
Striping for Interactive Video: Is it Worth it?

Martin Reisslein Keith W. Ross Subin Shrestha

GMD FOKUS Institute Eurecom Wharton Computing (WCIT)

reisslein@fokus.gmd.de ross@eurecom.fr subin@wharton.upenn.edu

www.fokus.gmd.de/usr/reisslein www.eurecom.fr/˜ross

Abstract—We study the design of interactive video servers that store

videos on disk arrays. In order to avoid the hot–spot problem in video

servers it is conventional wisdom to stripe the videos over the disk

array using Fine Grained Striping or Coarse Grained Striping tech-

niques. Striping, however, increases the seek and rotational overhead,

thereby reducing the throughput of the disk array. Our results indicate

that the decrease in throughput is substantial when interactive delays

are constrained to be less than 1 second. We show that both a high de-

gree of interactivity and high throughput are achieved by using a nar-

row striping width and replicating the videos according to the users’

request pattern. Specifically, we find that striping over two disks gives

the highest throughput when a tight 1 second constraint on interactive

delays is imposed. We also demonstrate that localized placement (i.e.,

no striping at all) performs nearly as well when a good estimate of the

user request pattern is available.

Keywords—Coarse Grained Striping; Fine Grained Striping; Inter-

activity; Video Placement; Video Server.

I. INTRODUCTION

C

ONSIDER designing a video server

which makes available to its clients 10–100 constant–

bit–rate (CBR) encoded videos, with each video being 1 to

200 minutes long. Suppose a design constraint is that all in-

teractive delays — including delays after initial video start–

up, after a pause/resume and after a temporal jump — be less

than, say, 1 second. Such a constraint gives the user a plea-

surable interactive experience with the system. In this pa-

per we address the following question: How do we design

such a highly–interactive video server which can accommo-

date a large number of concurrent video streams at reason-

able cost?

One possibility is to endow the server with a huge RAM

and to place all the prerecorded videos in the RAM. The high

transfer and access rates out of RAM will ensure that the de-

sign constraints are met. This pure–RAM solution, once be-

lieved to be completely far–fetched, is now a realistic possi-

bility due to the rapid decline in RAM cost in recent years.

Nevertheless, if the total amount of prerecorded video con-

tent exceeds a few Gigabytes, as it would with a few MPEG–

2 full–length movies, the pure RAM solution becomes cost

prohibitive, and a disk–array becomes necessary. The per–

byte cost of disk remains several orders of magnitude less

than the per–byte cost of RAM.

Given that we are going to use a disk array for our video

storage, the next issue is how are we going to place the

Supported partially by NSF grant NCR96–12781.

videos on the disk array in order to maximize the number

of connections that the server can simultaneously support?

The most natural solution is localized placement, whereby

each video file is contiguously placed on a disk. But if an

entire video file is stored on one disk, the number of concur-

rent accesses to that file is limited by the disk throughput,

which leads to the well–documented hot spot problem.

The hot–spot problem is that the great majority of the de-

mand is often for a small subset of the stored videos. Be-

cause each disk can service only a small number of concur-

rent streams, much of the demand for the popular videos

can go unsatisfied, while the disks housing the less popu-

lar videos are under–utilized. As an example, suppose that

a video server houses 100 videos, each on its own disk;

also suppose that each disk can support up to six concurrent

streams. If nearly all the demand is for the five most pop-

ular videos, then the server will service only 30 concurrent

streams, even though it has the theoretical capacity to ser-

vice 600 concurrent streams. This example shows that the

hot–spot problem, when not properly addressed, can lead to

a tremendous reduction in server throughput.

To circumvent the hot–spot problem, it is conventional

wisdom to stripe the videos across the disks. By striping

a video over a subset of the disks, the server can use the

throughput of the entire subset to generate streams emanat-

ing from the video. In fact, if each video is striped across the

entire disk array, then the hot–spot problem vanishes — all

demand distributions can be equally accommodated.

Striping has an obvious reliability problem — if one disk

fails, then all the video files that are partially contained on

the disk become unavailable to the users. (With localized

placement a given disk stores portions of fewer videos, so

disk failure has less impact on reliability.) The reliability

problem that results from striping can be partially mitigated

through the use of RAID (redundant array of inexpensive

disks) technology.

