
Received March 30, 2020, accepted April 20, 2020, date of publication April 22, 2020, date of current version May 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2989619

DSEP Fulcrum: Dynamic Sparsity and Expansion
Packets for Fulcrum Network Coding
VU NGUYEN 1, (Graduate Student Member, IEEE), ELIF TASDEMIR 1,
GIANG T. NGUYEN 1, (Member, IEEE), DANIEL E. LUCANI 2, (Senior Member, IEEE),
FRANK H. P. FITZEK 1,3, (Senior Member, IEEE), AND MARTIN REISSLEIN 3,4, (Fellow, IEEE)
1Deutsche Telekom Chair, 5G Lab Germany, Technische Universität Dresden, 01062 Dresden, Germany
2Department of Engineering, Aarhus University, 8200 Aarhus, Denmark
3Centre for Tactile Internet With Human-in-the-Loop (CeTI), Technische Universität Dresden, 01062 Dresden, Germany
4School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287-5706, USA

Corresponding author: Martin Reisslein (reisslein@asu.edu)

This work was supported in part by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as part of Germany’s
Excellence Strategy–EXC 2050/1–Project ID 390696704–Cluster of Excellence ‘‘Centre for Tactile Internet with Human-in-the-Loop’’
(CeTI) of Technische Universität Dresden, in part by the SCALE IoT Project granted by the Danish Council for Independent Research
under Grant DFF-7026-00042B, in part by the Aarhus Universitets Forskningsfond Starting Grant under Project AUFF-2017-FLS-7-1,
in part by the Aarhus University’s DIGIT Centre, the Ministry of Education and Training of Vietnam Project 911 under
Grant 911/QD-TTg, and in part by the Ministry of National Education Turkey.

ABSTRACT Fulcrum coding combines a high-field outer Random Linear Network Coding (RLNC) that
generates outer coding expansion packets with a small-field inner RLNC that combines the source packets
and the outer coding expansion packets. This two-layer Fulcrum coding allows flexible decoding in receivers
with heterogeneous computational capabilities. Fulcrum coding has so far only been studied for conventional
dense RLNC, which randomly selects all coding coefficients, and only for a statically fixed number of outer
expansion packets. However, the probability that the coding coefficient row of a newly received packet
is linearly independent of prior received coding coefficient rows (a prerequisite for successful decoding) is
highly dynamic.We propose to exploit the dynamics of this probability to reduce the computational complex-
ity of Fulcrum coding. In particular, we vary the density of non-zero coding coefficients, i.e., equivalently,
the sparsity of coding coefficients, and the number of outer expansion packets to keep the complexity low
while maintaining a reasonably high decoding probability. We introduce the general principles of dynamic
sparsity and expansion packets (DSEP) for Fulcrum coding as well as two specific example DSEP policies.
Our evaluations indicate that DSEP Fulcrum can increase the encoding throughput tenfold and increase
the decoding throughput 1.4 to 4.3 fold while achieving decoding probabilities that are typically less than
1% lower than the conventional Fulcrum decoding probabilities. We also find that DSEP achieves somewhat
higher encoding and decoding throughputs than the CodornicesRq (Release 2.1) implementation of RaptorQ
block coding for small blocks (generations) of source packets, while RaptorQ is substantially faster for
large generation sizes. Furthermore, we develop and evaluate an elementary DSEP recoding mechanism that
achieves a recoding throughput more than double the decoding throughput.

INDEX TERMS Computational complexity, heterogeneous devices, random linear network coding (RLNC),
RaptorQ, recoding, sparsity, throughput.

I. INTRODUCTION
Random Linear Network Coding (RLNC) has the
potential to greatly improve the performance of unreliable
complex communication networks, including body area

The associate editor coordinating the review of this manuscript and

approving it for publication was Angelos Antonopoulos .

networks [3], cellular and radio access networks [4], [5],
vehicular and wireless sensor networks [6], [7], and general
wireless networks [8]–[12], as well as unreliable complex
information technology infrastructures, such as data caching
infrastructures [13]–[15]. One main hurdle that prevents the
widespread adoption of RLNC in communication networks
and information technology systems is the computationally

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 78293

https://orcid.org/0000-0003-2137-2711
https://orcid.org/0000-0001-9193-8085
https://orcid.org/0000-0001-7008-1537
https://orcid.org/0000-0001-5325-8863
https://orcid.org/0000-0001-8469-9573
https://orcid.org/0000-0003-1606-233X
https://orcid.org/0000-0002-3546-1080

V. Nguyen et al.: DSEP Fulcrum

highly demanding matrix multiplication and matrix inversion
required for RLNC decoding [16]–[19]. While the computa-
tional capabilities of network nodes are generally increasing
and some senders and receivers have abundant computational
capabilities [20], [21], a wide range of senders and receivers
will continue to have limited computational capabilities for
the foreseeable future. For instance, the emerging Inter-
net of Things (IoT) paradigm features large numbers of
low-cost senders and receivers with limited computational
capabilities [22]–[25] that need to reliably communicate over
error-prone wireless links and networks. On the other hand,
due to emerging ultra-low-delay services and applications,
there is a trend to push some service computing from the
multi-access edge cloud (MEC) towards the clients and to
let an ad hoc cloud of clients collaborate with the MEC [20],
[21]. To make this involvement of clients in service comput-
ing feasible, it is critical to keep other workloads, e.g., from
RLNC encoding and decoding, low.

The recently introduced Fulcrum RLNC [26] has
addressed this high computation demand with a two-layer
RLNC structure: An outer coding operates in a large Galois
field GF(2h), e.g., with h = 8 (also referred to as high
field), while an inner coding operates in the small GF(2)
(low field). While this two-layer Fulcrum RLNC is still
computationally complex at the encoder, Fulcrum enables
three possibilities for the decoding: A low-complexity inner
decoding in GF(2), a high-complexity outer decoding in the
large GF(2h), and a combined decoding involving a mixture
of operations in both fields. The Fulcrum coding introduced
in [26] utilized a static number of expansion packets in the
high field GF(2h) and employed dense coding in the sense
that each coding coefficient was uniformly randomly drawn
from the respective GF .

Recently sparse RLNC has emerged as a promising strat-
egy for reducing the computational complexity of conven-
tional (non-Fulcrum) RLNC encoding and decoding [27]–
[32].
In this study, we advance the fields of Fulcrum coding and
sparse RLNC by investigating sparse RLNC in the context
of Fulcrum coding. We first examine static (fixed) levels of
sparsity for the outer coding, the inner coding, as well as
both the outer and inner coding in Fulcrum in Section III.
We find that sparse inner coding combined with conventional
dense outer coding, which we abbreviate to SIDO, achieves a
good compromise between high coding throughput and high
decoding probability.

Next, in Section IV, we introduce and evaluate dynamic
SIDO that adapts the sparsity level of the inner coding accord-
ing to the number of linearly independent coded packets
at the receiver, i.e., the so-called receiver rank. Moreover,
we dynamically vary the number of outer expansion packets
that are utilized in the inner coding, resulting in the concept
of dynamic sparsity and expansion packets (DSEP) Fulcrum,
which is the main contribution of this article. We evaluate
two example DSEP policies through extensive simulations.
We find that DSEP Fulcrum vastly increases the encoding

TABLE 1. Summary of main notations.

throughput (typically by over an order of magnitude) and
achieves moderate decoding throughput increases (1.4 to
4.3 fold) compared to conventional Fulcrum coding. These
throughput increases reflect the reductions in the encoding
and decoding computational complexities achieved by DSEP
Fulcrum. We confirmed that these complexity reductions
are achieved at the expense of only slightly reduced decod-
ing probabilities (typically less than 1% lower) compared
to conventional Fulcrum. We also verified that these DSEP
performance improvements are nearly maintained by prac-
tical feedback-free DSEP operation that assumes that the
receiver rank is equal to the number of transmitted coded
packets. Even for packet loss probabilities of 10% during net-
work transport, the practical feedback-free DSEP operation
achieves approximately 1.5 times higher decoding through-
put and essentially the same decoding probabilities as con-
ventional Fulcrum. We make the DSEP code base publicly
available at https://github.com/nguyenvutud/DSEP.

