given in Table I. Let x

m

; m = 1; : : : ;M , denote

TABLE I

Statistis of MPEG{1 traes.

Trae Mean (bit) Mean Peak/Mean

bits/frame kbits/se

lambs 7,312 171.2 18.4

mr.bean 17,647 423.5 13.0

the size of the mth frame in bits. We onvert the disrete

frame size trae to a uid ow by transmitting the mth

frame at rate x

m

F over the interval [(m� 1)=F;m=F ℄.



8

We ompute the empirial envelope and the onave hull

of eah trae using the algorithms of Wrege et al. [54℄.

Based on the onave hull of eah video we ompute the

minimal smoother rate 

�

j

. We also apply the heuristi of

Appendix B to the onave hull in order to �nd the opti-

mal leaky buket haraterization with 2 and more leaky

bukets. We then ompute the minimal smoother rate 

�

j

based on these onise leaky buket haraterizations.

Assuming worst{ase on{o� traÆ, the smoother out-

puts are statistially multiplexed onto the bu�erless link.

We set �

j

= 10

�7

for all onnetions. In Figure 3 we plot

the number of admissible video onnetions as a funtion of

the delay bound. The graph gives the number of admissible

video onnetions when the videos are haraterized by the

onave hull or the optimal leaky buket haraterization

with 2 leaky bukets (whih is obtained with the heuristi

of Appendix B). We observe from the plots that the op-

timal leaky buket haraterization with 2 leaky bukets

admits almost as many video onnetions as the more a-

urate onave hull haraterization. The urves for 3 or

more leaky bukets oinide with the urve for the onave

hull.

In the next experiment we ompare the admission region

of our approah with the admission region obtained with

the deterministi admission ontrol ondition of Wrege et

al. [54℄. The approah of Wrege et al. is to feed the un-

smoothed traÆ into a bu�ered multiplexer. The deter-

ministi admission ontrol ondition guarantees that no

bit is delayed by more than the prespei�ed delay limit

in the multiplexer bu�er (and it also guarantees that no

bit is lost). Our approah, on the other hand, exploits the

independene of traÆ emanating from the onnetions in

I(1). The videos are passed through simple smoothers with



j

= 

�

j

. The smoother outputs | assuming worst{ase

on{o� traÆ | are then statistially multiplexed onto the

bu�erless link (see Figure 2). We set �

j

= 10

�7

for all

onnetions. Losses this small have essentially no impat

on the pereived video quality and an be easily hidden by

error onealment tehniques [53℄.

In Figure 4 we plot the number of admissible lambs on-

netions as a funtion of the delay bound. The graph gives

the number of lambs onnetions that are admitted with

the our approah (RRR) when 2 or 3 leaky bukets (LB)

are used to haraterize the video trae. As we just saw

in Figure 3 the optimal leaky buket haraterization with

3 leaky bukets admits as many onnetions as the on-

ave hull, the most aurate, onave haraterization of

the video; using more leaky bukets does not inrease the

admission region. We also plot the number of lambs on-

netions that are admitted with the bu�ered deterministi

multiplexing approah of Wrege et al. (KLZ) when 2, 3,

8 or 16 leaky bukets are used to haraterize the trae.

We observe that for delays on the order of 0.5 seonds or

more, the number of admissible onnetions signi�antly

inreases as the number of leaky bukets used to desribe

the trae inreases. The approah of Wrege et al. thus

greatly bene�ts from a more aurate haraterization of

the video | ahieved by more leaky bukets.
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Fig. 4. Number of lambs onnetions as a funtion of the delay bound

and the number of leaky bukets (LB). Plots shown are for Wrege

et al. (KLZ) and our approah (RRR).

The main result of this experiment, however, is that our

approah allows for more than twie the number onne-

tions than does the approah of Wrege et al. For example,

for a delay bound of 1.1 seonds, Wrege et al. admit 69

onnetions ( = 29.6 % average link utilization) with 16

leaky bukets while our approah admits 146 onnetions

( = 62.7 % average link utilization) with 3 leaky bukets.

We obtain this dramati inrease in the admission region

by exploiting the independene of the soures and allowing

for a small loss probability.

In Figure 5 we onsider multiplexing two di�erent

movies, beans and lambs, eah with its own delay on-

straint. We again onsider a single node with C

1

= 45

Mbps. We use delay bounds of d

lambs

= 125 ms or 1.25

seonds and d

bean

= 125 ms or 1.25 seonds, giving four

ombinations. Both videos are haraterized by 3 leaky

bukets. We assume that both video onnetions have the

QoS requirement that the fration of traÆ that is delayed

by more than the imposed delay limit is less than 10

�7

. For

the Wrege et al. plot we use Earliest Deadline First (EDF)

sheduling. We see that for all four ases, the admission

region for our approah is dramatially larger.

In Figure 6 we ompare the atual loss probability at

node 1, P

info;1

loss

(j) given by (5) with our bound for loss

probability, P

1

loss

(j), given by (6). We obtain P

info;1

loss

(j)

and P

1

loss

(j) by simulation, and assume worst{ase on{o�

traÆ. We also verify the auray of the large deviation

approximation for P

1

loss

(j). In Figure 6 we plot the loss

probabilities as a funtion of the number of onnetions

being multiplexed onto the C

1

= 45 Mbps link. We on-

sider the senario where the videos have a delay bound of

1 seond and are haraterized by 3 leaky bukets. We ob-

serve that the bound on the loss probability P

1

loss

(j) (solid

line) tightly bounds the atual loss probability P

info;1

loss

(j)

(dotted line). We also observe that the LD approximation

(dashed line) losely approximates the simulation results.
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Fig. 5. Admission region for the multiplexing of lambs and bean onnetions over a 45 Mbps link.