But for video servers promising a high–degree of interac-

tivity, striping engenders a more subtle performance prob-

lem. Specifically, the smaller striping unit increases the

relative seek and rotational overhead, thereby decreasing

the effective throughput of each disk in the array. As we

shall show in this paper, this decrease in throughput can be

painfully significant when interactivity constraints on the or-



der of a second or less are present.

For highly–interactive video servers, we show that if

striping is used, it should be used with a narrow striping

width. Furthermore, for the same number of disks, a sim-

pler localized placement solution with appropriate replica-

tion may perform nearly as well as the striping solution.

Thus, for highly–interactive video servers, the conventional

wisdom to stripe videos may be flawed.

II. THE MODEL

We can highlight the main points most easily by introduc-

ing the following simplifying assumptions:

� We assume that all videos are constant–bit–rate (CBR)

encoded. For CBR encoding, the quantization scale is

dynamically changed to produce a near CBR bit stream.

The resulting encoded video is sent to the client at a

constant rate. When the client receives the video, it

accumulates video in a small buffer and briefly delays

playback.

� All videos have been encoded at the same rate, denoted

by b.

� All video files are the same size, denoted by B.

In our numerical experiments we use b = :375 Mbytes/sec

and B = 3 Gbytes. We shall assume that each disk has a

capacity of 3 Gbytes; thus, each disk can hold exactly one

video file.

We investigate two different video placement strategies:

� Localized placement: Each video file is contiguously

stored within a single disk. If there is sufficient aggre-

gate storage capacity in the disk array, multiple copies

of the videos are stored on multiple disks. We con-

sider two video replication strategies: uniform repli-

cation, whereby each video has the same number of

copies; and non–uniform replication, whereby the dif-

ferent videos may have different numbers of copies

stored in the disk array.

� Striping placement: Each video file is striped across

a subset of disks in the disk array. If there is suffi-

cient aggregate disk storage, multiple copies of a video

may be striped within the array. We again consider two

video replication strategies: uniform replication and

non–uniform replication.

A. Model for User Request Pattern

Throughout our analysis we assume that the user demand

for videos varies from video to video. Specifically, if there

areM videos with video 1 being the most popular and video

M being the least popular, then the probability that the mth

most popular video is requested by a user is given by the Zipf

distribution [1]:

q

m

= K=m

�

; m = 1; : : : ;M;

where

K =

1

1 + 1=2

�

+ � � �+ 1=M

�

:

The Zipf distribution corresponds to a highly–localized user

request pattern that has been typical at movie rental stores.

Note that the Zipf distribution depends on a parameter � >

0. Increasing � increases the relative popularity of the most

popular videos.

B. Disk Model

We assume that each disk consists of single platter side

and a single arm. Let D denote the number of disks in the

array. We assume that D �M , so that all the videos can be

stored in the disk array.

We assume throughout that the server serves the ongoing

video streams in constant–time rounds. During each round

the server retrieves a fixed number of bytes for each client.

Within a round, the number of bytes retrieved by the server

for a client is equal to the number of bytes transmitted to the

client. Specifically, withT denoting the round length, within

each round and for every stream, the server retrieves a block

of video of bT bytes from the disk subsystem and sends to

the network bT bytes.

We assume that each disk in the disk array uses the SCAN

scheduling algorithm [2]. Specifically, within each round,

each disk arm sweeps across its entire platter exactly once

with no back tracking. Because we assume the SCAN

scheduling algorithm, the overhead incurred within a round

for a given disk has the following form

disk overhead = l

seek

+ Il

rot

;

where I is the number of streams that the disk is servicing.

The constant l
seek

is the maximum seek time of the disk (the

time to move the arm from the center to the edge of the plat-

ter, which is equal to the time to move the arm from the edge

to the center of the platter). The constant l
rot

is the per–

stream latency, which includes the maximum rotation time

of the disk and the track–to–track seek time. Table I sum-

marizes our disk notation and the nominal values for the disk

parameters. The nominal parameters reflect the current per-

formance of high–speed disks [3].

In main memory, the video server allocates to each stream

a disk buffer and a network buffer. While the disk array

fills the disk buffer, the network drains the network buffer,

which has been previously filled. When the network has de-

pleted the disk buffer, the disk buffer becomes the network

buffer and vice versa. The roles of the two buffers continue

to alternate throughout the life of the stream. Because one

such double buffer is required for each stream, the amount

of main memory required to support J streams is 2JTb.

