
Striping for Interactive Video:
Is it Worth it?

Martin Reisslein Keith W. Ross Subin Shrestha

GMD FOKUS Institute Eurecom Wharton Computing (WCIT)

Kaiserin–Augusta–Allee 31 2229 Route des Cretes University of Pennsylvania

10589 Berlin, Germany 06904 Sophia–Antipolis, France Philadelphia, PA 19104

reisslein@fokus.gmd.de ross@eurecom.fr subin@wharton.upenn.edu

www.fokus.gmd.de/usr/reisslein www.eurecom.fr/˜ross

Abstract— We study the design of interactive video servers that store

videos on disk arrays. In order to avoid the hot–spot problem in video

servers it is conventional wisdom to stripe the videos over the disk array

using Fine Grained Striping or Coarse Grained Striping techniques. Strip-

ing, however, increases the seek and rotational overhead, thereby reducing

the throughput of the disk array. Our results indicate that the decrease in

throughput is substantial when interactive delays are constrained to be less

than 1 second. We show that both a high degree of interactivity and high

throughput are achieved by using a narrow striping width and replicating

the videos according to the users’ request pattern. Specifically, we find that

striping over two disks gives the highest throughput when a tight 1 second

constraint on interactive delays is imposed. We also demonstrate that local-

ized placement (i.e., no striping at all) performs nearly as well when a good

estimate of the user request pattern is available.

Keywords—Coarse Grained Striping; Fine Grained Striping; Interactiv-

ity; Video Placement; Video Server.

I. INTRODUCTION

C

ONSIDER designing a video server which makes avail-

able to its clients 10–100 constant–bit–rate (CBR) encoded

videos, with each video being 1 to 200 minutes long. Suppose a

design constraint is that all interactive delays — including delays

after initial video start–up, after a pause/resume and after a tem-

poral jump — be less than, say, 1 second. Such a constraint gives

the user a pleasurable interactive experience with the system. In

this paper we address the following question: How do we design

such a highly–interactive video server which can accommodate

a large number of concurrent video streams at reasonable cost?

One possibility is to endow the server with a huge RAM and

to place all the prerecorded videos in the RAM. The high trans-

fer and access rates out of RAM will ensure that the design con-

straints are met. This pure–RAM solution, once believed to be

completely far–fetched, is now a realistic possibility due to the

rapid decline in RAM cost in recent years. Nevertheless, if the

total amount of prerecorded video content exceeds a few Giga-

bytes, as it would with a few MPEG–2 full–length movies, the

pure RAM solution becomes cost prohibitive, and a disk–array

becomes necessary. The per–byte cost of disk remains several

orders of magnitude less than the per–byte cost of RAM.

Given that we are going to use a disk array for our video stor-

age, the next issue is how are we going to place the videos on the

disk array in order to maximize the number of connections that

the server can simultaneously support? The most natural solu-

tion is localized placement, whereby each video file is contigu-

ously placed on a disk. But if an entire video file is stored on

Supported partially by NSF grant NCR96–12781.

one disk, the number of concurrent accesses to that file is limited

by the disk throughput, which leads to the well–documented hot

spot problem.

The hot–spot problem is that the great majority of the demand

is often for a small subset of the stored videos. Because each disk

can service only a small number of concurrent streams, much of

the demand for the popular videos can go unsatisfied, while the

disks housing the less popular videos are under–utilized. As an

example, suppose that a video server houses 100 videos, each on

its own disk; also suppose that each disk can support up to six

concurrent streams. If nearly all the demand is for the five most

popular videos, then the server will service only 30 concurrent

streams, even though it has the theoretical capacity to service 600

concurrent streams. This example shows that the hot–spot prob-

lem, when not properly addressed, can lead to a tremendous re-

duction in server throughput.

To circumvent the hot–spot problem, it is conventional wis-

dom to stripe the videos across the disks. By striping a video

over a subset of the disks, the server can use the throughput of

the entire subset to generate streams emanating from the video.

In fact, if each video is striped across the entire disk array, then

the hot–spot problem vanishes — all demand distributions can

be equally accommodated.

Striping has an obvious reliability problem — if one disk fails,

then all the video files that are partially contained on the disk

become unavailable to the users. (With localized placement a

given disk stores portions of fewer videos, so disk failure has less

impact on reliability.) The reliability problem that results from

striping can be partially mitigated through the use of RAID (re-

dundant array of inexpensive disks) technology.

But for video servers promising a high–degree of interactivity,

striping engenders a more subtle performance problem. Specifi-

cally, the smaller striping unit increases the relative seek and ro-

tational overhead, thereby decreasing the effective throughput of

each disk in the array. As we shall show in this paper, this de-

crease in throughput can be painfully significant when interac-

tivity constraints on the order of a second or less are present.

For highly–interactive video servers, we show that if striping

is used, it should be used with a narrow striping width. Further-

more, for the same number of disks, a simpler localized place-

ment solution with appropriate replication may perform nearly as

well as the striping solution. Thus, for highly–interactive video

servers, the conventional wisdom to stripe videos may be flawed.