C. Comparison with Bu�ered Statistial Multiplexing

The numerial results of the previous setion show that

for a single node our approah allows for dramatially more

onnetions than bu�ered deterministi multiplexing. In

this setion we briey onsider bu�ered multiplexing with

an allowane of small loss probabilities, whih we refer to

as bu�ered statistial multiplexing. Consider the bu�ered

analogy of the single{link bu�erless system studied in Se-
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E

jI(n)j�1

(t)

E

0

(t)

q

q

q

�

�

�

�>

Z

Z

Z

Z~

C

1

� -

B

1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 7. The traÆ of onnetion j is haraterized by the regulator

funtion E

j

(t) and fed diretly, i.e. unsmoothed, into a bu�ered

multiplexer.

tion III-B. The link has apaity C

1

and is preeded by a

�nite bu�er of apaity B

1

. Let the same onnetions in

I(1) arrive to this system; spei�ally the onnetions in

I(1) are independent and onnetion j; j 2 I(1), is regu-

lated by a given regulator funtion E

j

(t). The traÆ from

the onnetions in I(1) passes diretly into the bu�ered

multiplexer, i.e., the traÆ is not pre{smoothed before ar-

riving at the bu�er. This bu�ered system is illustrated in

Figure 7. Assuming that traÆ is served FIFO, the maxi-

mum delay in this system is d = B

1

=C

1

. Suppose that the

bu�er overow probability is onstrained to be no greater

than �.

It is a diÆult and hallenging problem to aurately

haraterize the admission region for a bu�ered multiplexer

whih multiplexes regulated traÆ and whih allows for

statistial multiplexing. Elwalid et al. in [15℄ made signi�-

ant progress in this diretion. They onsider the bu�ered

multiplexer for the speial ase of regulators with two leaky

bukets, i.e., for E

j

(t) = minf�

1

j

t; �

j

+ �

j

tg. (In our nu-

merial omparisons, we extend their theory to the ase

of multiple asaded leaky bukets.) In order to make

the bu�ered multiplexer mathematially tratable they as-

sign eah onnetion its own virtual bu�er/trunk system.

Eah virtual bu�er/trunk system is alloated bu�er b

0;j

and bandwidth e

0;j

. The alloations are based on the bu�er

and bandwidth resoures (B

1

and C

1

, respetively) and on

the regulator parameters (�

j

, �

1

j

, and �

j

) for the input traf-

�. It turns out that the bandwidth e

0;j

is exatly the 

�

j

obtained by setting d

j

= d = B

1

=C

1

in (4). After some

analysis Elwalid et al. obtain the following bound on the

fration of time during whih loss ours at the bu�ered

multiplexer:

P

EMW

loss

= P (

X

j2I(1)

U

�

j

> C

1

):

where U

�

j

; j 2 I(1), are exatly the same random inde-

pendent random variables that our in Theorem 1. (To

alulate the assoiated 

�

j

; j 2 I(1), set d

j

= d = B

1

=C

1

for eah onnetion j.)

This observation indiates that our smoother/bu�erless

multiplexer system has remarkable similarities with the

bu�ered system in [15℄. Spei�ally, for a �xed maximum

delay d in the bu�ered system, we an design a bu�er-

less system with pre{smoothers whih has the same max-

imum delay and whih has an admission region based on

the same set of independent random variables U

�

j

; j 2

I(1). The pre{smoothers essentially implement the virtual

bu�er/trunk systems introdued by Elwalid et al. For a

maximum loss probability of � the admission region for the

bu�ered multiplexer is de�ned by

P (

X

j2I(1)

U

�

j

> C

1

) � �;

whereas the admission region for the bu�erless system is

E[(

P

i2I(1)

U

�

i

� C

1

)

+

U

�

j

℄

C

1

� E[U

�

j

℄

� �:



11

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1 1.2 1.4

# 
of

 la
m

bs
 c

on
ne

ct
io

ns

delay in seconds

3 LB, RRR
3 LB, EMW
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bound. The lambs video is desribed by 3 leaky bukets. Plots

shown are for Elwalid et al. (EMW) and our approah (RRR).

The di�erene in the number of admissible onnetions is due to

the di�erent notions of loss probability.

Although these admission regions are di�erent, they are

based on exatly the same independent random variables

U

�

j

; j 2 I(1). The di�erene in these admission regions is

an artifat of using two di�erent notions of loss probability:

while in this artile we use \fration of traÆ lost", the

artile [15℄ uses \the fration of time during whih loss

ours". If the same notions of loss were used, then the

admission regions would be idential. Figure 8 gives the

number of lambs onnetions that are admitted with the

approah of Elwalid et al. (EMW) [15℄ and our approah

(RRR) when 3 leaky bukets are used to haraterize the

trae. We assume C

1

= 45 Mbps and set �

j

= 10

�7

for all

onnetions.

Thus, in the ontext of a single node our bu�erless

system has essentially the same admission region as the

bu�ered system in [15℄ for a �xed worst{ase delay d and

loss probability �. While being no more diÆult to perform

all admission, we believe that the bu�erless system has

some important advantages over the bu�ered system: (i)

no bu�er is needed at the multiplexer (for paketized traÆ,

a relatively small bu�er would be needed); (ii) the bu�er-

less approah allows for a per{onnetion QoS requirement,

whereas the bu�ered system imposes the same QoS require-

ment on all onnetions; and (iii), perhaps most impor-

tantly, networks are quite tratable for bu�erless links, as

we an reasonably approximate a onnetion's traÆ at the

output of the multiplexer as being idential to its traÆ at

the input to the multiplexer. This fat is exploited in the

next setion where we analyze our sheme for general mul-

tihop networks.

We onlude this setion by noting that the bu�ered

system does have some advantages over the bu�erless sys-

tem. First, although both systems have the same worst{

ase delay, the bu�ered system has a lower average delay.

(Note, however, that multimedia appliations are typially

designed for a delay bound.) Seond, due to statistial

bu�er sharing among streams, the bu�ered system has the

potential to admit more streams (see [56℄ for a quantita-

tive evaluation of this potential). However, exploiting this

potential requires admission rules that are typially more

omplex (e.g., [33℄, [37℄, [55℄).