The initial start–up delay as well as the responsiveness to

an interactive request (pause/resume or a temporal jump) is

typically modeled to be twice the round length, 2T , when the



TABLE I

NOMINAL VALUES OF DISK PARAMETERS USED IN NUMERICAL

STUDIES.

parameter notation nominal value

disk size X 3 Gbytes

disk transfer rate r 2.5 MBytes/sec

maximum seek time l

seek

20 msec

rotational latency l

rot

10 msec

number of disks in array D 10–100

SCAN algorithm is used. This delay model is based on the

worst–case assumption that the request of the user arrives

just after the start of a round, say roundk, and arrives too late

to be scheduled by the SCAN algorithm for round k. The re-

quest has to wait for the start of the next round. The request

is included in the disk read schedule of round k +1 and the

requested video data is read into the disk buffer during round

k+1. The disk buffer of round k+1 becomes the network

buffer of round k + 2 and the transmission of the requested

video data out of the network buffer starts at the beginning

of round k+2. Thus, the disk–subsystem introduces a max-

imum delay of two rounds, i.e., 2T . We shall assume that

the maximum disk–subsystem delay is constrained to .5 sec.

Therefore, we use a round length of T = .25 sec. Note that

the total interactive delay also includes transmission delays

as well as client de–smoothing and decoding delays. These

additional delays add another .25 sec to .5 sec to the .5 sec

disk–subsystem delay, giving a total delay on the order of

.75 sec to 1.0 sec. Thus, with a round length of .25 sec the

system is able to give the user a pleasurable interactive ex-

perience with less than 1 second delay for all interactions.

III. UNIFORM REPLICATION

In this section we will consider two placement strategies:

localized placement and striping placement. If D > M , the

disk array will contain multiple copies of some or all of the

videos, with each copy on a different disk. Throughout this

section we assume that the videos are uniformly replicated,

i.e., D=M is a positive integer and that each video has the

same number D=M copies in the disk array.

A. Localized Placement

Consider one of the D disks, and suppose that this disk

is servicing I ongoing streams. Then within a round this

disk will transfer I blocks of data to main memory, with

each block consisting of bT bytes. The disk transfers each of

these blocks at rate r. Thus the total disk transfer time within

a round is IbT=r. The total disk overhead within a round is

l

seek

+Il

rot

. Thus the amount of time the disk requires to ser-

vice the I ongoing streams in a round is IbT=r+l
seek

+Il

rot

.

Because the time required to service the I streams in a round

must be no greater than the round length itself, we have

T � l

seek

+ Il

rot

+ I

T b

r

:

Rearranging the terms in the above equation, the maximum

number of streams that a disk can support is:

I =

$

T � l

seek

l

rot

+

Tb

r

%

:

Because there areD disks, the maximum number of streams

that the disk array can service for a given round time T is:

J

local

max

= D

$

T � l

seek

l

rot

+

Tb

r

%

: (1)

Because the demand for the various videos is typically non–

uniform, the disk array will most likely serve substantially

less than J local
max

streams. In the worst case, all requests will

be for the same video, in which case the number of streams

serviced is

J

local

min

=

D

M

$

T � l

seek

l

rot

+

Tb

r

%

: (2)

B. Striping Placement

With full striping each video is striped over all of the

disks. There are essentially two different striping tech-

niques: Fine Grained Striping (FGS) and Coarse Grained

Striping (CGS) [4], [5]. (Because of page limitations we

omit a detailed literature review and refer the interested

reader to [6].)

Fine Grained Striping

With Fine Grained Striping each block is segmented into D

equal–sized parts, called stripes, and each of the disks stores

one of the block’s stripes. When the server retrieves a block

from the disk array, it reads all D stripes of the block in par-

allel. Let J denote the number of ongoing streams at the

server. Consider one of theD disks. Within a round this disk

will transfer J stripes to main memory, with each stripe con-

sisting of bT=D bits. The disk transfers each of these stripes

at rate r. Thus the total disk transfer time within a round

is JbT=rD. Within this same round, the disk overhead is

l

seek

+ Jl

rot

. Thus the amount of time required to service

the J ongoing videos in a round is JbT=rD+ l

seek

+ Jl

rot

.

Because the time required to service the J streams in a round

must be no greater than the round length itself, we have

T � l

seek

+ Jl

rot

+ J

Tb

rD

:

It follows from the above inequality that the maximum num-

ber of streams the server with FGS can support for a given



round time T is

J

stripe

FGS

=

$

T � l

seek

l

rot

+

Tb

rD

%

: (3)

Note that full striping with FGS can support J
stripe

FGS

streams

for any request pattern.