II. BACKGROUND AND RELATED WORK
A. BACKGROUND ON FULCRUM CODES
The main notations are summarized in Table 1. Consider a
sender transmitting a batch of n data packets, typically called
a generation (or block), to the receivers. Fulcrum coding
expands the set of original packets P = {p1, p2, . . . , pn}
into n + r packets, as illustrated in Fig. 1. The r expansion
packets are created with outer coding coefficients c`,j, that are
randomly selected by the encoder from GF(2h) [26], as

o` =
n∑
j=1

c`,jpj, ` = 1, 2, . . . , r . (1)

These r expansion packets o` along with the n original
data packets pj are now treated as a new batch of pack-
ets {p1, p2, . . . , pn} ∪ {o1, o2, . . . , or } = O = {oj, j =
1, 2, . . . , n, n + 1, . . . , n + r}, that will undergo the inner
encoding in GF(2). In particular, the inner encoding with the
inner coding coefficients λ`,j, that are randomly selected by
the encoder from GF(2), results in the inner coded packets

I` =
n+r∑
j=1

λ`,joj, ` = 1, 2, (2)

These inner coded packets I` are then sent throughout the
network. The inner coded packets can be easily recoded at
intermediate nodes and allow decoders to operate on either
the inner or outer code, or a combination thereof, depending
on the available computing power [36], [37]. A decoder that

78294 VOLUME 8, 2020

V. Nguyen et al.: DSEP Fulcrum

FIGURE 1. Illustration of Fulcrum outer and inner encoding [26] with n = 4 data packets and r = 2 expansion packets. The illustrated outer encoding is a
systematic encoding that treats the original data packets as outer coded packets [15], [33]–[35] while the r = 2 expansion packets are linear
combinations of the original data packets with outer coding coefficients c`,j from GF (2h). The n+ r = 6 outer coded packets form the packet set O, and
these packets in the set O are linearly combined with inner coding coefficients λ`,j from GF (2) to give the inner coded packets.

operates on the outer code has to perform particular steps to
convert the inner code to the outer code before decoding in
the high field GF(2h) [26], [37].

B. RELATED WORK
RLNC emerged from the compute-and-forward
paradigm [38]–[41], which recodes packets in intermediate
network nodes. RLNC can operate on blocks of source
packets or a sliding window covering multiple source pack-
ets [42]–[47]. We develop DSEP Fulcrum as a block code
that builds on RLNC block coding. Before reviewing related
RLNC research, we briefly review high-performance block
codes, which provide a useful comparison perspective for
this study. High-performance block codes have typically
low asymptotic computational complexity and achieve high
packet decoding probabilities. A prominent line of recent
high-performance block codes are Fountain codes [48]–[51]
and their variations, such as the Luby Transform (LT) [52]
and Raptor codes [53]–[55] (which are the basis for the Third
Generation Partnership Project (3GPP) standard [56]). Block
codes permit for recoding at intermediate network nodes
in some specific networking scenarios, e.g., scenarios that
permit so-called distributed LT coding [57], [58]. Generally,
the coded packets could be decoded and then re-encoded in
intermediate network nodes.

The RaptorQ code [59] is the basis for the forward
error correction considered by the Internet Engineering Task
Force (IETF) in the Request for Comments (RFC) 6330 [60]
and is used by the Advanced Television Systems Commit-
tee (ATSC) 3.0 standard. RaptorQ consist of a pre-coding
that generates intermediate symbols that are subsequently
LT coded. The RaptorQ pre-coding consist of a low-density
parity check code (LDPC) stage that operates in GF(2) and
a high-density parity check code (HDPC) stage that oper-
ates inGF(28). RaptorQ has linear asymptotic computational
complexity in the number n of source packets in a generation
and achieves a packet decoding probability of 99% when

decoding from n coded packets (i.e., without any received
extra coded packets) [56], [59]–[61]. RaptorQ has been con-
sidered for a wide range of communications applications,
e.g., [61]–[64].

RaptorQ allows for systematic coding, i.e., the source sym-
bols can be sent in uncoded form, followed by the transmis-
sion of coded packets. More specifically, the source symbols
are part of the encoding, and any combination of source
and repair symbols can be used to recover missing source
symbols. Systematic coding is important in practice: (i) to
reduce end-to-end latency, since the source symbols can
immediately be transmitted as they become available from
the application, instead of waiting for all n source symbols to
become available from the application and be encoded before
transmitting any symbols; (2) because in most applications,
there can be amix of receivers, some supporting forward error
correction (FEC) decoding, and some not, and thus it is cru-
cial to be able to send the source symbols for the benefits of
those receivers that do not have an FEC decoder. In contrast,
Fulcrum RLNC and the DSEP Fulcrum RLNC developed in
this article are non-systematic, sending all data in coded form.
The development of systematic forms of Fulcrum RLNC and
DSEP Fulcrum RLNC are important directions for future
research.

Regarding recoding at intermediate network nodes,
we note that a single RaptorQ decoding and re-encoding
along a multi-hop path has the same complexity as a single
RaptorQ encoding or decoding (without any packet header
blowup). Moreover, since RaptorQ coding is a linear com-
bination of intermediate symbols [60], one could specify
a linear combination vector as part of the packet header.
Such a linear combination vector could be represented with a
packet header structure similar to the RLNC packet header
structure [65], [66] and thus could keep track of linear
recodings in intermediate network nodes. We employ the
CodornicesRq (Release 2.1) implementation [67] of Rap-
torQ for our evaluations. CodornicesRq (Release 2.1) does

VOLUME 8, 2020 78295

V. Nguyen et al.: DSEP Fulcrum

not include the outlined linear combination vector packet
header structure. CodornicesRq (Release 2.1) can be used
for encoding, decoding, or recoding of blocks of at least
n symbols (when encoding, these are the source symbols;
when recoding or decoding, these are the received symbols).
The intermediate block is generated from these source sym-
bols or received symbols. Once the intermediate block is
generated, any symbol can be generated (when encoding,
this is used to generate repair symbols to be sent; when
recoding, this is used to generate recoded symbols for onward
transmission; when decoding, this is used to generate missing
source symbols).

One avenue for reducing the RLNC computational com-
plexity is to consider small Galois fields [68]–[72], at the
expense of reduced decoding probability due to higher prob-
abilities of linearly dependent coded packets. The Fulcrum
RLNC approach enables the flexible recoding and decod-
ing in either a small Galois field (mainly at the expense of
accumulating more coded packets to compensate for linear
dependencies) or a large Galois field (incurring the high
complexities), or a combination thereof [26]. An alternative
approach to reduce computation complexity is systematic
network coding [15], [33]–[35], which transmits the origi-
nal packets in uncoded form and inserts a small number of
coded packets into a generation to compensate for network
transport losses.We employ systematic network coding in the
outer coding of the sparse Fulcrum coding examined in this
study.

The other main alternative to reducing the RLNC com-
putational complexity is to utilize sparse coding coefficient
rows, with only a relatively small prescribed number of
non-zero coding coefficients. Sparse RLNC [73]–[78] has
been examined in a range of contexts, including broadcast
systems [79]–[81], data compression [82], and secure com-
munications [83]. The decoding probability and delay for
sparse RLNC have been analyzed in [84]–[88], while the
tuning of the sparsity has been examined in [89]–[92], and
sparsity for slidingwindowRLNC [42]–[47] has been studied
in [93], [94]. To the best of our knowledge, sparse RLNC has
not yet been examined in the context of the flexible Fulcrum
RLNC approach. The present study builds on the prior work
on sparse RLNC in non-Fulcrum contexts to devise and eval-
uate sparse forms of Fulcrum RLNC.

III. STATIC SPARSE FULCRUM CODING
A. ENCODING
The original Fulcrum encoding [26] (i) combines all original
data packets with uniformly randomly generated outer coding
coefficients c`,j in order to create the expansion packets, and
(ii) combines all original data packets as well as all expansion
packets with uniformly randomly generated inner coding
coefficients λ`,j in order to create the inner coded packets.
In contrast, we manipulate the outer and inner encoding by
adjusting the number of non-zero coding coefficients, i.e., the
sparsity of the outer and inner encoding.

Algorithm 1 Sparse Outer Fulcrum Encoding
Input: Gen. size n, data pkts. P = {p1, p2, . . . , pn}, # of

expansion pkts. r , sparsity level w
Output: Set of outer coded packets O

O← P
for ` = 1 to r do
Set of considered data pkts. for encoding J ← ∅,
initialize coded pkt. o`← E0, k ← 1
while k ≤ w do
j← Random value (data pkt) from {1, 2, . . . , n} \J
J ← J ∪ {j}
c`,j← Random value (cod. coeff.) from GF(2h)
o`← o` ⊕ (c`,jpj)
k ← k + 1

end while
O← O

⋃
{o`}

end for

Algorithm 2 Sparse Inner Fulcrum Encoding
Input: Gen. size n, # expansion pkts. r , set of orig. ∪ expan-
sion. pkts. O, sparsity level w,

Output: Inner coded packet I`
Set of considered pkts. J ← ∅, I`← E0, k ← 1
while k ≤ w do
j← Random value (pkt) from {1, 2, . . . , n+ r} \ J
J ← J ∪ {j}
I`← I` ⊕ oj
k ← k + 1

end while

The sparse outer Fulcrum encoding, as summarized in
Algorithm 1, combines only w, w ≤ n, of the original data
packets with outer coding coefficients c`,j that are randomly
selected from GF(2h) to form a given expansion packet o`.
(We neglect that the random selection gives with probability
1/2h a zero and assume for simplicity that all w randomly
selected coefficients are non-zero.) That is, effectively n−w
coding coefficients are zero, i.e., the corresponding n−w data
packets are not considered when forming the coded packet o`.