IV. Guaranteeing Statistial QoS: Multihop

Analysis

We now turn our attention to the entire multihop net-

work. Without loss of generality we fous on onnetion 0

traversing nodes 1 through N . At the output of any of

the nodes, onnetion 0 has a peak rate no larger than 

�

0

and an average rate no larger than �

0

. We an therefore

use (13) to alulate the worst{ase loss probability �

�n

0

at

any of the bu�erless multiplexers n; n = 1; : : : ; N . The

end{to{end loss probability of onnetion 0 is bounded by

the sum of the worst{ase loss probabilities of the individ-

ual hops along onnetion 0's path, that is, the loss in the

network is bounded by

P

N

n=1

�

�n

0

.

We note here that the single bu�er serving traÆ at rate



�

j

whih was shown to minimize �

�n

j

at a single node n

in Theorem 2 also minimizes the sum of the �

�n

j

. To see

this, reall that the design of the smoother for onnetion j

depends only on the onnetion parameters (the regulator

funtion E

j

(t) and the delay limit d

j

). Therefore, the same

smoother minimizes the �

�n

j

at every node n along onne-

tion j's path. As a onsequene the single bu�er smoother

with rate 

�

0

minimizes

P

N

n=1

�

�n

0

, the bound on the overall

fration of overowing onnetion{0 traÆ in the network.

The end{to{end QoS requirement of onnetion 0 is met

if

N

X

n=1

�

�n

0

� �

0

: (16)

For admission ontrol, we must ensure that (16) holds for

all onnetions. Spei�ally, we must partition | either

statially or dynamially | the loss onstraint �

j

among

the nodes traversed by eah of the onnetions. This prob-

lem is of independent interest and is disussed in Se-

tions 5.10 and 5.11 of [46℄.

We have thus provided a framework for providing end{

to{end statistial QoS guarantees for a multihop network.

The framework onsists of input smoothers at the network

ingresses and bu�erless statistial multiplexing within the

network. Inreasing the number of nodes a onnetion

traverses inreases the loss probability but not the delay.

Roughly speaking, the network loss probability for a on-

netion is approximately the loss probability of a typial

node multiplied by the number of nodes through whih a

onnetion passes. Beause the loss probability of a node

is dimensioned to be on the order of 10

�6

or less, the in-

reased loss is only of minor importane.

We note at this junture that

P

N

n=1

�

�n

0

also provides a

bound on the probability that a bit of onnetion 0 experi-

enes an end{to{end delay of more than d

0

in the network.

More formally, with D

0

denoting the end{to{end delay in-

urred by a bit of onnetion 0 in the network, we have

P (D

0

> d

0

) �

N

X

n=1

�

�n

0

: (17)
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Reall from Setion II that by design a bit of onnetion 0

is delayed by at most d

0

in the smoother. Bits that do

not overow at any of the bu�erless links in the network

inur no additional delay while bits that do overow are

onsidered to have in�nite delay. The bound (17) follows

by noting that

P

N

n=1

�

�n

0

is a bound on the fration of

bits that do overow. We emphasize that the bound on

the probability that a bit violates a given delay limit is

minimized by smoothing as muh as the delay limit per-

mits at the network ingress. We ompare the performane

of our smoothing/bu�erless multiplexing sheme with that

of deterministi traÆ management shemes in the next

subsetion. These deterministi shemes are lossless and

guarantee that a spei� delay limit d

j

is never violated,

that is, they guarantee that D

j

� d

j

with probability one.

In order to failitate the omparison of the performane

with the deterministi benhmarks we make the following

simplifying assumptions about the traÆ streams and the

network. First, we assume that all streams are regulated

by a single leaky buket; for the single leaky buket, the

regulator funtion takes the following form:

E

j

(t) = �

j

+ �

j

t:

Note that the single leaky buket regulator onstrains the

long{run average rate of onnetion j to be no greater

than �

j

. The multihop analysis of our traÆ manage-

ment sheme for more omplex regulators onsisting, for

instane, of a asade of leaky bukets is a straightforward

extension of the analysis presented here. However, GPS

whih we shall use as a benhmark to evaluate our sheme,

has been analyzed extensively in [34℄, [35℄ for single leaky

buket regulators. We will make use of some of those an-

alytial results in our performane evaluation and fous

therefore on single leaky buket regulators throughout this

setion. For the regulator funtion E

j

(t) = �

j

+ �

j

t and

the delay limit d

j

we obtain from (4) the smoother rate



�

j

= max

�

�

j

d

j

; �

j

�

:

To further simplify the performane omparison we as-

sume that all streams in the network are homogeneous,

that is, all streams have the same leaky buket parameters

and QoS requirement. (We emphasize that this assumption

is not needed in our framework; we only make it here to

failitate the omparison.) We set �

j

= �, �

j

= �, d

j

= d

and �

j

= � for all streams j in the network. This implies

that all onnetions have the same smoother rates, that is,



�

j

= 

�

for all streams j. Also, all of the Bernoulli ran-

dom variables U

�

j

are now identially distributed (but still

independent). When omparing the performane we again

fous on onnetion 0 traversing nodes 1 through N . We

assume that eah of the nodes n; n = 1; : : : ; N , serves J

streams, that is, jI(n)j = J 8n = 1; : : : ; N . We also assume

that all output links in the network have the same apaity

C. With these simplifying assumptions the worst{ase loss

probability of onnetion 0 at a node is

�

�n

0

=

E

h

(

P

J�1

i=1

U

�

i

+ 

�

� C)

+

i

C

:= �

�

: (18)

The end{to{end loss probability of onnetion 0 is given by

N�

�

. Now assume that onnetion 0 is new and requests

a onnetion traversing nodes 1 through N . The QoS re-

quirement of the new onnetion 0 is satis�ed if �

�

� �=N .

Suppose that all other streams that traverse one of the

nodes n; n = 1; : : : ; N , have alloated a loss onstraint

larger than �=N to that node n. With this assumption

the QoS requirements of all other streams will ontinue to

hold if �

�

� �=N . Hene onnetion 0 an be admitted if

�

�

� �=N .