A quick comparison of (1) and (3) shows that the local-

ized layout can support a larger number of simultaneous

streams. This is because each disk wastes a larger fraction

of the round with seeks and rotations when Fine Grained

Striping is employed. However, because each video file is

spread over all D disks, the the full striping layout can sup-

port J
stripe

FGS

streams independent of the request pattern.

Coarse Grained Striping

With Coarse Grained Striping (also referred to as Data Inter-

leaving in [7]) each block is stored on a separate disk. The

blocks are typically assigned to the disks in a round–robin

manner, that is, if blockn is stored on disk 1 then blockn+1

is stored on disk 2, and so on. When the server retrieves a

block from the disk array it reads the entire block from one

disk. Therefore CGS has less overhead than FGS (recall that

with FGS the server has to access D disks to retrieve one

block). The drawback of CGS, however, is its large interac-

tive delay. Because of page limitations we omit the analysis

of Coarse Grained Striping and refer the interested reader to

[6]. We show in [6] that the maximum number of streams

the server with CGS can support is

J

stripe

CGS

=

$

T �

D+1

2

l

seek

D+1

2D

l

rot

+

Tb

rD

%

: (4)

C. Group Striping

Now consider group striping. In this scheme, we stripe

each video file over W � D disks. We refer to W as the

striping width. A little thought shows that in this strategy (i)

each disk contains data from W video files and (ii) if W �

M , then the disks can be partitioned into groups of size W

such that each copy of a video file is striped within a group.

Group striping withD = 6 disks,M = 3 movies and different

striping widths W is illustrated in Figure 1.

We consider group striping both with FGS and CGS. With

FGS each block is segmented into W stripes, and each disk

in the striping group stores one of the block’s stripes. With I

denoting the number of streams serviced by a given striping

group with FGS, we have

T � l

seek

+ Il

rot

+ I

T b

rW

:

It follows from the above inequality that the maximum num-

ber of streams the striping group can support with FGS for

a given round time T is

I

FGS

=

$

T � l

seek

l

rot

+

Tb

rW

%

: (5)

1A
2A
3A
1B
2B
3B

1A
2A
3A
1B
2B
3B

1A
2A
3A
1B
2B
3B

1A
2A
3A
1B
2B
3B

1A
2A
3A
1B
2B
3B

1A
2A
3A
1B
2B
3B


 	
 	
 	
 	
 	
 	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

W = 6 (full striping)

1A
2A
3A

1A
2A
3A

1A
2A
3A

1B
2B
3B

1B
2B
3B

1B
2B
3B

1A
2A

1A
2A

3A
1B

3A
1B

2B
3B

2B
3B

1A 2A 3A 1B 2B 3B


 	
 	
 	
 	
 	
 	


 	
 	
 	
 	
 	
 	


 	
 	
 	
 	
 	
 	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

W = 3

W = 2

W = 1 (localized placement)

Fig. 1. Group striping of M = 3 movies (denoted by 1, 2, and 3) over D

= 6 disks with striping widths of W = 1, 2, 3, and 6. We use uniform

replication in this example; thus there areD=M = 2 copies (denoted by

A and B) of each movie stored in the disk array.

With CGS the blocks of a video are stored on theW disks

in a striping group in a round–robin fashion, with each disk

storing an entire block. With a derivation that parallels the

analysis of CGS for full striping we obtain for the maximum

number of streams a striping group can support with CGS:

I

CGS

=

$

T �

W+1

2

l

seek

W+1

2W

l

rot

+

Tb

rW

%

: (6)

Table II shows the number of connections that can be sup-

ported by a striping group with FGS and CGS as a function

of the width of the striping group. Focusing for now on the

FGS results, we see from this table that the maximum num-

ber of streams grows sub–linearly with the width of the strip-

ing group. For example, if we increase the number of disks

from 50 to 100, only one more additional stream can be sup-

ported! This sublinear growth is due to the increased relative

seek and rotational overhead that comes from Fine Grained

Striping. We note, however, for the particular system values

considered, that increasing the width from 1 to 2 allows for

linear growth. Comparing the results for FGS and CGS we

see that CGS can support one more stream with W = 4 and

W = 5. This is due to the fact that CGS has less overhead;

CGS accesses one disk to retrieve one block whereas FGS

accesses W disks. However, the number of streams CGS



TABLE II

MAXIMUM NUMBER OF STREAMS THAT CAN BE SUPPORTED BY AN

ISOLATED STRIPING GROUP WITH FINE GRAINED STRIPING (FGS)

AND COARSE GRAINED STRIPING (CGS).