The sparse inner Fulcrum encoding, as summarized in
Algorithm 2, combines only w, w < (n + r)/2, packets
from the packet set O to form an inner coded packet I`.
Conventional inner Fulcrum coding for an inner coded
packet I` selects a randomGF(2) coding coefficient λ`,j, j =
1, 2, . . . , n + r , (which can be zero or one) for each of
the n + r packets in the set O. On average, half of the
n+ r coding coefficients λ`,j are zero, i.e., the corresponding
packets are not considered in forming the inner coded packet.
In Algorithm 2, we have modified the conventional algorithm
for GF(2) encoding [95] to only consider a uniform random
subset of w, w ≤ (n+ r)/2, out of the n+ r packets of setO
for forming a given inner coded packet I`. Effectively these
w packets correspond to the packets with a coding coefficient
λ`,j of one in conventional GF(2) coding. Accordingly, the

78296 VOLUME 8, 2020

V. Nguyen et al.: DSEP Fulcrum

sparsity definitions of the outer and inner Fulcrum coding
are subtly different: For the outer encoding, w, w ≤ n,
is the number of considered coding coefficients, which are
uniformly randomly drawn from GF(2h) (and could be zero
with a minuscule probability); for the inner encoding,w, w ≤
(n+ r)/2, is the number of non-zero (i.e., one-valued) GF(2)
coding coefficients (whereby the uniform random selection of
n+ r GF(2) coefficients would on average result in (n+ r)/2
one-valued coefficients).

In the following, we refer to the conventional encoding,
which is accomplished for w = n in the outer encoding
and for w = (n + r)/2 in the inner encoding as ‘‘dense’’.
Encodings with smaller w are referred to as ‘‘sparse’’. There
are three variations of the sparse Fulcrum codes:
• Sparse Inner–Sparse Outer (SISO): SISO applies sparse
encoding for both the outer and inner encoding.

• Sparse Inner–Dense Outer (SIDO): SIDO combines
conventional dense outer RLNC encoding with sparse
inner encoding with w < (n+ r)/2 in Alg. 2.

• Dense Inner–Sparse Outer (DISO): DISO combines
sparse outer encoding with w < n in Alg. 1 with con-
ventional dense inner encoding, which has on average
(n+ r)/2 one-valued inner coding coefficients.

B. RECODING AND DECODING
The conventional Fulcrum recoding functionalities remain
unchanged, i.e., typically, each intermediate node operates
as an inner encoder. More specifically, when an intermediate
node receives the GF(2) inner coded packets, the node stores
the packets in a buffer. The received packets are recoded with
new randomly drawnGF(2) coding coefficients to create new
coded packets for transmission to the next hops. In particular,
a randomly chosen half of the buffered packets are XORed
with each other to create a recoded packet, as examined in
Section V-C4. This recoding encompasses both the packet
data and the coding coefficient vector in the packet header,
so that the packet header size is not changed by the recoding
and the existing techniques for the compact representation of
the coding coefficient vectors, e.g., [66], can be applied.

The intermediate nodes can also use some other recoding
techniques. For instance, an intermediate node can recreate
the original code structure and generate the r additional
dimensions that are missing in the inner code, if the node
collects n linearly independent coded packets and then maps
back to the high fieldGF(2h) in order to decode the data with
outer decoding.

The decoder of sparse Fulcrum codes operates similarly to
its Fulcrum counterpart. In order to decode the coded packets,
the decoder can choose three types of decoding: inner, outer,
or combined decoding [26]. The only modification is that
a sparse Fulcrum decoder requires an additional parameter,
namely the density w. When the decoder uses outer or com-
bined decoding, it has exactly w non-zero outer coding coef-
ficients to match the outer encoding of the encoder. Encoders
and decoders can agree on the w value the same way they
agree on other key parameters, such as the generation size n.

C. EVALUATION
1) EVALUATION SETUP
We have implemented the three variations of sparse Ful-
crum codes using the Kodo library (kodo-fulcrum version
7.0) [96], see code at https://github.com/nguyenvutud/DSEP.
We have measured the encoding throughput and the decod-
ing throughput as well as the decoding probability with the
standard benchmarks available in the library. We have ini-
tially considered an end-to-end (one-hop) coding scenario,
where the source node (sender) encodes and the destina-
tion node (receiver) decodes, without recoding at interme-
diate network nodes. The decoding employed a progressive
decoder (on-the-fly version of Gauss Jordan algorithm [97])
that starts the decoding (coding coefficient elimination) with
the first received packet [16], [19]. The encoding throughput
is defined as the amount of payload data in a generation,
i.e., n× data packet size, divided by the encoding computation
time for n + r coded packets, including the outer encoding
and the inner encoding. The decoding throughput is defined
as the amount of payload data in a generation, i.e., n× data
packet size, divided by the decoding computation time for
recovering the n original data packets. Generally, the energy
consumption of RLNC encoding and decoding is linearly
proportional to the computational complexity; the encoding
and decoding throughput in turn is inversely proportional
to the computational complexity [98], [99]. Thus, a high
throughput indicates low energy consumption and vice versa.
The detailed evaluation of the energy consumption of DSEP
Fulcrum RLNC is left for future research.

Themeasurements were performed on a PCwith Intel Core
i5-4590 3.30 GHz CPU and 8 GB RAM. The data packet
size was 1500 bytes which mimics the maximum size of
Ethernet packets. The Galois field GF(2) was used for the
inner coding, while the outer coding was performed over the
Galois field GF(28). The number n of original packets in a
generation was varied from n = 16 to 1024. The number of
expansion packets was fixed to r = 2 and the sparsity level
was fixed to w = 5. We conducted over 1000 independent
replications for each evaluation scenario resulting in 95%
confidence intervals that are too tight to be visible in the plots.

2) THROUGHPUT RESULTS
Fig. 2 shows the encoding and decoding throughputs.
We observe from Fig. 2(a) that the two sparse Fulcrum vari-
ations with sparse inner coding, i.e., SISO and SIDO Ful-
crum, achieve substantially higher encoding throughputs than
original (dense) Fulcrum encoding and DISO Fulcrum. The
encoding throughput differences between SISO and SIDO
Fulcrum on one hand, and original and DISO Fulcrum on
the other hand become particularly pronounced for large
generation sizes n. The main reason for the strong impact
of the sparse inner coding on the encoding throughput is
the systematic outer coding, which conducts actual encoding
operations only for the r = 2 expansion packets (the n origi-
nal data packets are simply copied over to become systematic

VOLUME 8, 2020 78297

V. Nguyen et al.: DSEP Fulcrum

FIGURE 2. Encoding and decoding throughput [MByte/s] of static sparse Fulcrum variations and original Fulcrum for different generation sizes n for
sparsity level w = 5 and r = 2 expansion packets.

‘‘coded packets’’ [15], [33]–[35]). Thus, the overall compu-
tational effort for the encoding is dominated by the inner
coding; even though the inner coding is conducted in the low-
complexity GF(2), all inner coded packets are combinations
of the outer coded packets. Sparse inner coding combines a
fixed number ofw = 5 outer coded packets, while dense inner
coding combines all n packets (more specifically, on average
(n+ r)/2 of the random GF(2) inner coding coefficients will
be one, i.e., (n + r)/2 outer coded packets will on average
be combined to form a dense inner coded packet). Thus,
the dense inner coding computation effort increases substan-
tially for increasing generation size n. Generally, the RLNC
encoding computational complexity scales on the order of
O(n2) [18], leading to the nearly linear encoding throughput
decrease with increasing n in the log-scale plot in Fig. 2(a).
In contrast, the fixed sparsity level w gives nearly constant
encoding throughput for increasing n in the log-scale plot
in Fig. 2(a).

We note that for a non-systematic outer encoding, the rela-
tive contribution of the outer encoding to the overall compu-
tation effort for the encodingwould increase and the encoding
throughput would be relatively higher for the sparse outer
coding schemes and relatively lower for the dense outer
coding schemes.

