Ad-hoc Technology in Future IP based Mobile Communication Systems

Frank Fitzek

WWRF - Phoenix -7/8 march 2002

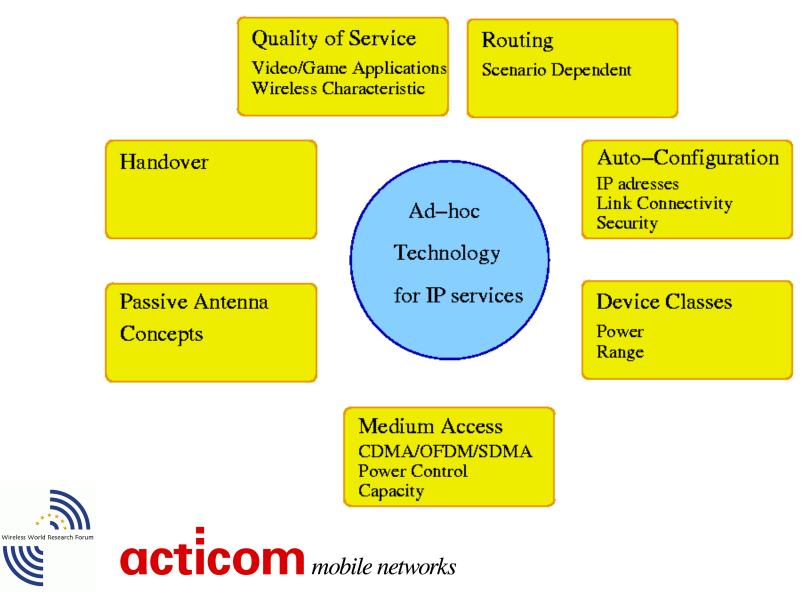
Martin Reisslein

Arizona State University

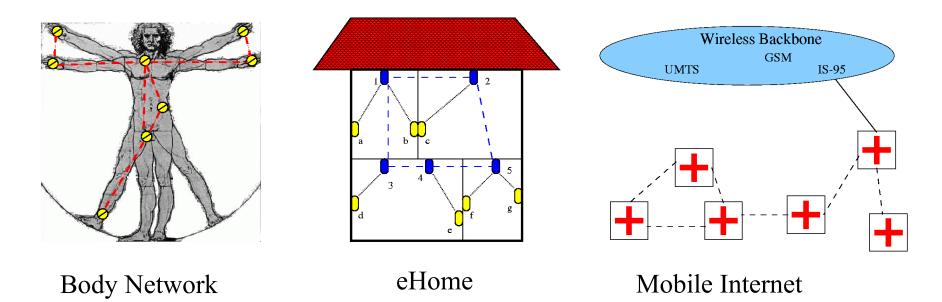
Adam Wolisz

Technical University Berlin

Holger Boche


Heinrich Hertz Institut

Content


- Required Research
- Ad-hoc Testbed
- Expected Results and Time Frame

Required Research

Routing

For different network types with different device classes the solution for routing strategies differ dramatically.

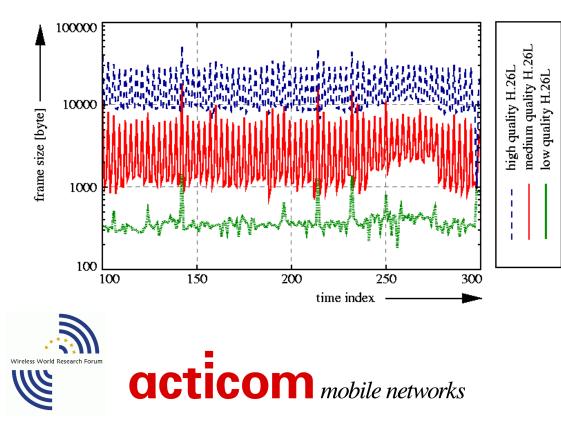
Auto-Configuration

- Assignment and release of IP addresses
 - omnipresent related protocols can not deployed in adhoc networks (DHCP)
 - dynamic default routes for bridging into fixed networks
- Link Connectivity
 - before IP connectivity link status has to be available
 - determine deterioration of link status versus out of range

Integrating Ad-hoc and Backbone

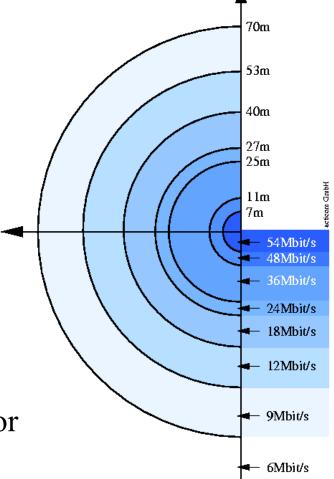
- Ad-hoc networks need to be integrated with existing infrastructure
 - Middleware systems like Microsoft .NET
 - Concepts for setting up secure, spontaneous collaborations of ad-hoc nodes
 - Automatically configuration for meaningful access to backbone servers (not merely IP)
 - Study traffic characteristics in such concepts