We use the maximum number of onnetions eah of the

multiplexers 1 through N an arry without violating any

QoS ommitment as a measure of the performane of our

sheme. Let J

�

denote this maximum number of onne-

tions. We learly have:

J

�

= max

J2N

fJ : �

�

�

�

N

g;

where N denotes the set of natural numbers. Note that in

the desribed networking senario eah of the multiplex-

ers 1 through N is serving onnetion 0 and J

�

� 1 fresh

onnetions.

A. Comparison with Deterministi Servie Disiplines

In this setion we ompare the performane of our

smoothing/bu�erless multiplexing sheme with that of de-

terministi servie disiplines. These deterministi servie

disiplines provide lossless servie and guarantee a deter-

ministi end{to{end delay bound. Of the deterministi ser-

vie disiplines disussed in the literature, the Generalized

Proessor Sharing (GPS) [34℄, [35℄ and Rate{Controlled

Servie (RCS) [18℄ disiplines guarantee the smallest de-

lay bounds. GPS onsiders the route of a onnetion as a

whole and is thus able to guarantee tighter bounds than

are ahievable by adding worst{ase delays at eah hop [7℄,

[8℄. RCS, whih is at the heart of the Guaranteed Servie

framework of the Internet [47℄, relies on traÆ shaping at

every hop and an guarantee the same delay bounds as

GPS. In fat it is shown in [18℄ that RCS has the poten-

tial of providing tighter delay bounds than GPS. However,

the problem of how to hoose the parameters of the RCS

disipline in order to ahieve these tighter delay bounds is

not addressed. Instead, the authors suggest to use the pa-

rameters indued by the GPS disipline. This ensures that

RCS an aept as many onnetions as GPS (and some

more in a heterogeneous network). With the networking

senario that we have hosen for the performane om-

parison | homogeneous onnetions, homogeneous nodes,

uid model | GPS and RCS have exatly the same per-

formane. We shall therefore ompare our sheme's per-

formane with that of GPS. For this purpose we modify

the network depited in Figures 1 and 2. We remove the

bu�ered smoothers at the network ingresses and replae

the bu�erless multiplexers with bu�ered GPS servers.
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Review of GPS

First, we briey review GPS [34℄, [35℄ and adapt the nota-

tion of [34℄, [35℄ to our network model. The GPS server n

serving the streams in I(n) is haraterized by positive real

numbers w

n

j

; j 2 I(n). These numbers govern the alloa-

tion of servie to eah of the streams. Let S

n

j

(�; t) denote

the amount of stream j traÆ served by server n during

an interval [�; t℄. The GPS poliy guarantees that for any

onnetion j 2 I(n) that is ontinuously baklogged in the

interval [�; t℄, that is, has a positive amount of traÆ in

server n's bu�er throughout the interval [�; t℄,

S

n

j

(�; t)

S

n

i

(�; t)

�

w

n

j

w

n

i

; i 2 I(n):

A onnetion j that is baklogged is thus guaranteed a

minimum servie rate alled onnetion j baklog learing

rate of

g

n

j

=

w

n

j

P

i2I(n)

w

n

i

C

n

by server n. The minimum onnetion{0 baklog learing

rate along its route traversing nodes 1 through N is

g

0

= min

1�n�N

g

n

0

:

Let D

0

(t) be the end{to{end delay inurred in the network

by a onnetion{0 bit that arrives at time t. Furthermore,

let D

�

0

denote the maximum end{to{end delay of onne-

tion 0 over all time and all feasible arrival proesses of all

streams sharing a server with onnetion 0, formally:

D

�

0

= sup

[

1�n�N

A

n

max

t�0

D

0

(t):

A key result of [35℄ is the following deterministi bound on

the maximum end{to{end delay for onnetion 0: if g

0

� �

0

then

D

�

0

�

�

0

g

0

:

We note that this bound does not require the independene

of the served traÆ streams. The independene of the traf-

� streams, however, is a prerequisite for our bound on the

loss probability. Given a spei� delay bound d

j

, �nding

the orresponding weights of the general GPS poliy is a

very tedious proedure. This proedure is greatly simpli-

�ed by setting w

j

= �

j

for all traÆ streams. GPS with

this speial assignment of weights is referred to as Rate

Proportional Proessor Sharing (RPPS). With RPPS the

onnetion j baklog learing rate at server n is given by

g

n

j

=

�

n

j

P

i2I(n)

�

n

i

C

n

:

For ease of omparison with our smoothing/bu�erless

multiplexing sheme we make the same simplifying assump-

tions we made at the end of Setion IV. In partiular, we

set �

j

= �, �

j

= � and d

j

= d for all onnetions. We
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GPS, d = 20 msec

Fig. 9. Maximum number of onnetions J

�

as a funtion of the num-

ber of hops N for smoothing/bu�erless multiplexing and GPS.

assume that all servers 1 through N serve J onnetions

and have a apaity of C. With these simpli�ations, the

minimum bak log learing rate of onnetion 0 along its

route from node 1 to N is g

0

= C=J . The end{to{end

delay bound of onnetion 0 is

D

�

0

� J�=C; (19)

provided the stability ondition C=J � � is satis�ed. We

are interested in the maximum number of onnetions eah

server along the route of onnetion 0 an serve without vi-

olating the delay limit of onnetion 0 or any other onne-

tion. Let J

�

denote this maximum number of onnetions.

From (19) and the the stability ondition we have:

J

�

= bmin

�

Cd

�

;

C

�

�

:

Note that J

�

does not depend on N , the number of nodes

onnetion 0 traverses. We remark that for the example at

hand, onsisting of homogeneous onnetions with homoge-

neous delay bounds, J

�

is the absolute maximum number of

onnetions a deterministi servie disipline an support;

no matter what deterministi servie disipline (GPS, RCS,

et.) is employed.