Returning to the systematic outer coding, we observe from
Fig. 2 that the impact of the sparse outer coding (comparison
of SISO vs. SIDO as well as DISO vs. original Fulcrum) is
significant, especially for small generation sizes n, e.g., DISO
achieves nearly twice the encoding throughput of original
Fulcrum for n = 16. For increasing generation size n, the
impact of sparse outer coding shrinks, mainly because the
outer encoding computation effort (for computing a fixed
number of r = 2 expansion packets as linear combinations
of the n data packets in GF(28)) shrinks relative to the inner

encoding computation effort (for linearly combining on aver-
age (n+r)/2 outer coded packets inGF(2)) as the generation
size n grows.
Turning to the decoding throughput in Fig. 2(b), we

observe similar underlying trends as for the encoding
throughput in Fig. 2(a). That is, SISO and SIDO Fulcrum
achieve higher decoding throughputs than DISO and original
Fulcrum, especially for large generation sizes n. For instance,
for the combined and outer decoders, SISO and SIDO Ful-
crum achieve more than double the decoding throughput of
DISO and original Fulcrum for generation sizes of n = 512
and 1024. We also observe from Fig. 2(b) that inner decoding
achieves higher decoding throughput than combined decod-
ing, which in turn achieves higher decoding throughput than
outer decoding. These differences are due to conducting the
decoding inGF(2), a mix ofGF(2) andGF(28), andGF(28),
respectively.

Generally, we observe from Fig. 2 that sparsity can achieve
much more pronounced throughput increases for encoding
(more than an order of magnitude for large n) compared to
decoding (only roughly a doubling). This is mainly because
decoding needs to eliminate all n (or n+r) coding coefficients
of an incoming coded packet, whereby the involved matrix
inversion scales generally with O(n3). In contrast, the encod-
ing only needs to linearly combine a fixed number of w
packets, irrespective of the generation size n.

3) DECODING PROBABILITY RESULTS
Fig. 3 shows the decoding probability of a generation of
n = 128 data packets as a function of the number of
received extra coded packets, whereby zero received extra
coded packets correspond to the receipt of n inner coded
packets. We observe from Fig. 3 that combined decoding
(which achieves the same decoding probabilities as outer

78298 VOLUME 8, 2020

V. Nguyen et al.: DSEP Fulcrum

FIGURE 3. Decoding probability of generation of n = 128 data packets for
different static sparse Fulcrum coding variations as a function of number
of received extra coded packets (beyond n received packets) for r = 2
expansion packets and sparsity level w = 5.

decoding [26]) achieves significantly higher decoding proba-
bilities than inner decoding, even when shifting the curves
for inner decoding by r = 2 packets to the left to com-
pensate for the fact that inner Fulcrum decoding require at
least n+ r received inner coded packets (whereas combined
and outer Fulcrum decoding requires at least n received
inner coded packets [26]). The lower decoding probability
of inner decoding is mainly due to the higher probability
of linearly dependent coding coefficient rows in GF(2) than
in GF(28).
We also observe from Fig. 3 that for a given decoder

type, original Fulcrum achieves the highest decoding prob-
abilities, followed by DISO, SIDO, and SISO. The dense
GF(2) inner coding coefficients have already a relatively
high probability of linear dependent coding coefficient rows.
Sparse inner coding reduces the number of non-zero GF(2)
coding coefficients, thus further increasing the probability
of linearly dependent coding coefficient rows. SISO suf-
fers from this high probability of linear dependent cod-
ing coefficient rows, which is only modestly compensated
by the sparse outer coded expansion packets. The dense
outer coding in SIDO compensates more strongly for the
inner coding dependencies, resulting in a substantial increase
of the combined decoding probability. DISO avoids the
reduction of the linear independence by employing dense
inner coding and only mildly suffers from the sparse outer
coding, achieving slightly higher decoding probabilities
than SIDO.

Overall, we conclude that SIDO represents a good
compromise between high throughput (Fig. 2) and high
decoding probability (Fig. 3) and we henceforth con-
sider SIDO as the underlying sparse Fulcrum variation
in the development and evaluation of DSEP Fulcrum.
DSEP can be analogously applied to the other sparse Fulcrum
variations.

IV. DYNAMIC SPARSITY COMBINED WITH DYNAMIC
EXPANSION PACKETS
A. OVERVIEW
This section introduces dynamic sparse coding in Fulcrum
in conjunction with dynamic tuning of the number of outer
coding expansion packets. Based on the performance results
for static sparse Fulcrum coding in Section III, we focus
on SIDO, i.e., dynamic sparse inner coding in this section.
As a foundation, we first analyze the probability of receiving
an innovative coded packet that increments the number i
of linearly independent coded packets at the receiver as a
function of the sparsity level w of the encoding and the
number r of expansion packets in Section IV-B. We then
introduce the principle of dynamic sparse Fulcrum coding in
Section IV-C and the principle of tunable expansion packets
in Section IV-D. Subsequently, we analyze the sparsity level
w, i.e., the number w of packets to combine in the inner
encoding, as a function of a varying number of expansion
packets µ in Section IV-E.

B. PROBABILITY OF LINEARLY INDEPENDENT CODED
PACKET
Suppose that in conventional RLNC a receiver has
received i, i = 0, 1, 2, . . . , n − 1, linearly independent
coded packets (out of a generation of n packets, i.e., n lin-
early independent packets are required for decoding). The
number i of received linearly independent coded packets is
also referred to as the rank of the receiver coding coefficient
matrix, or for brevity, the receiver rank. The probability that a
newly received coded packet with densityw/n (at most 0.5) is
innovative (linearly independent with respect to the i received
packets) has been bounded from below in [89] as

PRLNCinnov. (i, n) ≥ 1− (1− w/n)n−i. (3)

Due to the power law nature of the lower bound in Eqn. (3),
the lower bound stays very close to one up to relatively
large numbers i of received independent coded packets that
approach the generation size n. For instance, for the con-
ventional dense coding with w/n = 0.5 and a typical small
generation size n = 64, the lower bound values are 0.999 for
i = n − 8, 0.984 for i = n − 6, 0.937 for i = n − 4,
0.75 for i = n − 2, and 0.5 for i = n − 1. Larger generation
sizes n give very similar dynamics; the lower bound of PRLNCinnov.
depends mainly on the number n− i of additional innovative
packets that are missing to ‘‘fill the generation’’, i.e., to reach
n received linearly independent coded packets.
For Fulcrum encoding with r expansion packets, the den-

sity is w/(n+r) and the inner encoding matrix has dimension
(n + r) × (n + r). The inner Fulcrum decoder needs n + r
linearly independent coded packets, i.e., the probability for
a newly received coded packet to be innovative has to be
evaluated for i = 0, 1, 2, . . . , n+ r−1 (prior) received linear
independent coded packets:

PFulc., inn.innov. (i, n+ r) ≥ 1− (1− w/(n+ r))n+r−i. (4)

VOLUME 8, 2020 78299

V. Nguyen et al.: DSEP Fulcrum

On the other hand, the inner encoding matrix has dimen-
sion (n)× (n+ r) for an outer or combined Fulcrum decoder.
The outer or combined Fulcrum decoder needs n linearly
independent coded packets. Thus, the probability for a newly
received coded packet to be innovative has to be evaluated
for i = 0, 1, 2, . . . , n− 1 (prior) received linear independent
coded packets:

PFulc., out.innov. (i, n) ≥ 1− (1− w/(n+ r))n−i. (5)

We initially assume perfect feedback, i.e., that the sender
has immediate accurate knowledge of the receiver rank i.
In Section V-C, we will compare operating without feedback,
i.e., assuming that the receiver rank i equals the number of
transmitted coded packets, to operating with perfect feed-
back. According to Eqns. (4) and (5), the expected number
of coded packets that is required to increase the number of
linearly independent coded packets from i to i + 1 can be
upper bounded by 1/PFulcr .innov. .

We define δ as a nominal prescribed number of extra coded
(overhead) packets. We suppose that δ is set sufficiently large
to ensure the decoding of the entire generation. We will con-
sider δ as an independent tuning parameter of the proposed
DSEP policies, as examined in detail in Section IV-C.We pro-
ceed to briefly analyze a lower bound for δ by summing over
an entire Fulcrum coded generation. Specifically, a receiver
with an inner decoder requires the reception of n+ r linearly
independent (inner) coded packets. The probability of the
event of the reception of a linearly independent coded packet
given i, i = 0, 1, 2, . . . , n + r − 1, (prior) received linear
independent coded packets is given by PFulc., inn.innov. (i, n+r), see
Ineq. (4). The expected number of packet receptions required
to receive a linearly independent packet is the inverse of
PFulc., inn.innov. (i, n+r). Thus, summing over the entire generation
gives

n+ r + δ ≥
n+r−1∑
i=0

1

PFulc., inn.innov. (i, n+ r)
. (6)

Following [89], we define the expected overhead for increas-
ing the number of linearly independent packets at the receiver
from i to i+ 1 as

γ (i, n+ r) =
1

PFulc., inn.innov. (i, n+ r)
− 1 (7)

and note that the nominal prescribed number δ of extra coded
packets should be larger than the actual number of extra coded
packets needed for obtaining n+r linearly independent coded
packets at the receiver, i.e.,

δ ≥

n+r−1∑
i=0

γ (i, n+ r). (8)

Analogously, a lower bound for δ can be obtained for
outer or combined decoding which requires n linearly inde-
pendent packets; thus, δ ≥

∑n−1
i=0 γ (i, n) =

∑n−1
i=0 (−1 +

1/PFulc., out.innov. (i, n)). For the outer or combined decoding,
the nominal prescribed number δ of extra coded packets

would be defined with respect to n transmitted inner coded
packets (whereas inner decoding considers δ with respect
to n + r transmitted inner coded packets). For consistency
and ease of comparison, we follow the convention of the
inner decoder for the rest of this paper, i.e., we consider the
nominal prescribed number δ of extra (inner) coded packets
with respect to n+ r (inner) coded packets.