This paper is organized as follows. In Section II we present



the disk model and request distribution model. In Section III

we discuss uniform replication, whereby the same number of

copies of each video is stored in the disk array. We consider

uniform replication both for localized placement and for strip-

ing with a variety of striping widths. We consider both Fine

Grained Striping (FGS) and Coarse Grained Striping (CGS). We

also present numerical results which indicate that uniform place-

ment can lead to unsatisfactory performance. In Section IV we

consider non–uniform replication, again for localized and strip-

ing placement. We show that if the videos are replicated to re-

flect the user’s request pattern, then the server can achieve sat-

isfactory throughput; moreover, localized placement gives sat-

isfactory performance, and performs nearly as well as the best

striping solution. In Section V we review the existing literature

on file placement in video servers. In Section VI we briefly sum-

marize our findings.

II. THE MODEL

We can highlight the main points most easily by introducing

the following simplifying assumptions:
� We assume that all videos are constant–bit–rate (CBR) en-

coded. For CBR encoding, the quantization scale is dynam-

ically changed to produce a near CBR bit stream. The re-

sulting encoded video is sent to the client at a constant rate.

When the client receives the video, it accumulates video in

a small buffer and briefly delays playback.

� All videos have been encoded at the same rate, denoted by

b.

� All video files are the same size, denoted by B.
In our numerical experiments we use b = :375 Mbytes/sec and

B = 3 Gbytes. We shall assume that each disk has a capacity of

3 Gbytes; thus, each disk can hold exactly one video file.

We investigate two different video placement strategies:
� Localized placement: Each video file is contiguously stored

within a single disk. If there is sufficient aggregate stor-

age capacity in the disk array, multiple copies of the videos

are stored on multiple disks. We consider two video repli-

cation strategies: uniform replication, whereby each video

has the same number of copies; and non–uniform replica-

tion, whereby the different videos may have different num-

bers of copies stored in the disk array.

� Striping placement: Each video file is striped across a sub-

set of disks in the disk array. If there is sufficient aggre-

gate disk storage, multiple copies of a video may be striped

within the array. We again consider two video replication

strategies: uniform replication and non–uniform replica-

tion.

A. Model for User Request Pattern

Throughout our analysis we assume that the user demand for

videos varies from video to video. Specifically, if there are M

videos with video 1 being the most popular and video M being

the least popular, then the probability that the mth most popular

video is requested by a user is given by the Zipf distribution [1]:

q

m

= K=m

�

; m = 1; : : : ;M;

where

K =

1

1 + 1=2

�

+ � � �+ 1=M

�

:

The Zipf distribution corresponds to a highly–localized user re-

quest pattern that has been typical at movie rental stores. Note

that the Zipf distribution depends on a parameter � > 0. Increas-

ing � increases the relative popularity of the most popular videos.

B. Disk Model

We assume that each disk consists of single platter side and a

single arm. Let D denote the number of disks in the array. We

assume that D � M , so that all the videos can be stored in the

disk array.

We assume throughout that the server serves the ongoing

video streams in constant–time rounds. During each round the

server retrieves a fixed number of bytes for each client. Within

a round, the number of bytes retrieved by the server for a client

is equal to the number of bytes transmitted to the client. Specif-

ically, with T denoting the round length, within each round and

for every stream, the server retrieves a block of video of bT bytes

from the disk subsystem and sends to the network bT bytes.

We assume that each disk in the disk array uses the SCAN

scheduling algorithm [2]. Specifically, within each round, each

disk arm sweeps across its entire platter exactly once with no

back tracking. Because we assume the SCAN scheduling algo-

rithm, the overhead incurred within a round for a given disk has

the following form

disk overhead = l

seek

+ Il

rot

;

where I is the number of streams that the disk is servicing. The

constant l
seek

is the maximum seek time of the disk (the time to

move the arm from the center to the edge of the platter, which is

equal to the time to move the arm from the edge to the center of

the platter). The constant l
rot

is the per–stream latency, which

includes the maximum rotation time of the disk and the track–

to–track seek time. Table I summarizes our disk notation and the

nominal values for the disk parameters. The nominal parameters

reflect the current performance of high–speed disks [3].

TABLE I

NOMINAL VALUES OF DISK PARAMETERS USED IN NUMERICAL STUDIES.

parameter notation nominal value

disk size X 3 Gbytes

disk transfer rate r 2.5 MBytes/sec

maximum seek time l

seek

20 msec

rotational latency l

rot

10 msec

number of disks in array D 10–100

In main memory, the video server allocates to each stream

a disk buffer and a network buffer. While the disk array fills

the disk buffer, the network drains the network buffer, which

has been previously filled. When the network has depleted the

disk buffer, the disk buffer becomes the network buffer and vice

versa. The roles of the two buffers continue to alternate through-

out the life of the stream. Because one such double buffer is re-

quired for each stream, the amount of main memory required to

support J streams is 2JTb.