Width of Maximum Number Maximum Number

Striping Group of Streams of Streams

with FGS with CGS

1 4 4

2 8 8

3 10 10

4 11 12

5 13 14

10 16 15

20 19 5

50 21 0

100 22 0

can support drops off sharply for larger W . We use FGS

throughout the rest of this paper.

The maximum number of streams that group striping with

FGS can support is

J

stripe

max

(W ) =

�

D

W

�

$

T � l

seek

l

rot

+

Tb

rW

%

: (7)

Note that (7) is maximized at W = 1, that is, localized

placement beats striping for all striping widths with respect

to the maximum number of possible of streams.

The worst–case request distribution is such that all re-

quests are for the same video. In this case, the number of

videos that can be served by the disk array is

J

stripe

min

(W ) =

�

D

max(M;W )

�

$

T � l

seek

l

rot

+

Tb

rW

%

: (8)

Note that J
stripe

min

(W ) is maximized at W = M . Thus we

see that J stripe
max

(W ) decreases with the striping width but

J

stripe

min

(W ) increases with the striping width (for W �M ).

Table III gives J
stripe

min

(W ) and J stripe
max

(W ) for D = 20

disks and M = 10 videos for a range of widths W . It is in-

teresting to note from Table III that for small widths there

is a large difference between the minimum and maximum

streams, i.e., the number of streams that can be supported

with small widths depends largely on the request pattern.

However, the request pattern has little influence on the num-

ber of streams for the larger striping widths.

Let us now suppose that the request pattern follows the

Zipf distribution with parameter � = 1. For a fixed num-

ber of disks, D, and a fixed number of videos, M , we now

determine the number of streams that can be typically sup-

ported by each of the placement schemes. We make this de-

termination using the following simulation experiment. For

TABLE III

MINIMUM AND MAXIMUM NUMBER OF STREAMS THAT CAN BE

SUPPORTED BY A DISK ARRAY WITH D = 20 DISKS AND M = 10

VIDEOS.

Striping Width Minimum Number Maximum Number

of Streams of Streams

1 8 80

2 16 80

3 20 60

4 22 55

5 26 52

10 32 32

20 19 19

a given placement strategy and target number of streams, S,

we generate S requests from the Zipf distribution and deter-

mine the number of requests that can be supported (which

will be no greater than S). We repeat the experiment 1000

times, creating 1000 � S requests. If 95% of these requests

can be supported, we then increment S and repeat the entire

procedure. The procedure continues until the 95% criterion

is violated.

The S determined in this procedure is the number of cus-

tomers that a service provider could plan to support at the

peak hour on any given day. Specifically, if the provider al-

lows for S requests each evening during the peak hour, it

should be able to support about 95% of the first–choice re-

quests over the year.

Table IV presents the results of this procedure for 10, 20,

and 100 disks. We observe that for the case of uniform repli-

cation, the striping width W = 2 gives significantly more

connections than does localized placement (W = 1). Fur-

ther increasing the striping width decreases the number of

connections.

TABLE IV

NUMBER OF STREAMS THAT CAN BE SUPPORTED BY A DISK ARRAY

WITHD = 10, 20, AND 100 DISKS AND M = 10 VIDEOS FOR

DIFFERENT STRIPING WIDTHSW ; ZIPF REQUEST PATTERN WITH

� = 1.

Striping Width Number of Number of Number of

W Streams Streams Streams

10 disks 20 disks 100 disks

1 10 25 136

2 21 46 245

5 21 43 225

10 16 32 160



IV. NON–UNIFORM REPLICATION

Examining Table IV we see that the number of streams

that can typically be supported is significantly lower than

the maximum number of possible streams. For example, for

20 disks the disk subsystem has a capacity of 80 streams,

whereas only 46 streams can typically be supported with

the optimal striping width (W = 2); similarly, for 100 disks

the disk subsystem has a capacity of 400 streams, whereas

only 245 streams can typically be supported with the opti-

mal striping width (W = 2). We are therefore motivated to

consider non–uniformreplication in order to further increase

the number of streams that can typically be supported.