Making Ad-hoc Networks Meaningful


- Ad-hoc networks will carry new types of applications (e.g., sensor networks)
- Access to such applications has different semantics, e.g., addressing
 - Concepts for coupling ad-hoc/sensor networks with existing IP networks
 - Make non-standard address semantics accessible to IP networks (e.g., "any one temperature sensor in the bedroom")
 - Default toolbox for distributed applications (e.g., peer-to-peer networks) in ad-hoc networks (handling impact of wireless and mobility)
 - Testbed to be developed

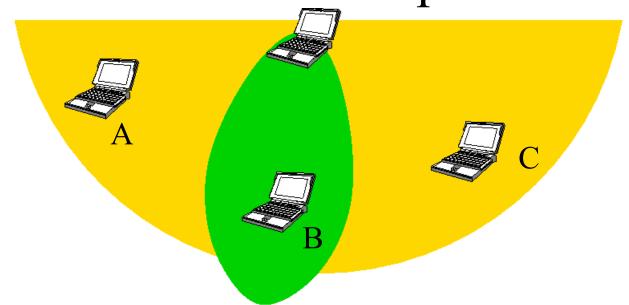
QoS - H.26L Video Streams

- Investigation of video sequences
- Sophisticated source model for simulations
- Video services have tightest QoS requirements


TML 9.7 software
first results for reference
video sequences (akiyo, etc)
movies, sport, news for
different quality levels
wireless adapted data rates
(QCIF/CIF)

QoS - Wireless Link

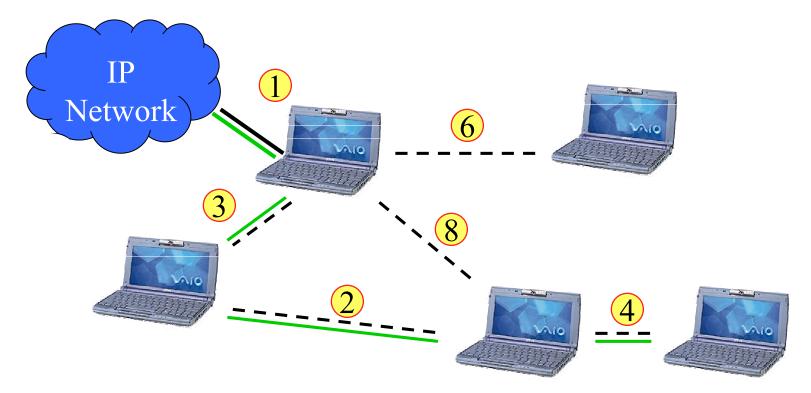
- IEEE802.11a and Hiperlan2 are based on 5GHz technology
- OFDM + Multi-Modulation
- Data rate depends on distance between sender and receiver
- Range is a function of the antenna concept
- Measurement of IEEE802.11a interface cards started (office, outdoor, mall)
- Channel models will be generated for simulation purposes


Medium Access Control

- Omnipresent Techniques such as IEEE802.11a/b have some well known disadvantages for ad-hoc networks (RTS/CTS)
- Approach:
 - Tuning the RTS/CTS scheme
 - Usage of SDMA capability
 - New (ad-hoc aware) MAC scheme
 - OFDM/CDMA/SDMA
 - Power aware (passive antenna concepts)

Passive antenna concept for ad-hoc

- Reduce the blocking area
- Power saving with passive antenna concept
- Combination with space-time processing



Ad-hoc Testbed

- First simple ad-hoc test-bed
- Based on IEEE802.11b technology
 - 11Mbit/s
 - PRISM2 Chip Set
- Provision of real time video services
 - H.261, 64kbit/s, CIF
 - Ophone software
- Link quality aware routing

Ad-hoc Testbed

Ad-hoc Testbed - Insights

- successfully demonstrated at Marriott Hotel in Munich with one video flow over three hops
- high variance in transmission delay resulting in medium quality
- well known RTS/CTS problem occurred

Li,Blake,De Cuoto, Lee, Moris MIT Capacity of ad-hoc wireless networks Proc MobiCom 2001, Rome

Expected Results and Time Frame

ID	Task	Q1 02		0	Q2 02		Q3 02			Q4 02			Q1 03			2 03		Q3 03			Q4 03		
		Jan Fe	b Mrz	Apr	Mai Jun	Jul	Aug	Sep	Okt	Nov	Dez	Jan	n Feb	Mrz	Apr	Mai Ju	n Jul	Aug	Sep	Okt	Nov	Dez	
1	Testbed																						
2	Video Measurement																						
3	Link Measurement																						
4	Auto- Configuration					•	_				_		_				_	_	_	_			
5	Routing						-	-	-	-	-	-	-	-	-		-	-	-	-	-	_	
6	Medium Access Control																						

Thank you for your attention!

www.acticom.info www.acticom.de

www.eas.asu.edu/~mre

www-tkn.ee.tu-berlin.de

www.hhi.de/bm