The initial start–up delay as well as the responsiveness to an

interactive request (pause/resume or a temporal jump) is typi-

cally modeled to be twice the round length, 2T , when the SCAN

algorithm is used. This delay model is based on the worst–case

assumption that the request of the user arrives just after the start

of a round, say round k, and arrives too late to be scheduled by

the SCAN algorithm for round k. The request has to wait for the

start of the next round. The request is included in the disk read

schedule of round k+1 and the requested video data is read into

the disk buffer during round k+1. The disk buffer of round k+1

becomes the network buffer of round k+2 and the transmission

of the requested video data out of the network buffer starts at the

beginning of round k+2. Thus, the disk–subsystem introduces a

maximum delay of two rounds, i.e., 2T . We shall assume that the

maximum disk–subsystem delay is constrained to .5 sec. There-

fore, we use a round length of T = .25 sec. Note that the total in-

teractive delay also includes transmission delays as well as client

de–smoothing and decoding delays. These additional delays add

another .25 sec to .5 sec to the .5 sec disk–subsystem delay, giv-

ing a total delay on the order of .75 sec to 1.0 sec. Thus, with a

round length of .25 sec the system is able to give the user a plea-

surable interactive experience with less than 1 second delay for

all interactions.

III. UNIFORM REPLICATION

In this section we will consider two placement strategies: lo-

calized placement and striping placement. If D > M , the disk

array will contain multiple copies of some or all of the videos,

with each copy on a different disk. Throughout this section we

assume that the videos are uniformly replicated, i.e., D=M is a

positive integer and that each video has the same number D=M

copies in the disk array.

A. Localized Placement

Consider one of the D disks, and suppose that this disk is ser-

vicing I ongoing streams. Then within a round this disk will

transfer I blocks of data to main memory, with each block con-

sisting of bT bytes. The disk transfers each of these blocks at

rate r. Thus the total disk transfer time within a round is IbT=r.

The total disk overhead within a round is l
seek

+ Il

rot

. Thus the

amount of time the disk requires to service the I ongoing streams

in a round is IbT=r + l

seek

+ Il

rot

. Because the time required

to service the I streams in a round must be no greater than the

round length itself, we have

T � l

seek

+ Il

rot

+ I

T b

r

:

Rearranging the terms in the above equation, the maximum num-

ber of streams that a disk can support is:

I =

$

T � l

seek

l

rot

+

Tb

r

%

:

Because there areD disks, the maximum number of streams that

the disk array can service for a given round time T is:

J

local

max

= D

$

T � l

seek

l

rot

+

Tb

r

%

: (1)

Because the demand for the various videos is typically non–

uniform, the disk array will most likely serve substantially less

than J local
max

streams. In the worst case, all requests will be for the

same video, in which case the number of streams serviced is

J

local

min

=

D

M

$

T � l

seek

l

rot

+

Tb

r

%

: (2)

B. Striping Placement

With full striping each video is striped over all of the disks.

There are essentially two different striping techniques: Fine

Grained Striping (FGS) and Coarse Grained Striping (CGS) [4],

[5].

Fine Grained Striping

With Fine Grained Striping each block is segmented into D

equal–sized parts, called stripes, and each of the disks stores one

of the block’s stripes. When the server retrieves a block from

the disk array, it reads all D stripes of the block in parallel. Let

J denote the number of ongoing streams at the server. Con-

sider one of the D disks. Within a round this disk will transfer

J stripes to main memory, with each stripe consisting of bT=D

bits. The disk transfers each of these stripes at rate r. Thus the

total disk transfer time within a round is JbT=rD. Within this

same round, the disk overhead is l
seek

+ Jl

rot

. Thus the amount

of time required to service the J ongoing videos in a round is

JbT=rD + l

seek

+ Jl

rot

. Because the time required to service

the J streams in a round must be no greater than the round length

itself, we have

T � l

seek

+ Jl

rot

+ J

Tb

rD

:

It follows from the above inequality that the maximum number

of streams the server with FGS can support for a given round

time T is

J

stripe

FGS

=

$

T � l

seek

l

rot

+

Tb

rD

%

: (3)

Note that full striping with FGS can support J
stripe

FGS

streams for

any request pattern.

A quick comparison of (1) and (3) shows that the localized lay-

out can support a larger number of simultaneous streams. This is

because each disk wastes a larger fraction of the round with seeks

and rotations when Fine Grained Striping is employed. How-

ever, because each video file is spread over all D disks, the the

full striping layout can support J
stripe

FGS

streams independent of

the request pattern.