Numerial Results

In this setion we ompare the performane of the smooth-

ing/bu�erless multiplexing sheme with that of GPS in

multihop networks numerially. We have hosen the pa-

rameters � = 11; 925 Bytes, � = 150 Kbit/se and C =

45 Mbit/se. For our smoothing/bu�erless multiplexing

sheme we set the loss bound to � = 10

�7

. (These parame-

ters are also used for some some of the numerial examples

in [15℄.) In Figure 9 we plot the maximum number of on-

netions J

�

that an be supported by the nodes 1 through

N without violating any QoS requirements as a funtion of

the number of hops, N . We do this for two delay bounds,

d = 20 mse and d = 0:2 seonds. The maximum number

of onnetions that an be supported by GPS is indepen-

dent of N ; J

�

= 9 for d = 20 mse and J

�

= 94 for d = 0:2

seonds.
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Fig. 10. Maximum number of onnetions J

�

as a funtion of the

delay bound d for smoothing/bu�erless multiplexing and GPS.

The GPS performane is independent of the number of traversed

hops.

Figure 10 depits J

�

as a funtion of the delay bound d

for N = 5 hops and N = 50 hops. Again, note that the

GPS performane is independent of the number of hops.

Two points are espeially noteworthy about the plots.

First, with our smoothing/bu�erless multiplexing sheme

the number of allowable onnetions, J

�

, drops o� only

slowly as the number of traversed hops, N , inreases. Se-

ondly, our smoothing/bu�erless multiplexing sheme dra-

matially inreases the onnetion{arrying apaity of the

network. We observe from Figure 9, for instane, that

for a delay bound of d = 20 mse and N = 15 hops our

sheme an support more than three times the number of

onnetions that GPS | or any other deterministi ser-

vie disipline | an support. We ahieve this remarkable

performane by �rst smoothing the traÆ at the network

edges and then statistially multiplexing the smoothed traf-

� streams with minisule loss probabilities within the net-

work. The minisule losses of the order of 10

�7

an be ef-

fetively hidden by applying error onealment tehniques

to the multimedia streams [53℄. The losses will therefore

not be notied by the viewers/listeners.

V. Interation between Appliation and

Network

In this setion we disuss how the responsibilities of

smoothing, all admission ontrol and traÆ poliing

an be shared by the appliation and the network when

our smoothing/bu�erless multiplexing sheme is employed.

Call admission ontrol is the responsibility of the network.

Before aepting a new onnetion, the network has to en-

sure that the QoS requirements ontinue to hold for all

established onnetions and the new onnetion. Poliing

is also a network responsibility. The network edge has to

polie all established onnetions in order to ensure that all

onnetions omply with their respetive regulator funtion

advertised at onnetion establishment. While all admis-

sion ontrol and traÆ poliing are responsibilities of the

network, smoothing an be performed by either the appli-

ation or the network. We refer to the ase where the ap-

pliation performs the smoothing and sends the smoothed

traÆ to the network edge as appliation smoothing. The

ase where the appliation sends its unsmoothed traÆ

to the network edge and the network edge performs the

smoothing is referred to as network smoothing.

With appliation smoothing the appliation internally

smoothes its traÆ. Based on the regulator funtion of

its traÆ and the maximum delay it an tolerate, the

appliation �nds the minimum smoother rate by apply-

ing (4). Sine the smoothing is done by the appliation,

there is no need to redue the number of leaky bukets

used to haraterize the traÆ by applying the heuris-

ti outlined in Appendix B. Instead, the onave hull of

a prereorded soure is used diretly for dimensioning its

smoother. The appliation advertises the regulator fun-

tion E

j

(t) = minf

�

j

t; �

L

j

j

+ �

L

j

j

tg and the delay bound

d

j

= 0 to the network. We remark that this dual leaky

buket regulator funtion has been adopted by the ATM

Forum [17℄ and is being proposed for the Internet [48℄. The

network does not have to be aware of the smoothing done

by the appliation. The network edge dimensions its own

smoother based on E

j

(t) and d

j

= 0. Sine d

j

= 0 the

network's smoother degenerates to a server with rate 

�

j

preeded by a bu�er of size zero.

With network smoothing the appliation advertises its

regulator funtion and maximum tolerable delay to the

network. Prereorded soures apply the heuristi of Ap-

pendix B when the network restrits the number of leaky

bukets to a number smaller than the number of seg-

ments in the onave hull. The network edge dimensions

the smoother based on the regulator funtion and delay

bound supplied by the appliation. Call admission ontrol

is based on the assumption of worst{ase on{o� traÆ at

the smoother output. The network edge polies the ap-

pliations' traÆ before it enters the smoother and drops

violating traÆ.

VI. Final Remarks

In this artile we have developed a framework for pro-

viding end{to{end statistial QoS guarantees in a network.

We have argued that it is preferable to smooth the traÆ at

the ingress and to perform bu�erless statistial multiplex-

ing within the network than to use shared{bu�er multiplex-

ing. For our sheme we have determined the worst{ase

traÆ and have outlined an admission ontrol proedure

based on the worst{ase traÆ. We have also expliitly

haraterized the optimal smoother.

Our results are partiularly relevant in light of the ur-

rent debate on servie disiplines for the Internet. Our

results indiate that an Internet o�ering exlusively Guar-

anteed Servie based on the RCS servie disipline will be

severely underutilized. An Internet servie allowing for

small losses | suh as the Preditive Servie framework

proposed in [5℄ | would be able to make eÆient use of

the Internet resoures and still provide the reeivers with

an enjoyable multimedia experiene. Suh a statistial In-

ternet servie ould be based on our smoothing/bu�erless
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multiplexing traÆ management sheme.
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Appendix A: Proof of Theorem 2

The purpose of this appendix is to provide a proof for The-

orem 2. But �rst we need to establish two lemmas.

Lemma 2: A neessary ondition for (S

j

(t); j 2 I(n)) to

be feasible is r

1

j

� 

�

j

for all j 2 I(n).