C. PRINCIPLE OF DYNAMIC SPARSE FULCRUM CODING
Our goal is to define the density w/(n + r) as a dynamic
density that adapts according to the number i of received lin-
early independent coded packets. Thus, we define w(i), i =
0, 1, . . . , n+ r − 1, as the number of packets from the set O
of original data packets and expansion packets that are to be
combined for forming the next inner coded packet I`.Wewish
to express w(i) as a function of the receiver rank i and the
remaining Fulcrum encoding parameters, namely generation
size n, number r of outer coding expansion packets, and
parameter δ. There are two main avenues, namely setting the
probability of a received innovative packet PFulc.innov.(i, n) to a
constant or setting the overhead γ (i, n+ r) to a constant (that
is held fixed as the receiver rank i varies). We pursue the
analysis based on the overhead γ (i, n + r) in Section IV-E.
The overhead γ (i, n+ r) has been examined for conventional
RLNC with different levels of sparsity w, GF field sizes, and
generation sizes n in [95]. The results from [95] can be used
to set a suitable δ for a particular encoding scenario.

D. PRINCIPLE OF DYNAMIC EXPANSION PACKETS
This section introduces the principle of dynamic expansion
packets which adjusts the number of outer coding expansion
packets that are included in the coding of inner coded packets.
More specifically, a dynamic expansion packet protocol can
exploit the number i of received linearly independent coded
packets, i.e., the receiver rank i, to increase the number of
included expansion packets so as to maintain a high proba-
bility of linear independent coded packets at the receiver.

The r expansion packets in the conventional Fulcrum
encoding ensure a high probability of receiving linearly inde-
pendent packets and increase the robustness against packet
losses over error-prone networks. A small r is suitable
when linearly dependent coded packets and packet losses are
unlikely to occur. However, when there are frequent linearly
dependent coded packets or packet losses, then a larger r will
substantially increase the probability of linearly independent
coded packets and the resilience against packet losses.

The main idea of dynamic expansion packets is to generate
the inner coded packets without the expansion packets at the
beginning of a generation and then to increase the number of
expansion packets included in the formation of inner coded
packets towards the end of a generation. When nearing the
end of a generation, the decoder has collected a large number
i of linearly independent coded packets, which decreases the
probability of newly received coded packets being linearly
independent.

78300 VOLUME 8, 2020

V. Nguyen et al.: DSEP Fulcrum

More specifically, instead of including all n original
data packets and all r expansion packets in the forma-
tion of inner coded packets, i.e., summing up to n + r in
Eqn. (2), we define a new variable µ, 0 ≤ µ ≤ r ,
for the number of expansion packets that are considered
for the inner encoding. Formally, given the set of pack-
ets O = {p1, p2, . . . , pn, on+1, on+2, . . . , on+r } produced
by the outer encoding, the inner encoding includes a vari-
able number µ, 0 ≤ µ ≤ r , of the expansion packets
on+1, on+2, . . . , on+r , i.e.,

I` =
n+µ∑
j=1

λ`,joj, (9)

For µ = 0, no expansion packet is included in the lin-
ear combination forming the inner coded packet I`, i.e., for
µ = 0, the Fulcrum inner coding is equivalent to conventional
RLNC in GF(2).

E. SPARSITY LEVEL AS A FUNCTION OF NUMBER OF
EXPANSION PACKETS µ AND RECEIVER RANK
When combining a dynamic sparsity level w(i) with a
dynamic number µ of expansion packets, the static (maxi-
mum) number r of expansion packets in Eqns. (4) and (5)
needs to be replaced with the actual number µ of expansion
packets that are considered for the encoding of the next inner
coded packet (that seeks to increment the receiver rank from i
to i+1). Thus, for Fulcrum inner decoding, where the number
i of (prior) received linearly independent packets increases up
to n+ µ− 1 (whereby µ can ultimately increase up to r),

PFulcr ., inn.innov. (i, n+ r) ≥ 1− (1− w/(n+ µ))n+µ−i. (10)

For Fulcrum outer decoding,

PFulcr ., outinnov. (i, n) ≥ 1− (1− w/(n+ µ))n−i. (11)

We derive the sparsity level, i.e., the numberw(i) of packets
to combine in the inner decoding, so as to meet a fixed
overhead of δ/(n + r) for each receiver rank i (as explained
in Section IV-C), i.e., we posit

γ (i, n+ r) =
δ

n+ r
∀i = 0, 1, . . . , n+ r − 1. (12)

We set the right-hand side of Eqn. (7) equal to the
right-hand side of Eqn. (12) and utilize Inequality (10)
for PFulc., inninnov. (i, n + r) to obtain an upper bound for w(i).
Noting that the density should not exceed half of the packets
in the setO considered for the inner encoding, i.e., should not
exceed (n+ µ)/2, we set the sparsity level to

w(i) = (n+ µ) min

{
1
2
, 1− n+µ−i

√
1−

n+ r
n+ r + δ

}
. (13)

We round the w(i) obtained from Eqn. (13) to the nearest
integer and always set at least one coefficient, i.e., set w(i)
at least to one.

V. DSEP POLICIES
This section first introduces example policies for jointly
dynamically adapting the number µ of expansion packets
and the sparsity level w in Sections V-A and V-B. Then,
Section V-C presents performance evaluation results for the
introduced policies.

A. EXAMPLE POLICY: DYNAMIC SPARSITY WITH
EXPANSION PACKETS REGION-BASED (DSEP-R)
For a given generation size n, maximum number r of expan-
sion packets, and nominal overhead δ, the DSEP-R policy
follows the region based approach from [31], referred to as
DTEP approach in [2]. In particular, regions are specified by
successive halving of the remaining set of missing packets.
We define the cut-off receiver rank values

c(k) =
⌊
n
2k − 1
2k

⌋
, k = 1, 2, . . . , r . (14)

For instance, for r = 4, these cut-off values are c(1) = bn/2c,
c(2) = b3n/4c, c(3) = b7n/8c, and c(4) = b15n/16c (which
for n = 64 equal 32, 48, 56, and 60). Then, we set µ = 0 for
receiver ranks i = 0, 1, . . . , c(1) and adjust w(i) according to
Eqn. (13). Then, for receiver ranks i = c(1) + 1, . . . , c(2),
we set µ = 1 and adjust w(i) according to Eqn. (13), and
so on. Finally, for receiver ranks i = c(r) + 1, . . . , n + r ,
we set µ = r and adjust w(i) according to Eqn. (13). When
an additional expansion packet is first added in, then the
corresponding coding coefficient λ is set to one.

Fig. 4(a) illustrates the sparsity level w(i) evaluated from
Eqn. (13) for the DSEP-R policy for a range of nominal num-
bers δ of extra coded packets. We observe from Fig. 4(a) that
a smaller δ increases the sparsity level w more aggressively
than larger δ. Intuitively, a smaller δ strives to achieve the
n + r linear independent packets at an inner decoder or the
n independent packets at a outer or combined decoder with a
smaller number of transmitted inner coded packets. Accord-
ingly, a smaller δ increases the number w of packets from
set O that are combined in the inner coding more quickly as
the number i of already received independent coded packets
increases so as to ensure that the next received coded packet
is with a higher probability linearly independent of all prior
received coded packets.

B. EXAMPLE POLICY: DYNAMIC SPARSITY WITH
EXPANSION PACKETS STEPPING UP (DSEP-S)
As noted in Section IV-B, the lower bound of PRLNCinnov. (i), see
Eqn. (3), stays very close to one up to a receiver rank i (i.e.,
number i of prior received independent coded packets) that
is quite close to the number n of packets in a generation.
Typically, up to a receiver rank i = n − 8, Pinnov. is very
close to one; for a receiver rank of i = n − 6 and higher,
Pinnov. quickly drops significantly, reaching Pinnov. = 0.5 for
the receiver rank i = n− 1. Thus, there is no need to include
the Fulcrum expansion packets in the inner coding when the
receiver rank i is typically eight or more below the generation
size n. On the other hand, there is a potential to significantly

VOLUME 8, 2020 78301

V. Nguyen et al.: DSEP Fulcrum

FIGURE 4. Sparsity level w(i), i.e., the number w(i) of packets from the set O that are combined in the inner encoding, according to Eqn. (13)
for DSEP Fulcrum as a function of the receiver rank i and the number µ of expansion packets for a generation of n = 100 data packets with a
maximum number of r = 4 expansion packets for different nominal prescribed numbers δ of extra coded packets. The number µ of expansion
packets follows the region-based DSEP-R policy in (a) and the stepping up DSEP-S policy with β = 4 in (b).

increase Pinnov. by including the Fulcrum expansion packets
in the inner encoding when the receiver rank is within six or
fewer coded packets of the generation size n.