Coarse Grained Striping

With Coarse Grained Striping (also referred to as Data Interleav-

ing in [6]) each block is stored on a separate disk. The blocks are

typically assigned to the disks in a round–robin manner, that is,

if block n is stored on disk 1 then block n + 1 is stored on disk

2, and so on. When the server retrieves a block from the disk ar-

ray it reads the entire block from one disk. Therefore CGS has

less overhead than FGS (recall that with FGS the server has to

access D disks to retrieve one block). The drawback of CGS,

however, is its large interactive delay. Specifically, with T

CGS

denoting the round length of the CGS server, the start–up latency

and the responsiveness to interactions is typically modeled as



(D + 1)T

CGS

. This interactive delay is based on the following

worst–case scenario: The user requests video data from a disk,

say disk d. The request arrives just after the start of a round, say

round k. Even though disk d has a free slot in round k, that is, it

has free disk transfer capacity to accommodate the request, the

request arrives too late to be scheduled by the SCAN algorithm

for round k. The delay model further assumes that none of the

other disks in the array has a free slot in round k, that is, all other

disks have already exhausted their disk transfer capacity. In CGS

video servers with round–robinblock assignment the disk sched-

ules circle around the disks in a round–robin fashion, that is, the

disk schedule of disk d in round k is used by disk d+1 in round

k + 1, and so on. Therefore, in the considered scenario, disk d

does not have a free slot in the next D� 1 rounds. The next free

slot at disk d is in round k+D. The requested video data is read

into the disk buffer during this round. The transmission out of the

network buffer starts at the beginning of round k+D+1. Thus,

the disk–subsystem introduces a delay of (D + 1)T

CGS

. We

assume (as before in the case of localized placement and FGS)

that the maximum disk–subsystem delay is constrained to .5 sec.

Therefore we use a round length of T
CGS

= :5sec=(D + 1).

Note that the round length depends on the number of disks in

the array; in order to satisfy the imposed constraint of interac-

tive delays the CGS server has to reduce its round length when

the number of disks grows. Recall that the FGS scheme satis-

fies the .5 sec constraint on the maximum disk–subsystem delay

with a round length of T = .25 sec (independent of the number

of disks). For ease of comparison of CGS with FGS we express

the round length of CGS in terms of the round length of FGS:

T

CGS

=

2T

D + 1

: (4)

We proceed to analyze the throughput of the CGS server when

a tight constraint on interactive delays is imposed. Let J denote

the number of ongoing streams at the server and consider one of

theD disks. Within a round this disk will transfer J=D blocks to

the disk buffer (assuming that the blocks accessed in a round are

evenly divided among the disks). Each block consists of bT
CGS

bits. The disk transfers the blocks at rate r. Thus the total disk

transfer time within a round is JbT
CGS

=rD. Within this same

round, the disk overhead is l
seek

+ Jl

rot

=D. Since the time re-

quired to service the J=D streams in a round must be no greater

than the round length itself, we have

T

CGS

� l

seek

+ Jl

rot

=D + J

T

CGS

b

rD

:

The maximum number of streams the server with CGS can sup-

port for a given round time T
CGS

is

J

stripe

CGS

=

$

T

CGS

� l

seek

l

rot

D

+

T

CGS

b

rD

%

: (5)

For ease of comparison with FGS we substitute (4) into (5) and

obtain:

J

stripe

CGS

=

$

T �

D+1

2

l

seek

D+1

2D

l

rot

+

Tb

rD

%

: (6)

We provide a detailed numerical comparison of (3) and (6) in

Section III-C. We note here that for the trivial case of one disk,

1A
2A
3A
1B
2B
3B

1A
2A
3A
1B
2B
3B

1A
2A
3A
1B
2B
3B

1A
2A
3A
1B
2B
3B

1A
2A
3A
1B
2B
3B

1A
2A
3A
1B
2B
3B


 	
 	
 	
 	
 	
 	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

W = 6 (full striping)

1A
2A
3A

1A
2A
3A

1A
2A
3A

1B
2B
3B

1B
2B
3B

1B
2B
3B

1A
2A

1A
2A

3A
1B

3A
1B

2B
3B

2B
3B

1A 2A 3A 1B 2B 3B


 	
 	
 	
 	
 	
 	


 	
 	
 	
 	
 	
 	


 	
 	
 	
 	
 	
 	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

�




�

	

W = 3

W = 2

W = 1 (localized placement)

Fig. 1. Group striping of M = 3 movies (denoted by 1, 2, and 3) over D = 6

disks with striping widths ofW = 1, 2, 3, and 6. We use uniform replication

in this example; thus there areD=M = 2 copies (denoted by A and B) of each

movie stored in the disk array.

D = 1, FGS and CGS can support the same number of streams.

We also note that forD � d2T=l

seek

�1eCGS is not able to sup-

port any streams with a constraint of 2T on the maximum disk–

subsystem delay.

C. Group Striping

Now consider group striping. In this scheme, we stripe each

video file over W � D disks. We refer to W as the striping

width. A little thought shows that in this strategy (i) each disk

contains data from W video files and (ii) if W � M , then the

disks can be partitioned into groups of size W such that each

copy of a video file is striped within a group. Group striping with

D = 6 disks, M = 3 movies and different striping widthsW is il-

lustrated in Figure 1.