Proof: From [8℄, [9℄, [18℄ the maximum delay at

smoother j is

~

d

j

= max

t�0

f max

1�k�M

j

E

j

(t)� s

k

j

r

k

j

� tg: (20)

Suppose r

1

j

< 

�

j

for some j 2 I(n). Beause s

k

j

� 0 and

r

k

j

� r

1

j

for all k, it follows from (20) that

~

d

j

� max

t�0

f

E

j

(t)

r

1

j

� tg: (21)

And beause, by assumption, r

1

j

< 

�

j

, it follows from (21)

that

~

d

j

> max

t�0

f

E

j

(t)



�

i

� tg = d

j

;

where the last equality follows from (4).

Lemma 3: There exists a stohasti vetor arrival pro-

ess in A

n

that produes the steady-state rate variables

~

U

j

; j 2 I(n), with

~

U

j

having distribution

~

U

j

=

(

min(r

1

j

; �

1

j

) with probability

�

j

min(r

1

j

;�

1

j

)

0 with probability 1�

�

j

min(r

1

j

;�

1

j

)

at the smoother outputs.

Proof: For eah j 2 I(n), let t

j

= �

2

j

=(�

1

j

� �

2

j

) and

Æ

j

= s

2

j

=(r

1

j

�r

2

j

). At t = t

j

the slope of E

j

(t) hanges form

�

1

j

to �

2

j

< �

1

j

. Consequently, E

j

(t

j

) = �

1

j

t

j

is the maxi-

mum size burst that an be transmitted at rate �

1

j

, pro-

vided suessive maximum size bursts are spaed at least

E

j

(t

j

)=�

j

� t

j

apart. Similarly, at t = Æ

j

the slope of S

j

(t)

hanges form r

1

j

to r

2

j

< r

1

j

. Consequently, S

j

(Æ

j

) = r

1

j

Æ

j

is the maximum size burst the smoother an pass at rate

r

1

j

, provided suessive maximum size bursts are spaed at

least S

j

(Æ

j

)=r

M

j

j

� Æ

j

apart.

Let

~

b

j

(t) be a deterministi periodi funtion suh that

~

b

j

(t) =

�

�

1

j

0 � t < t

on

j

0 t

on

j

� t � T

j

:

with on{time t

on

j

and period T

j

given in Table II. Also,

let �

j

; j 2 I(n), be independent random variables with �

j

uniformly distributed over [0; T

j

℄ and de�ne the stohasti

arrival proess j as

~

A

j

(t) =

Z

t

0

~

b

j

(s+ �

j

)ds:

Thus eah omponent arrival proess (

~

A

j

(t); t � 0) is gen-

erated by a periodi on{o� soure; proess j has peak rate

�

1

j

and average rate �

j

. The argument in the proof of The-

orem 1 shows that the vetor proess (

~

A(t); t � 0) is a

feasible proess in A

n

.

It remains to show that by sending eah omponent pro-

ess (

~

A

j

(t); t � 0) into its respetive smoother we obtain

an on{o� proess whose peak rate is min(r

1

j

; �

1

j

) and whose

average rate is �

j

. Spei�ally, we now show that

~

A

j

(t)

produes

~

O

j

(t) =

R

t

0

~o

j

(s + �

j

)ds at the smoother output

where

~o

j

(t) =

�

min(r

1

j

; �

1

j

) 0 � t < �

on

j

0 �

on

j

� t � T

j

;

where the periods and on{times are given in Table II.

First, onsider the ase �

1

j

� r

1

j

and E

j

(t

j

) � S

j

(Æ

j

).

Clearly, t

on

j

� t

j

sine t

on

j

= S

j

(Æ

j

)=�

1

j

and t

j

= E

j

(t

j

)=�

1

j

and by assumption S

j

(Æ

j

) � E

j

(t

j

). This implies that

E

j

(t

on

j

) = �

1

j

t

on

j

. Hene

S

j

(�

on

j

) = E

j

(t

on

j

): (22)

Note furthermore that

t

on

j

� �

on

j

(23)

sine t

on

j

= S

j

(Æ

j

)=�

1

j

= r

1

j

Æ

j

=�

1

j

and by assumption

r

1

j

� �

1

j

. Beause of (22) and (23) and �

on

j

= Æ

j

the

smoother bursts at rate r

1

j

for a duration of �

on

j

when fed

with an input burst at rate �

1

j

for a duration of t

on

j

� t

j

.

Also, note that the smoother output has average rate

E

j

(t

on

j

)=T

j

= �

j

� r

M

j

j

, where the last inequality follows

from the stability ondition.

Next, onsider the ase �

1

j

� r

1

j

and E

j

(t

j

) < S

j

(Æ

j

). We

have

�

on

j

� Æ

j

(24)

sine �

on

j

= E

j

(t

j

)=r

1

j

and Æ

j

= S

j

(Æ

j

)=r

1

j

and by assump-

tion S

j

(Æ

j

) > E

j

(t

j

). Thus S

j

(�

on

j

) = r

1

j

�

on

j

. Hene

S

j

(�

on

j

) = E

j

(t

on

j

): (25)

Also,

t

on

j

� �

on

j

(26)

sine t

on

j

= E

j

(t

j

)=�

1

j

and �

on

j

= E

j

(t

j

)=r

1

j

and by assump-

tion �

1

j

> r

1

j

. Beause of (24), (25) and (26) the smoother

bursts at rate r

1

j

for a duration of �

on

j

when fed with an in-

put burst at rate �

1

j

for a duration of t

on

j

. The average rate

of the smoother output is E

j

(t

on

j

)=T

j

= �

j

� r

M

j

j

, where

the last inequality follows from the stability ondition.

Now onsider the ase �

1

j

< r

1

j

and E

j

(t

j

) � S

j

(Æ

j

). We

have t

on

j

� t

j

sine t

on

j

= S

j

(Æ

j

)=�

1

j

and t

j

= E

j

(t

j

)=�

1

j

and by assumption S

j

(Æ

j

) � E

j

(t

j

). This implies that

E

j

(t

on

j

) = �

1

j

t

on

j

. Hene

S

j

(Æ

j

) = E

j

(t

on

j

): (27)
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TABLE II

On{times and periods of

~

b

j

(t) and ~o

j

(t).