Based on this insight, we specify the following stepping
up adjustment strategy. We define a ‘‘beginning parameter’’
β, 0 ≤ β ≤ n − r , that specifies the receiver rank
from where on the expansion packets should be included in
the inner coding. Specifically, if the receiver rank is below
n−r − β, then the expansion packets are not included in the
inner encoding. If the receiver rank is i = n−r − β, then
the first expansion packet is included in the inner coding of
the next packet (that seeks to increment the receiver rank to
i = n−r−β+1). In order to ensure that this expansion packet
is indeed included in the inner coding, the corresponding
coding coefficient λι,n+1 is set to one, where ι denotes the
number of the packet that is encoded at the sender after the
receiver has achieved a rank of n − r − β. Each successive
inner coded packet includes one additional expansion packet
in the inner coding, until the number of expansion packets
included in the inner coding reaches the available number r of
expansion packets for receiver rank i = n− r . Each time that
an additional expansion packet is for the first time included
in the inner coding, the corresponding coding coefficient λ
is set to one, as explained in more detail in the example
of Eqn. (15) below. All of the subsequent packets are inner
coded with r expansion packets. For a given value of the
number of expansion packets µ, the number of non-zero
coding coefficients w(i) is evaluated according to Eqn. (13).
We illustrate the inner coding coefficients λ for an example

with n = 7 data packets, r = 3 expansion packets, and δ = 3
extra coded (overhead) packets in Eqn. (15) for a scenario
where the number of transmitted coded packets equals the
receiver rank. The original packets are p1, p2, . . . , p7, and
the expansion packets are o1, o2, o3 which are random linear

combination of the original packets in GF(2h). Eqn. (15)
presents the matrix of the inner coding coefficients λ with
n + δ = 10 rows (δ = 3 extra coded packets) and n + r =
10 columns. For β = 0, the expansion is ‘‘turned on’’ for
coded packet n−r − β + 1 = 5 and the corresponding
coding coefficient λ5,8 is set to 1 (highlighted in red color
in Eqn. (15)):

1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 0 1 0
0 0 1 0 1 0 1 1 0 1
0 1 0 1 0 1 0 0 1 1
1 0 0 0 1 1 0 1 1 0
0 1 1 0 1 0 0 1 0 1


×



p1
p2
p3
p4
p5
p6
p7
o1
o2
o3


.

(15)

The last three rows correspond to the δ = 3 redundant (extra
coded) packets, which are generated with the highest sparsity
level w = (n+ r)/2.
The number of non-zero coding coefficientsw(i), i.e., spar-

sity level, of this stepping up adjustment policy is illustrated
for beginning parameter β = 4 and r = 4 expansion packets
for different nominal prescribed numbers δ of extra coded
packets in Fig. 4(b). We observe from Fig. 4(b) that similar
to Fig. 4(a), smaller δ leads to higher w(i). Moreover the
comparison of Figs. 4(a) and (b) reveals that the different
policies for increasing the number µ of considered expansion
packets have only a very minor impact on the w(i).

We note that the evaluation of the sparsity level w in both
Figs. 4(a) and (b) is based on approximating the lower bound
on the probability of linear independent packets PFulc.innov. in

78302 VOLUME 8, 2020

V. Nguyen et al.: DSEP Fulcrum

FIGURE 5. Encoding and decoding throughput [MByte/s] of DSEP, original Fulcrum, and RaptorQ for different generation sizes n; fixed parameter
δ = 20.

Inequality (4) as an equality. In order to examine the accuracy
of this approximation, we have evaluated the Mean Square
Error (MSE) between the probability values obtained from
simulations and the probability values obtained from the
lower bound along the trajectory of w(i) as a function of
the receiver rank i for the DSEP-R and DSEP-S policies,
i.e., along the trajectories in Fig. 4. We found that the MSEs
were in the range from 0.004 for δ = 5 to 0.06 for δ = 20.
Thus, the approximation is reasonably close to serve in a
practical DSEP protocol.

C. EVALUATION OF DSEP POLICIES
The section examines the throughput and decoding proba-
bility of the DSEP policies with the evaluation methodology
from Section III-C1.

1) THROUGHPUT RESULTS
Fig. 5 compares the encoding and decoding through-
puts of DSEP-S and DSEP-R with the original Fulcrum
approach. For consistency of the comparison, we consider
the encoding computation time for n+ r coded packets (and
do not consider the encoding computation time for any extra
inner coded packets, neither the nominal number of δ extra
coded packets in the DSEP approaches, nor any extra coded
packets required in the original Fulcrum approach for decod-
ing a generation). We observe from Fig. 5(a) that both DSEP
policies achieve substantially higher encoding throughputs
than the original Fulcrum approach. For the small generation
size n = 16, DSEP with r = 2 more than doubles the
encoding throughput; while for the large generation sizes
n = 512 and 1024, DSEP with both r = 2 and 10 increases
the encoding throughput approximately tenfold compared
to the original Fulcrum approach. These substantial encod-
ing throughput increases are due to the sparse inner coding
which is sped up by the reduced number of non-zero coding

coefficients in the DSEP approaches, see DSEP, δ = 20
curves in Fig. 4 compared to the original Fulcrum curves.
Recall from the discussion in Section III-C2 that a fixed spar-
sity level w gives a nearly constant encoding throughput for
increasing generation size n in the log-scale plot in Fig. 2(a).
With dynamic sparsity, the sparsity level (encoding density)
w is initially low when the receiver rank i is low, but the
encoding density w approaches the density of conventional
Fulcrum as the receiver rank approaches the generation size n.
Thus, the dynamic sparsity encoding throughput curves in
Fig. 5(a) fall essentially between the sparse inner coding
(SISO and SIDO) curves and the original Fulcrum curve
in Fig. 2(a).

We observe from Fig. 5(b) that the DSEP policies with
r = 2 significantly increase the decoding throughput com-
pared to the original Fulcrum approach. For each type of
decoder (inner, combined, and outer), DSEP-R increases
the decoding throughput roughly between 1.7 to 3 times
for generation sizes of n = 128 and larger compared to
the original Fulcrum, while DSEP-S increases the decod-
ing throughput between 1.7 to 4.3 times. These decoding
throughput increases with DSEP are again due to the reduced
number of non-zero coding coefficients (see Fig. 4). How-
ever, the decoding throughput increases with DSEP compared
to the original Fulcrum in Fig. 5(b) are not as large as the
corresponding encoding throughput increases in Fig. 5(a)
since the decoder needs to eliminate all n (or n + r) coding
coefficients.

For an additional comparison perspective of the DSEP Ful-
crum encoding and decoding throughputs, we compare with
the RaptorQ throughputs. Generally, encoding and decoding
throughputs depend on the code implementation. We con-
sider the CodornicesRq (Release 2.1) implementation of
RaptorQ [67], [100], which was created under the leader-
ship of M. Luby, who developed LT coding [52] and was

VOLUME 8, 2020 78303

V. Nguyen et al.: DSEP Fulcrum

TABLE 2. Decoding throughput [MByte/s] of DSEP policies, original Fulcrum, and RaptorQ for different generation sizes n and parameters δ for inner,
combined, and outer decoder.

instrumental in developing Raptor and RaptorQ [50], [60].
CodornicesRq prefers symbol sizes that are multiples
of 64 byes; therefore, we set the packet size to 1536 bytes
for the RaptorQ evaluations.