We consider group striping both with FGS and CGS. With

FGS each block is segmented into W stripes, and each disk in

the striping group stores one of the block’s stripes. With I de-

noting the number of streams serviced by a given striping group

with FGS, we have

T � l

seek

+ Il

rot

+ I

T b

rW

:

It follows from the above inequality that the maximum number

of streams the striping group can support with FGS for a given

round time T is

I

FGS

=

$

T � l

seek

l

rot

+

Tb

rW

%

: (7)



With CGS the blocks of a video are stored on theW disks in a

striping group in a round–robinfashion, with each disk storing an

entire block. With a derivation that parallels the analysis of CGS

for full striping we obtain for the maximum number of streams

a striping group can support with CGS:

I

CGS

=

$

T �

W+1

2

l

seek

W+1

2W

l

rot

+

Tb

rW

%

: (8)

Table II shows the number of connections that can be sup-

ported by a striping group with FGS and CGS as a function of

the width of the striping group. Focusing for now on the FGS re-

TABLE II

MAXIMUM NUMBER OF STREAMS THAT CAN BE SUPPORTED BY AN

ISOLATED STRIPING GROUP WITH FINE GRAINED STRIPING (FGS) AND

COARSE GRAINED STRIPING (CGS).

Width of Maximum Number Maximum Number

Striping Group of Streams of Streams

with FGS with CGS

1 4 4

2 8 8

3 10 10

4 11 12

5 13 14

10 16 15

20 19 5

50 21 0

100 22 0

sults, we see from this table that the maximum number of streams

grows sub–linearly with the width of the striping group. For ex-

ample, if we increase the number of disks from 50 to 100, only

one more additional stream can be supported! This sublinear

growth is due to the increased relative seek and rotational over-

head that comes from Fine Grained Striping. We note, how-

ever, for the particular system values considered, that increas-

ing the width from 1 to 2 allows for linear growth. Comparing

the results for FGS and CGS we see that CGS can support one

more stream with W = 4 and W = 5. This is due to the fact

that CGS has less overhead; CGS accesses one disk to retrieve

one block whereas FGS accesses W disks. However, the num-

ber of streams CGS can support drops off sharply for larger W ,

and for W � d2T=l

seek

� 1e = 23 CGS can not support any

streams with a 1 second constraint on interactive delays. This is

because the round length of CGS depends on the interactive de-

lay constraint and the number of disks in the striping group, i.e.,

T

CGS

= :5sec=(W + 1). For larger striping widths the round

length has to be shortened in order to meet the interactive delay

constraint. Once the round length is shorter than the seek latency,

l

seek

, however, there is no time left in the round to transfer video

data. In summary, CGS performs slightly better than FGS for

moderate striping widths but extremely poorly for large striping

widths. We use FGS throughout the rest of this paper.

The maximum number of streams that group striping with

FGS can support is

J

stripe

max

(W ) =

�

D

W

�

$

T � l

seek

l

rot

+

Tb

rW

%

: (9)

Note that (9) is maximized atW = 1, that is, localized placement

beats striping for all striping widths with respect to the maximum

number of possible of streams.

The worst–case request distribution is such that all requests

are for the same video. In this case, the number of videos that

can be served by the disk array is

J

stripe

min

(W ) =

�

D

max(M;W )

�

$

T � l

seek

l

rot

+

Tb

rW

%

: (10)

Note that J
stripe

min

(W ) is maximized at W = M . Thus we see

that J stripe
max

(W ) decreases with the striping width butJ
stripe

min

(W )

increases with the striping width (for W �M ).

Table III gives J
stripe

min

(W ) and J stripe
max

(W ) for D = 20 disks

and M = 10 videos for a range of widths W . It is interesting

to note from Table III that for small widths there is a large dif-

ference between the minimum and maximum streams, i.e., the

number of streams that can be supported with small widths de-

pends largely on the request pattern. However, the request pat-

tern has little influence on the number of streams for the larger

striping widths.

TABLE III

MINIMUM AND MAXIMUM NUMBER OF STREAMS THAT CAN BE

SUPPORTED BY A DISK ARRAY WITHD = 20 DISKS AND M = 10 VIDEOS.

Striping Width Minimum Number Maximum Number

of Streams of Streams

1 8 80

2 16 80

3 20 60

4 22 55

5 26 52

10 32 32

20 19 19

Let us now suppose that the request pattern follows the Zipf

distribution with parameter � = 1. For a fixed number of disks,

D, and a fixed number of videos,M , we now determine the num-

ber of streams that can be typically supported by each of the

placement schemes. We make this determination using the fol-

lowing simulation experiment. For a given placement strategy

and target number of streams, S, we generate S requests from

the Zipf distribution and determine the number of requests that

can be supported (which will be no greater than S). We repeat

the experiment 1000 times, creating 1000 � S requests. If 95%

of these requests can be supported, we then increment S and re-

peat the entire procedure. The procedure continues until the 95%

criterion is violated.

TheS determined in this procedure is the number of customers

that a service provider could plan to support at the peak hour on

any given day. Specifically, if the provider allows for S requests



each evening during the peak hour, it should be able to support

about 95% of the first–choice requests over the year.

Table IV presents the results of this procedure for 10, 20, and

100 disks. We observe that for the case of uniform replication,

the striping width W = 2 gives significantly more connections

than does localized placement (W = 1). Further increasing the

striping width decreases the number of connections.

TABLE IV

NUMBER OF STREAMS THAT CAN BE SUPPORTED BY A DISK ARRAY WITH

D = 10, 20, AND 100 DISKS AND M = 10 VIDEOS FOR DIFFERENT

STRIPING WIDTHSW ; ZIPF REQUEST PATTERN WITH � = 1.