�

1

j

� r

1

j

�

1

j

< r

1

j

E

j

(t

j

) � S

j

(Æ

j

) E

j

(t

j

) < S

j

(Æ

j

) E

j

(t

j

) � S

j

(Æ

j

) E

j

(t

j

) < S

j

(Æ

j

)

T

j

S

j

(Æ

j

)=�

j

E

j

(t

j

)=�

j

S

j

(Æ

j

)=�

j

E

j

(t

j

)=�

j

t

on

j

S

j

(Æ

j

)=�

1

j

t

j

S

j

(Æ

j

)=�

1

j

t

j

�

on

j

Æ

j

E

j

(t

j

)=r

1

j

S

j

(Æ

j

)=�

1

j

t

j

Note furthermore that

Æ

j

� t

on

j

(28)

sine Æ

j

= S

j

(Æ

j

)=r

1

j

and t

on

j

= S

j

(Æ

j

)=�

1

j

and by assump-

tion r

1

j

> �

1

j

. Beause of (27), (28) and �

1

j

< r

1

j

(by as-

sumption) the smoother passes the input burst at rate �

1

j

for a duration of t

on

j

unhanged. The average rate of the

smoother output is E

j

(t

on

j

)=T

j

= �

j

� r

M

j

j

, where the last

inequality follows from the stability ondition.

Finally, onsider the ase �

1

j

< r

1

j

and E

j

(t

j

) < S

j

(Æ

j

).

These two assumptions imply that the smoother an pass

the input burst of size E

j

(t

j

) at rate �

1

j

. The average rate

of the smoother output is E

j

(t

on

j

)=T

j

= �

j

� r

M

j

j

, where

the last inequality follows from the stability ondition.

Proof of Theorem 2: Using Lemma 3 and mimiking the

proof of Theorem 1 we obtain

�

n

j

=

E

h

(

P

i2I(n)

~

U

i

� C

n

)

+

~

U

j

i

C

n

� E[

~

U

j

℄

;

where

~

U

j

; j 2 I(n), are de�ned in Lemma 3. Using the

fat that

~

U

j

is a Bernoulli random variable, we obtain from

the above expression

�

j

=

E

h

(

P

i2I(n)�fjg

~

U

i

+min(r

1

j

; �

1

j

)� C

n

)

+

i

C

n

�

E

h

(

P

i2I(n)�fjg

~

U

i

+ 

�

j

� C

n

)

+

i

C

n

; (29)

where the last inequality follows from Lemma 2.

From (13) and (29) it remains to show that

E[(

X

i2I(n)�fjg

U

�

i

+ 

�

j

� C

n

)

+

℄ �

E[(

X

i2I(n)�fjg

~

U

i

+ 

�

j

� C

n

)

+

℄: (30)

From Lemma 2 and Proposition 1.5.1 in [52℄

U

�

i

�

ix

~

U

i

for all i 2 I(n): (31)

The inequality (30) follows from (31), the independene of

U

�

j

; j 2 I(n), and an argument that parallels the argument

in the proof of Theorem 1. 2

Appendix B: A Heuristi for Finding a Leaky

Buket Charaterization of Prereorded

Soures

In this appendix we disuss how to obtain a good hara-

terization E

j

(t) of a soure for a given restrition L

j

on

the number of leaky bukets. For any given harateri-

zation E

j

(t) we use at the network edge a single{bu�er

smoother with rate 

�

j

given by (4). Our goal is to �nd a

haraterization E

j

(t) that has at most L

j

slopes (i.e., L

j

asaded leaky bukets) and attempts to minimize both �

j

and 

�

j

. From Theorem 2 we know that minimizing �

j

and



�

j

minimizes the worst{ase loss probabilities, and thereby

maximizes the onnetion{arrying apaity of a partiular

node.

We develop the heuristi for determining the hara-

terization E

j

(t) in the ontext of prereorded soures.

These soures inlude full{length movies, musi video lips

and eduational material for video{on{demand (VoD) and

other multimedia appliations. It is well known how to

ompute the empirial envelope for prereorded soures

[32℄, [54℄, [31℄. The empirial envelope gives the tightest

bound on the amount of traÆ that an emanate from a

prereorded soure over any time interval. The empirial

envelope is however not neessarily onave, and therefore

we may not be able to haraterize it by a asade of leaky

bukets. However, applying the algorithms of Wrege et al.

[54℄ or Grahams San [6℄, we an ompute the onave hull

of the empirial envelope. The onave hull for onnetion{

j traÆ, denoted by H

j

(t), takes the form

H

j

(t) = min

1�i�K

j

f�

i

j

+ �

i

j

tg: (32)

Here, K

j

denotes the number of pieewise linear segments

in the onave hull. Without loss of generality we may

assume �

1

j

< �

2

j

< � � � < �

K

j

j

and �

1

j

> �

2

j

> � � � > �

K

j

j

.

The number of segments in the onave hull an be rather

large. The \Silene of The Lambs" video segment used

in our numerial experiments, for instane, has a onave

hull onsisting of 39 segments. This implies that 39 leaky

buket pairs are required to polie the tightest onave

haraterization of the \Silene of The Lambs" video seg-

ment. Our goal is to �nd a more suint haraterization

of prereorded soures in order to simplify all admission

ontrol and traÆ poliing.

Suppose that a soure is allowed to use L

j

(L

j

< K

j

)

leaky bukets to haraterize its traÆ. We now present a

heuristi for the following problem: Given a soure's on-

ave hull H

j

(t) = min

1�i�K

j

f�

i

j

+ �

i

j

tg and the delay limit



17

d

j

, �nd L

j

leaky bukets (out of the K

j

leaky buket pairs

in the onave hull) that maximize the admission region.