Fig. 5(a) shows the RaptorQ encoding throughput when
generating y = 5 and y = n+ 2 repair symbols. We observe
from Fig. 5(a) that a smaller number y of repair symbols
leads to a slightly higher encoding throughput. Comparing
DSEP and RaptorQ, we observe from Fig. 5(a) that DSEP
achieves substantially higher encoding throughput than Rap-
torQ for small generation sizes n; while for generation sizes of
n = 512 and larger, RaptorQ achieves higher encod-
ing throughput than DSEP. In interpreting these encoding
throughput results it is important to keep in mind that Rap-
torQ performs systematic encoding, i.e., the n source packets
can first be sent in uncoded form as they become available
from the application, followed by the y coded repair symbols.
In contrast, DSEP Fulcrum performs non-systematic coding,
i.e., the dense outer coding must be fully completed before
the first inner coded packet can be generated (according to the
sparse inner coding Algorithm 2) and transmitted; subsequent
inner coded packets can be successively generated (with
Alg. 2) and transmitted. For generation sizes above 1024,
i.e., outside our plotted range, RaptorQ has vastly superior
encoding throughput, as examined in detail in [100], due
to a linearly increasing asymptotic encoding computational
complexity in n; in contrast, the computational complexity
of RLNC encoding scales asymptotically with O(n2). The
implementation optimization of CodornicesRq has focused
on large values of n. Optimized implementations of RaptorQ
for small values of n are possible and are an interesting
direction for future research. The decoding throughput for
z = n + 20 examined next in Fig. 5(b) gives an indication
that CodornicesRq (Rel. 2.1) has generally substantial opti-
mization potential. Fig. 5(a) indicates that for a moderately
small generation size of n = 128, DSEP Fulcrum achieves
an encoding throughput above 600 MByte/s, i.e., roughly
twice times the encoding throughput of CodornicesRq. DSEP
Fulcrum inherits the very small static computational overhead
component in Kodo RLNC [101].

Fig. 5(b) and Table 2 give the RaptorQ decoding through-
put with y = 5 or y = n + 2 repair symbols and utilizing
z = n or n + 20 received coded packets for decoding.
The DSEP and original Fulcrum decoding may require a
few extra coded packets (beyond n coded packets) for suc-
cessful decoding, as examined in detail in Section V-C2,
however, the DSEP and Fulcrum decoding throughput does
not increase with the availability of additional coded packets.
We observe from Fig. 5(b) that for the very small generation
size n = 16, DSEP achieves substantially higher decoding
throughput than RaptorQ. Specifically, for n = 16, the DSEP
decoding throughput is roughly double the RaptorQ decod-
ing throughput if RaptorQ has 36 coded packets available
for decoding. If RaptorQ has only n = 16 coded packets
available for decoding, then the decoding throughput drops
roughly by a factor of ten to around 60Mbyte/s. The decoding
throughput of RaptorQ thus greatly increases with the number
of extra coded packets (beyond the number n of packets in
a generation). These results indicate that the CodornicesRq
computation for encoding and decoding with low overhead
for all generation sizes n will be dramatically faster once the
implementation has been optimized for the case when the
number of symbols used to generate the intermediate block
is close to n. In particular, the dramatic decoding throughput
increase for the small generation size n = 16 with 20 extra
coded packets indicates that there is significant potential for
speeding up the RaptorQ computations for encoding and
decoding with low overhead. On the other hand, for the large
n = 1024 generation size, RaptorQ achieves more than ten
times the DSEP decoding throughput. For large generation
sizes above n = 1024, the RaptorQ decoding through-
out is also much higher than the DSEP Fulcrum decoding
throughput as RaptorQ has a linear asymptotic decoding
complexity [100], while the underlying asymptotic compu-
tational complexity is O(n3) for RLNC decoding. Overall,
we can thus conclude that for small generation sizes n,
which are well-suited for small data sets and low-latency low-
bandwidth communication, DSEP Fulcrum achieves encod-
ing and decoding throughputs that are higher than for the
current CodornicesRq implementation of RaptorQ. On the

78304 VOLUME 8, 2020

V. Nguyen et al.: DSEP Fulcrum

FIGURE 6. Decoding probability of DSEP policies compared to original Fulcrum and SIDO Fulcrum for the combined or outer decoder and the inner
decoder as a function of the number of received extra inner coded packets beyond the number of n = 128 of original source packets in a generation.
Fixed parameters: r = 2 outer coding expansion packets, sparsity level w = 5 for SIDO, β = 0 for DSEP-S, and network without packet losses ε = 0.

other hand, for large generation sizes n, DSEP Fulcrum gives
lower throughputs than RaptorQ due to the higher asymptotic
complexity of the underlying RLNC encoding and decoding
in DSEP Fulcrum.

We return to the throughput evaluation of DSEP Fulcrum
to examine the impacts of the different DSEP policies and
the parameter δ. We first observe from Figs. 5(a) and (b) that
the two DSEP policies give generally very similar encoding
and decoding throughputs. Only for the outer decoder do
we observe that DSEP-S gives somewhat higher decoding
throughput than DSEP-R. In order to further investigate these
differences between the DSEP policies and to examine the
impact of the parameter δ, we compare in Table 2 the decod-
ing throughputs of the two DSEP policies for a range of gen-
eration sizes n and two parameter δ values. We observe from
Table 2 that DSEP-Swith r = 2, β = 0 achieves very slightly
higher decoding throughputs than DSEP-R with r = 2
for inner and combined decoding, while for outer decoding
the DSEP-S decoding throughput is up to approximately
1.5 times higher than for DSEP-R. We also observe from
Table 2 that this result is reversed for r = 10; in particular,
DSEP-R with r = 10 achieves higher decoding throughputs
than DSEP-S with r = 10, β = 4 (for brevity, only the
combined decoding throughputs are given in Table 2, but this
result holds for inner and outer decoding as well).

For r = 2, β = 0, most DSEP-S coded packets include
fewer outer expansion packets than the DSEP-R coded pack-
ets. In particular, DSEP-S keeps the number of included outer
expansion packets at µ = 0 up until the coded packets are
prepared for increasing the receiver rank above n − r − β.
In contrast, DSEP-R includes outer expansion packets ear-
lier, according to the region based policy, see illustration
in Fig. 4. The processing of these outer expansion packets
in the decoder requires computationally demanding GF(28)

operations. More specifically, with µ outer encoding expan-
sion packets, a given inner coded packet has on average
contributions from µ/2 outer expansion packets, i.e., pack-
ets with high field GF(28) coding coefficients. Thus, when
mapping back in the outer decoder [26], there are on average
µ/2 coding coefficient rows with GF(28) elements. These
high field coding coefficient rows greatly increase the mul-
tiplication operations in the decoding process, lowering the
decoding throughput. For r = 10, β = 4, this dynamic is
reversed so that DSEP-R coded packets include fewer outer
expansion packets than the DSEP-S coded packets.

We also observe from Table 2 that a smaller δ parameter
reduces the decoding throughput, whereby the impact of a
smaller δ becomes slightly less pronounced for the large
n = 512 generation size. As elaborated in the decoding
probability evaluation in Section V-C2, it is generally not nec-
essary to encode, transmit, and decode the nominal prescribed
number of δ extra coded packets. However, a smaller δ param-
eter increases the encoding density w (see Eqn. (13)), which
in turn increases the encoding and decoding computational
effort. Generally, for small generation sizes n the computation
effort is mainly a static overhead; however, for large n the
O(n3) proportionality of the decoding computations becomes
dominant [18]. Nevertheless, we observe from Table 2 that
for the small δ = 5, both DSEP policies with r = 2
achieve 1.7 fold or higher decoding throughput increases for
generation sizes of n = 128 and 512 compared to origi-
nal Fulcrum, while the decoding throughput increases with
r = 10 are about 1.3 for n = 128 and over 3.3 for n = 512.

2) DECODING PROBABILITY RESULTS
Fig. 6 shows the decoding probabilities (when having
received up to and including the ρth extra coded packet, i.e., a
total of n+ ρ coded packets) corresponding to the scenarios

VOLUME 8, 2020 78305

V. Nguyen et al.: DSEP Fulcrum

TABLE 3. Decoding probability (in percent) for combined or outer decoder as a function of the number r of outer expansion packets and the number of
received extra inner coded packets; fixed parameters: generation size n = 128, and β = 4.

investigated in the preceding throughput section. We observe
from Fig. 6 that for δ = 5, the DSEP policies achieve
approximately the same decoding probabilities as the original
Fulcrum approach; while for δ = 20, the DSEP decoding
probabilities are very slightly lower than the original Fulcrum
decoding probabilities. We also observe that SIDO Fulcrum
gives generally lower decoding probabilities than DSEP and
original Fulcrum. These decoding probability results confirm
that for a small δ parameter setting, the dynamic adaptation
of the sparsity level w(i) of the encoding as the receiver rank i
increases is effective in maintaining nearly the same level
of linear independence of the coding coefficients and thus
approximately the same high decoding probabilities across
the entire range of prior received coded packets (receiver
ranks) i, i = 0, 1, . . . (up n−1 for combined or outer decoder;
up to n + r − 1 for inner decoder). Thus, the DSEP policies
ensure nearly the same effective number of received linearly
independent coded packets and approximately the same high
decoding probabilities for a given number of received extra
coded packets as the original Fulcrum approach. In contrast,
the static (fixed) sparsity level of the SIDO approach suffers
from lowered decoding probabilities as the receiver rank i
approaches the generation size n (see Eqn. (3)) and therefore
requires more extra coded packets than DSEP and original
Fulcrum to decode a generation.