Striping Width Number of Number of Number of

W Streams Streams Streams

10 disks 20 disks 100 disks

1 10 25 136

2 21 46 245

5 21 43 225

10 16 32 160

IV. NON–UNIFORM REPLICATION

Examining Table IV we see that the number of streams that

can typically be supported is significantly lower than the max-

imum number of possible streams. For example, for 20 disks

the disk subsystem has a capacity of 80 streams, whereas only

46 streams can typically be supported with the optimal striping

width (W = 2); similarly, for 100 disks the disk subsystem has a

capacity of 400 streams, whereas only 245 streams can typically

be supported with the optimal striping width (W = 2). We are

therefore motivated to consider non–uniform replication in or-

der to further increase the number of streams that can typically

be supported.

In this section we permit non–uniform replication for both lo-

calized and striping placement. Let C
m

be the number of copies

of video m stored in the disk array. Because the size of each

video file equals the capacity of a single disk,

M

X

m=1

C

m

= D:

Adapting the theory of the previous section, we obtain the maxi-

mum number of video–m streams that can be supported with lo-

calized placement:

J

local

max

(m) = C

m

$

T � l

seek

l

rot

+

Tb

r

%

:

For striping, ifWC

m

� D for allm = 1; : : : ;M , then copies of

the same video can be striped over disjoint groups of disks, and

the maximum number of streams for video–m is

J

stripe

max

(m;W ) = C

m

$

T � l

seek

l

rot

+

Tb

rW

%

:

Now let us suppose that the user request pattern for the M

videos has a known distribution (perhaps a Zipf distribution with

known parameter �). We consider replicating the videos such

that the replication distribution is approximately equal to the re-

quest distribution. In particular, we replicate using the following

algorithm:

1. C
m

= bq

m

Dc, m = 1; : : : ;M .

2. If C
m

> D=W , set C
m

= bD=W c, m = 1; : : : ;M .

3. If C
m

= 0, set C
m

= 1.

4. Calculate C = C

1

+ � � �+ C

M

.

5. If C > D, decrement C
m

for the least popular video with

C

m

> 1, then for the next to least popular with C
m

> 1,

etc., until C = D.

6. If C < D , increment C
m

for the most popular video with

C

m

< bD=W c, then for the next to most popular video,

etc., until C = D.

This algorithm ensures that there is at least one copy present

for each of the M videos. After determining the number of

copies of each video, we must assign the copies to the various

groups of disks. For this, we use of the tennis–player–seeding

heuristic: we place the most popular videos with the least pop-

ular videos in a group, and we place moderately popular videos

with other moderately popular videos in a group.

Table V summarizes uniform and Zipf replication for 20 disks.

The values in Tables V and VI are obtained through simulation,

as described in the previous section. We see from the table that

Zipf replication for striping widths of 1 and 2 roughly doubles

the number of connections.

TABLE V

NUMBER OF STREAMS THAT CAN BE SUPPORTED BY A DISK ARRAY WITH

D = 20 DISKS AND M = 10 VIDEOS.

W Uniform Zipf Maximum Number

Replication Replication of Streams

1 25 52 80

2 46 80 80

5 43 52 52

10 32 32 32

Table VI summarizes uniform and Zipf replication for 100

disks. We see from this table that Zipf replication greatly in-

creases the typical number of connections for localized place-

ment (W = 1) and striping with W = 2. Notice that W = 2

with Zipf replication increases the number of supported connec-

tions from 245 to 400, which is the maximum number of connec-

tions the disk subsystem can support. But we now notice that for

the larger system with D = 100 disks localized placement per-

forms nearly as well as striping with W = 2 and significantly

better than the larger striping widths (W = 5 and W = 10).

In summary, if videos are replicated to reflect a known user re-

quest pattern, then the number of connections that are typically

supported can approach the maximum number of connections

possible. Furthermore, the optimal striping width is small, and

for large systems localized placement performs nearly as well as

does striping with the optimal striping width.

Next, we study the robustness of the non–uniform replication

approach to unpredictable changes in the user request distribu-

tion. We study how the Zipf replication performs when the ac-

tual user request distribution differs from the expected user re-



TABLE VI

NUMBER OF STREAMS THAT CAN BE SUPPORTED BY DISK ARRAY WITH

D = 100 DISKS AND M = 10 VIDEOS.