We illustrate our heuristi for the ase L

j

= 2. For

L

j

= 2 the traÆ onstraint funtion takes the form

E

j

(t) = minf�

a

j

j

+ �

a

j

j

t; �

b

j

j

+ �

b

j

j

tg with 1 � a

j

; b

j

� K

j

; (33)

where the indies a

j

and b

j

are yet to be spei�ed. Our

strategy is to �rst hoose the leaky buket that has the

tightest bound on the average rate (i.e., minimize �

j

),

and then hoose another leaky buket whih minimizes the

smoother rate 

�

j

. Let r

ave

j

denote the average rate of the

prereorded soure. We found in our numerial experi-

ments that some of the leaky buket pairs in the onave

hull (partiularly those with high indies) may have slopes

less than r

ave

j

. We set b

j

= maxfi : �

i

j

� r

ave

j

; 1 � i � K

j

g.

In words, we use the highest indexed leaky buket with a

slope larger than r

ave

j

to speify the soure's average rate.

In order to �nd the leaky buket indexed by a

j

we on-

sider all leaky bukets (�

i

j

; �

i

j

) with 1 � i < b

j

. We

ompute the smoother rates obtained by ombining eah

of the leaky bukets (�

i

j

; �

i

j

); 1 � i < b

j

with the leaky

buket (�

b

j

j

; �

b

j

j

) and selet the index i that gives the small-

est smoother rate | and thus the largest admission re-

gion. More formally, let 

�i

j

; 1 � i < b

j

, denote the

minimal smoother rate for traÆ with regulator funtion

E

j

(t) = minf�

i

j

+ �

i

j

t; �

b

j

j

+ �

b

j

j

tg and delay bound d

j

. By

(4) we have



�i

j

= max

t�0

minf�

i

j

+ �

i

j

t; �

b

j

j

+ �

b

j

j

tg

d

j

+ t

:

We an obtain a more expliit expression for 

�i

j

. Sine

minf�

i

j

+�

i

j

t; �

b

j

j

+�

b

j

j

tg =

(

�

i

j

+ �

i

j

t for 0 � t � t

i

�

b

j

j

+ �

b

j

j

t for t � t

i

with t

i

= (�

b

j

j

� �

i

j

)=(�

i

j

� �

b

j

j

), we have



�i

j

= max

"

max

0�t�t

i

�

i

j

+ �

i

j

t

d

j

+ t

; max

t�t

i

�

b

j

j

+ �

b

j

j

t

d

j

+ t

#

:

The expressions inside the max[�℄ an be further simpli�ed.

It an be shown that

max

0�t�t

i

�

i

j

+ �

i

j

t

d

j

+ t

=

8

<

:

�

i

j

d

j

if d

j

�

�

i

j

�

i

j

�

i

j

+�

i

j

t

i

d

j

+t

i

; if d

j

�

�

i

j

�

i

j

and

max

t�t

i

�

b

j

j

+ �

b

j

j

t

d

j

+ t

=

8

>

>

<

>

>

:

�

i

j

+�

i

j

t

i

d

j

+t

i

; if d

j

�

�

b

j

j

�

b

j

j

�

b

j

j

d

j

if d

j

�

�

b

j

j

�

b

j

j

:

We set the smoother rate to min

1�i<b

j



�i

j

and set a

j

to the

index that attains this minimum.

We now briey disuss how to �nd the optimal regula-

tor funtion onsisting of 3 or more leaky bukets. First,

note that there are

�

b

j

� 1

L

j

� 1

�

ombinations of leaky

buket pairs to onsider. This an be omputationally

prohibitive. The heuristi an be sped up by onsider-

ing only regulator funtions onsisting of L

j

� 1 onseu-

tive leaky bukets of the onave hull and the leaky buket

(�

b

j

j

; �

b

j

j

). In the ase L

j

= 3, for instane, we ompute

the minimal smoother rates only for the regulator fun-

tions E

j

(t) = minf�

i

j

+ �

i

j

t; �

i+1

j

+ �

i+1

j

t; �

b

j

j

+ �

b

j

j

tg with

1 � i < b

j

� 1. This speed{up of the heuristi an produe

a suboptimal regulator funtion. Our numerial experi-

ments (see Setion III-B), however, indiate that it works

surprisingly well.

We evaluate the heuristi using the traes of Setion III-

B. The heuristi produed the optimal leaky buket har-

aterizations given in Table III for the lambs trae. The

TABLE III

Parameters of the optimal leaky buket haraterization

with 2 leaky bukets as a funtion of the delay bound for

the lambs trae. The average rate is haraterized by the

34th leaky buket, i.e., b

lambs

= 34, with parameters

�

b

lambs

lambs

= 3; 157:8 kByte and �

b

lambs

lambs

= 208.8 kbit/se for all

delay bounds.

d

lambs

a

lambs

�

a

lambs

lambs

�

a

lambs

lambs



�

lambs

se. kByte kbit/se kbit/se

0 1 0 3474.8 3474.8

0.042 2 13.3 939.3 2535.5

0.125 2 13.3 939.3 939.0

0.250 4 23.5 802.2 801.9

0.500 8 43.5 711.0 710.8

1.000 10 69.9 676.9 674.7

table gives the index a

lambs

and the parameters of the leaky

buket (�

a

lambs

lambs

; �

a

lambs

lambs

) for various delay bounds. The av-

erage rate is haraterized by the 34th leaky buket in the

onave hull, i.e., b

lambs

= 34, for all delay bounds. The

table also gives the minimal smoother rates for the vari-

ous delay bounds. For a delay bound of zero, the smoother

rate is set to the rate of the �rst leaky buket, i.e., the peak

rate of the trae. For d

lambs

= 0.042 se (= 1=F ) the trae

is haraterized by the 2nd and 34th leaky buket of the

onave hull (a

lambs

= 2; b

lambs

= 34). Note that d

lambs

<

�

a

lambs

lambs

=�

a

lambs

lambs

in this ase and 

�

lambs

= �

a

lambs

lambs

=d

lambs

. For

d

lambs

� 0.125 se we have d

lambs

> �

a

lambs

lambs

=�

a

lambs

lambs

and



�

lambs

= (�

a

lambs

j

+ �

a

lambs

j

t

a

lambs

)=(d

j

+ t

a

lambs

).
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