In this section we permit non–uniformreplication for both

localized and striping placement. Let C
m

be the number of

copies of video m stored in the disk array. Because the size

of each video file equals the capacity of a single disk,

M

X

m=1

C

m

= D:

Adapting the theory of the previous section, we obtain the

maximum number of video–m streams that can be supported

with localized placement:

J

local

max

(m) = C

m

$

T � l

seek

l

rot

+

Tb

r

%

:

For striping, if WC

m

� D for all m = 1; : : : ;M , then

copies of the same video can be striped over disjoint groups

of disks, and the maximum number of streams for video–m

is

J

stripe

max

(m;W ) = C

m

$

T � l

seek

l

rot

+

Tb

rW

%

:

Now let us suppose that the user request pattern for the

M videos has a known distribution (perhaps a Zipf distribu-

tion with known parameter �). We consider replicating the

videos such that the replication distribution is approximately

equal to the request distribution. In particular, we replicate

using the following algorithm:

1. C
m

= bq

m

Dc, m = 1; : : : ;M .

2. If C
m

> D=W , set C
m

= bD=W c, m = 1; : : : ;M .

3. If C
m

= 0, set C
m

= 1.

4. Calculate C = C

1

+ � � �+ C

M

.

5. If C > D, decrement C
m

for the least popular video

with C
m

> 1, then for the next to least popular with

C

m

> 1, etc., until C = D.

6. If C < D , increment C
m

for the most popular video

with C
m

< bD=W c, then for the next to most popular

video, etc., until C = D.

This algorithm ensures that there is at least one copy

present for each of the M videos. After determining the

number of copies of each video, we must assign the copies

to the various groups of disks. For this, we use of the tennis–

player–seeding heuristic: we place the most popular videos

with the least popular videos in a group, and we place mod-

erately popular videos with other moderately popular videos

in a group.

Table V summarizes uniform and Zipf replication for 20

disks. The values in Table V are obtained through simu-

lation, as described in the previous section. We see from

the table that Zipf replication for striping widths of 1 and 2

roughly doubles the number of connections.

TABLE V

NUMBER OF STREAMS THAT CAN BE SUPPORTED BY A DISK ARRAY

WITHD = 20 DISKS AND M = 10 VIDEOS.

W Uniform Zipf Maximum Number

Replication Replication of Streams

1 25 52 80

2 46 80 80

5 43 52 52

10 32 32 32

We refer the reader to [6] for an extensive evaluation

of non–uniform replication, which we can not include here

because of page limitations. In summary, we find that if

videos are replicated to reflect a known user request pattern,

then the number of connections that are typically supported

can approach the maximum number of connections possi-

ble. Furthermore, the optimal striping width is small, and for

large systems localized placement performs nearly as well as

does striping with the optimal striping width.

REFERENCES

[1] G. K. Zipf, Human Behavior and Principle of Least Effort: An Intro-
duction to Human Ecology, Addison–Wesley, Cambridge, MA, 1949.

[2] A. L. N. Reddy and J. C. Wyllie, “I/O issues in a multimedia system,”
Computer, vol. 27, no. 3, pp. 69–74, Mar. 1994.

[3] H. Boegeholz, “Platten–karussell: 263 festplatten im vergleich,” c’t
magazine fuer computer technik, , no. 14, pp. 150–161, July 1998.

[4] J. Gafsi and E. W. Biersack, “Data striping and reliability as-
pects in distributed video servers,” in Cluster Computing: Net-
works, Software Tools, and Applications, 1998, Available at
http://www.eurecom.fr/˜erbi.

[5] B. Özden, R. Rastogi, and A. Silberschatz, “Disk striping in video
server environments,” in Proceedings of IEEE Conference on Multi-
media Systems, Hiroshima, Japan, June 1996, pp. 580–589.

[6] M. Reisslein, K. W. Ross, and S. Shresta, “Striping for interactive
video: Is it worth it? (extended version),” Tech. Rep., GMD FOKUS,
Berlin, Ger-
many, Feb. 1999, available at http://www.fokus.gmd.de/usr/reisslein
or http://www.eurecom.fr/˜ross/.

[7] D. J. Gemmel, H. M. Vin, D. D. Kandalur, P. V. Rangan, and L. A.
Rowe, “Multimedia storage servers: A tutorial,” IEEE MultiMedia,
vol. 28, no. 5, pp. 40–49, May 1995.