W Uniform Zipf Maximum Number

Replication Replication of Streams

1 136 388 400

2 245 400 400

5 225 260 260

10 160 160 160

150

200

250

300

350

400

0.5 1 1.5 2 2.5 3

N
u
m

b
er

 o
f 

st
re

am
s

Zipf parameter of actual request distribution

W = 2
W = 1
W = 5

W = 10

Fig. 2. Number of streams as a function of the Zipf parameter � of the actual user

request distribution. The movies are replicated according to the expected

user request distribution, which is assumed to be the Zipf distribution with

parameter � = 1.

quest distribution. (The videos are replicated according to the

expected user request distribution.) For this study we focus on

the video server with D = 100 disks andM = 10 movies. We as-

sume that the expected user request distribution is the Zipf dis-

tribution with parameter � = 1. We replicate the movies accord-

ing to this distribution in the disk array. We furthermore assume

that the actual user request distribution is the Zipf distribution

with the parameter � in the interval [0.25, 3]. Note that a larger

� increases the popularity of the most popular movie. With a pa-

rameter of � = 1, for instance, on average 34 % of the requests

are for the most popular movie, whereas with � = 2 on aver-

age 65 % of the requests are for the most popular movie. In Fig-

ure 2 we plot the number of streams that can be supported as a

function of the Zipf parameter � of the actual request distribu-

tion. We observe from the figure that the server with striping

width W = 2 can support 400 connections over a wide range of

the Zipf parameter. This indicates that a narrow striping width

of W = 2 gives good robustness, that is, the server can sup-

port the maximum number of connections even when there is

some uncertainty about the actual user request distribution. With

localized placement (W = 1) the server can support close to

400 connections when the user request distribution is fairly well

known. The number of streams drops off quickly when the ac-

tual user request distribution deviates from the expected user re-

quest distribution. However, localized placement is still able to

support more connections than group striping with W = 5 over

a relatively wide range of � from 0.6 to approximately 1.8. The

larger striping widths 5 and 10 give excellent robustness, but the

maximum number of streams with these larger striping widths is

small.

A. Estimating the User Request Pattern

We are advocating that the videos should be replicated in a

fashion that reflects the user request pattern. But how can a video

service provider determine the user request pattern? Let us pro-

pose a partial solution to this problem in the context of movies

on demand. Suppose that the service provider has an estimate,

q

1

; : : : ; q

M

, of the request pattern for M movies that are cur-

rently stored on the server. Further suppose that at the end of

the current evening the provider has observed that the demand

for the evening was p
1

; : : : ; p

M

. We recommend that the new

estimate of the user request pattern be updated according an ex-

ponential moving average:

q

m

= (1� �)q

m

+ �p

m

;

where 0 < � < 1 is the dampening factor. The choice of

an appropriate � is up to the service provider. If the demand

distribution evolves rapidly, then � should be relatively large,

.2 or higher. If, on the other hand, the demand distribution

evolves slowly, with occasional unusual and unpredictable de-

mands, then � should be set to a small value.

The exponential moving average is a reasonable scheme for

dynamically estimating the user request pattern when the collec-

tion of offered movies does not change. But how should the dis-

tribution be modified when a new movie is introduced? To an-

swer this question, movie–on–demand service providers should

study the strategies used by VCR tape rental companies, who

have had to address a similar problem. Obviously, the new distri-

bution will have to take in account the past success that the movie

(or a similar movie) has had in the big–screen movie theaters.

Of course it is also possible to dynamically copy movies that

experience unexpected high demand. This is indicated when a

particular movie proves to be much more popular than expected

early on in the evening. If one disk with that particular movie

(assuming localized placement) is still unused, this disk can be

used exclusively to produce a new copy. In this case there are no

seek or rotational delays involved and the transfer of the movie

is limited only by the the disk transfer rate. With the parameters

of Table I it takes B=r = 20 minutes to copy the movie. If all

of the disks storing the unexpectedly popular movie are already

serving clients, the copy should be made from the disk serving

the fewest clients. In this case seek and rotational latencies are

incurred and copying the movie takes therefore longer.

V. RELATED WORK

There is a large body of literature that addresses striping and

placement strategies for continuous stored media which is com-

plementary to the problems addressed in this paper. The tutorial

by Gemmel et al. [6] gives a general introduction to the issues

involved in video server design.

Gafsi and Biersack [4] study video servers with full strip-

ing, i.e., each video is striped over all the disks in the server;



group striping is not considered. Gafsi and Biersack introduce

Mean Grained Striping (MGS), a striping technique whereby

each block is striped over a different subset of the disks. Roughly

speaking, MGS is similar to CGS if the blocks are striped over

few disks; if the blocks are striped over many disks MGS is sim-

ilar to FGS. Gafsi and Biersack compare the maximum num-

ber of supported streams, the start–up latency and the buffer re-

quirement of the FGS, MGS, and CGS schemes. They find that

CGS can support roughly three times as many streams as FGS.

However, they also find that the worst–case start–up latency with

CGS is approximately five times larger than the start–up latency

with FCS. The full–striping video servers studied in [4] have typ-

ically start–up latencies of the order of tens of seconds. We have

shown in this paper that given a 1 second constraint on interac-

tive delays, FGS and CGS can support about the same number of

streams when a small striping width is used. We have also shown

that CGS performs extremely poorly for larger striping widths.

Özden et al. [5] study FCS and CGS in video servers with

full striping. Their focus is on finding the block size that max-

imizes the maximum number of streams the server can support

while concurrently minimizing the server cost. A great deal of

attention is devoted to the analysis of the scheduling of user re-

quests in the CGS scheme. Özden et al. find that for the same

server cost CGS can support roughly three to four times as many

streams as FCS. However, start–up latencies and interactive la-

tencies, which are a key design constraint in this paper, are not

studied in [5].

Vin et al. [7], [8] study striping for VBR media. Their strip-

ing technique is similar to CGS in that each disk stores a fixed–

size block. Due to the VBR nature of the stored videos, how-

ever, the number of blocks (and hence the number of disks) ac-

cessed in a fixed–length round varies. Their model assumes that

the movies are uniformly replicated. It also assumes that the user

request distribution is uniform, that is, a user is equally likely to

request any of the stored movies. Vin et al. argue that the num-

ber of streams that the disk array can support is limited by the

the most heavily loaded disk. They develop an analytical model

for the work load of the most heavily loaded disk. This model is

used to determine the block size for striping that maximizes the

number of supported streams.

Chervenak et al. [9] study the performance of video servers in

Video on Demand (VoD) systems that do not allow for any inter-

activity, such as VCR actions, and have a 60 second start–up de-

lay. Their study is restricted to localized placement and full strip-

ing; group striping is not considered. Chervenak et al. find that

for their non–interactive VoD system full striping outperforms

localized placement. We have shown in this paper that this re-

sults does not hold for highly interactive video servers.

Flynn and Tetzlaff [10], [11] study block assignment schemes

for CGS. They consider the round–robin assignment scheme and

different permutation based schemes. They investigate the im-

pact of the different assignment schemes on reliability and re-

sponse time of the server.

VI. CONCLUSION

We have studied the placement of videos on disk arrays of

interactive video servers. We have taken a critical look at the

conventional wisdom to to use wide striping, (i.e., to stripe the

videos over the entire disk array) in order to avoid the hot–spot

problem. Our numerical studies based on the parameters of cur-

rent high performance disks demonstrate that wide striping re-

sults in low throughput when tight constraints on interactive de-

lays are imposed. We advocate localized placement (i.e., no

striping at all) or striping with a narrow striping width to achieve

high throughput in highly interactive video servers. In order

to overcome the hot–spot problem we propose to replicate the

videos according to an estimate of the user’s request pattern. We

have outlined how such an estimate can be obtained. We have

demonstrated that localized placement is the placement strategy

of choice when a good estimate of the user’s request pattern

can be obtained. Besides giving high throughput and good re-

sponsiveness to interactions, localized placement is simple, al-

lows for straightforward disk scheduling and avoids the relia-

bility problems that arise with striping. If only a rough esti-

mate of the user’s request pattern can be obtained we recom-

mend to stripe over two disks. We have demonstrated that a strip-

ing width of two gives high throughput and responsiveness even

when the actual user’s request pattern differs significantly from

the estimate.

REFERENCES

[1] G. K. Zipf, Human Behavior and Principle of Least Effort: An Introduction
to Human Ecology, Addison–Wesley, Cambridge, MA, 1949.

[2] A. L. N. Reddy and J. C. Wyllie, “I/O issues in a multimedia system,”
Computer, vol. 27, no. 3, pp. 69–74, Mar. 1994.

[3] H. Boegeholz, “Platten–karussell: 263 festplatten im vergleich,” c’t mag-
azine fuer computer technik, , no. 14, pp. 150–161, July 1998.

[4] J. Gafsi and E. W. Biersack, “Data striping and reliability aspects in dis-
tributed video servers,” in Cluster Computing: Networks, Software Tools,
and Applications, 1998, Available at http://www.eurecom.fr/˜erbi.

[5] B. Özden, R. Rastogi, and A. Silberschatz, “Disk striping in video server
environments,” in Proceedings of IEEE Conference on Multimedia Sys-
tems, Hiroshima, Japan, June 1996, pp. 580–589.

[6] D. J. Gemmel, H. M. Vin, D. D. Kandalur, P. V. Rangan, and L. A. Rowe,
“Multimedia storage servers: A tutorial,” IEEE MultiMedia, vol. 28, no.
5, pp. 40–49, May 1995.

[7] H. M. Vin, S. S. Rao, and P. Goyal, “Optimizing the placement of multi-
media objects on disk arrays,” in Proceedings of IEEE International Con-
ference on Multimedia Computing and Systems (ICMCS ’95), Washington
D.C., May 1995.

[8] P. J. Shenoy and M. Vin, “Efficient striping techniques for multimedia file
servers,” in Proceedings of NOSSDAV ’97, May 1997, pp. 25–36.

[9] A. L. Chervenak, D. A. Patterson, and R. H. Katz, “Choosing the best stor-
age system for video service,” in Proceedings of ACM Multimedia, 1995.

[10] R. Flynn and W. Tetzlaff, “Disk striping and block replication algorithms
for video file servers,” in Proceedings of 3rd IEEE International Confer-
ence on Multimedia Computing and Systems, Hiroshima, Japan, June 1996,
also available as IBM research report RC 20328.

[11] W. Tetzlaff and R. Flynn, “Block allocation in video servers for availability
and throughput,” in Proceedings of Multimedia Computing and Network-
ing, Jan. 1996, also available as IBM research report RC 20329.