Table 3 further examines the decoding probability for com-
bined or outer decoding for r = 2, 4, 6, and 10 outer
expansion packets and for 0, 1, 2, and 3 received extra coded
packets. For r = 4, 6, and 10, the decoding probabilities
are one when receiving two or more extra coded packets and
the columns for 2 and 3 extra coded packets are therefore
omitted from the table. We observe from Table 3 that for the
small δ = 5, the DSEP decoding probabilities are equivalent
to or at most 0.6% lower than the original Fulcrum decod-
ing probabilities. Overall, for scenarios with high decoding
probabilities of 95% or higher for the original Fulcrum, both
DSEP policies with δ = 5 are within 0.2% of the original
Fulcrum decoding probabilities.

To put these Fulcrum DSEP RLNC decoding probability
results further in perspective, we compare with the decoding
probabilities of RaptorQ, which are 99%without any received
extra coded packets and 99.99% for one received extra coded
packet [56], [59]–[61]. We observe from Table 3 that for r =
10 outer coding expansion packets, both DSEP approaches
with δ = 5 achieve the 99% decoding probability without

FIGURE 7. Packet loss evaluation: Decoding failure probability of DSEP
policies compared to original Fulcrum as a function of the number of
transmitted extra inner coded packets beyond the n = 128 original source
packets for packet erasure probabilities ε = 0.05 (with point markers and
lines) and 0.1 (without point markers, only lines). Fixed parameters: r = 2
outer coded expansion packets, β = 4 for DSEP-S, δ = 5, combined or
outer decoder as well as inner decoder.

any received extra coded packets. Similarly, for r = 10 and
one received extra coded packets, both DSEP-R and DSEP-S
achieve the 99.99% decoding probability with δ = 5. Thus,
we conclude that DSEP with small δ parameter and moder-
ately large number r of extra coded packets achieves simi-
larly high decoding probabilities as RaptorQ (with the same
number of received coded packets). We note that the higher
number of r = 10 outer coding expansion packets reduces
the throughputs somewhat, as shown in Fig. 5(a) and Table 2;
however, for small generation sizes n, DSEP with r = 10
still achieves higher encoding throughput than RaptorQ. The
decoding throughput comparison depends on the number of
extra coded packets available for RaptorQ decoding: with one
extra packet (z = n + 1), DSEP decodes faster; while for
twenty extra packets (z = n + 20), CodornicesRq decodes
faster.

3) IMPACT OF FEEDBACK AND PACKET LOSSES
This section evaluates the impact of feedback about the
actual receiver rank i to the encoder and the impact of losses
(erasures) of transmitted coded packets during the network
transport. Initially, we focus on packet losses and continue
to consider DSEP without feedback and compare in Fig. 7

78306 VOLUME 8, 2020

V. Nguyen et al.: DSEP Fulcrum

TABLE 4. Decoding throughput [MByte/s] of DSEP policies with and without perfect feedback and original Fulcrum for inner, combined, and outer
decoder, as well as RaptorQ for different packet erasure probabilities ε; fixed parameters: DSEP parameters δ = 5, β = 4, as well as RaptorQ parameter
y = nε/(1− ε).

the cumulative decoding failure probability for the two DSEP
policies against the original Fulcrum approach. We plot the
log-scaled cumulative decoding failure probability of a gen-
eration of n original source packets as a function of the
number τ of transmitted extra coded packets beyond n coded
packets, i.e., the probability that the decoding fails when
having transmitted up to and including the τ th extra coded
packet. We observe that in the regions with small decoding
failure probabilities below around 0.6, the DSEP policies
achieve slightly smaller decoding failure probabilities than
the original Fulcrum approach. The underlying reason for this
small difference in the decoding probabilities is mainly due
to a subtle difference in the generation of the non-zero coding
coefficients in the inner encoding. In the original Fulcrum
approach, the conventional dense inner encoder generates an
average number of (n + r)/2 non-zero coding coefficients.
Thus, for a given coded packet, the actual number of non-zero
coding coefficients may randomly vary around the mean of
(n+r)/2. In contrast, when the number of transmitted packets
in the DSEP policies without feedback exceeds n, then the
number of non-zero coding coefficients is deterministically
set to (n + r)/2, see Eqn. (13). The combination of a few
more packets from the outer encoding in the inner encoding
can very slightly increase the decoding success probability as
the receiver rank i approaches n for the outer or combined
decoder (or n+ r for the inner encoder).

Overall, Fig. 7 illustrates and confirms the packet era-
sure correction capabilities of DSEP Fulcrum: Since orig-
inal Fulcrum and DSEP Fulcrum are built on underlying
full-vector RLNC [102], where each coded packet equally
considers each source data packet, each coded packet in
a given generation is capable of ‘‘repairing’’ the loss of
any coded packet of the generation. Thus, the number of
transmitted extra coded packets for achieving a prescribed

decoding success probability is, for the considered one-hop
transmission, equivalent to the number packet transmissions
that is required to achieve the corresponding number of linear
independent coded packets at the receiver over the lossy
network. For instance, for ρ = 1 extra received coded packet
in Fig. 6, (n+τ) = (n+ρ)/(1−ε) = 129/0.95 ≈ 136 coded
packets, i.e., τ = 8 extra coded packets need to be transmitted
in the ε = 0.05 case (see Fig. 7). Thus, the curves in Fig. 7
essentially correspond to the curves in Fig. 6 shifted by the
factor 1/(1−ε) (applied to the total number of received coded
packets n+ ρ) to the right.

We have evaluated the decoding probability with perfect
feedback in additional simulations. With perfect feedback,
the encoder learns about the impact of a transmitted coded
packet on the receiver rank i before encoding the next packet.
We found that the decoding probabilities with perfect feed-
back are very slightly lower, typically only 1–3% lower com-
pared to the decoding probabilities without feedback in Fig. 7.
We have furthermore evaluated the decoding throughput for
the DSEP policies without feedback and with perfect feed-
back, see Table 4. The decoding throughput in Table 4 is
based on the decoding computation time for a complete gen-
eration whereby all coded packets required for decoding are
available to the decoder. We observe from Table 4 that the
perfect feedback typically increases the decoding throughput
by 5–20% compared to the operation without feedback. With
perfect feedback, the encoder utilizes the current true receiver
rank i for setting the numberµ of utilized outer coding expan-
sion packets and the sparsity level w(i) for encoding the next
packet. In contrast, without feedback, the encoder assumes
that each transmitted coded packet increments the receiver
rank i. However, the transmission of a coded packet that is lin-
early dependent to the already received coded packets or the
loss of a transmitted coded packet during network transport

VOLUME 8, 2020 78307

V. Nguyen et al.: DSEP Fulcrum

do not increment the receiver rank i. Accordingly, without
feedback, the encoder tends to overestimate the receiver
rank i, i.e., the encoder assumes that the receiver rank i is
higher than it actually is. In the DSEP policies, a higher
receiver rank i generally leads to a higher number µ of
utilized outer coding expansion packets and a higher density
w, i.e., to a denser coding with a higher number µ of utilized
outer coding expansion packets. The denser coding with a
higher numberµ of outer coding expansion packets generally
increases the decoding probability and increases the decoding
computation time, i.e., reduces the decoding throughput.

We further observe from Table 4 that for the DSEP poli-
cies without feedback, the decoding throughput somewhat
decreases (typically less than 10%) as the packet erasure
probability increases from ε = 0.05 to 0.1. This is because
a higher packet erasure probability ε leads to a more pro-
nounced overestimation of the receiver rank i at the encoder
as relatively more transmitted packets are lost in the network.
Correspondingly, the encoder utilizes relatively more outer
expansion packets µ and a higher coding density w, requiring
more decoding computations. The DSEP policies with per-
fect feedback give essentially the same decoding throughput,
irrespective of the packet loss probability ε, as the perfect
feedback continuously gives the encoder the current correct
receiver rank i. Throughout, the DSEP inner and combined
decoding throughputs are competitive compared to RaptorQ
decoding for these smaller values of n.

Overall, we conclude from the evaluations for packet
erasures without feedback and with perfect feedback that
the practical DSEP policies without feedback continue to
perform well for packet erasures: The decoding probabil-
ity remains high (actually very slightly increases) and the
decoding throughput is only somewhat reduced by the packet
losses. In particular, for a 10% packet erasure probability,
the DSEP policies without feedback still achieve approxi-
mately 1.5 fold higher inner and outer decoding throughput,
and about 1.4 fold higher combined decoder throughput than
the original Fulcrum approach.

4) RECODING IN INTERMEDIATE NETWORK NODES
The DSEP evaluation has so far focused on end-to-end (one-
hop) network coding. An important aspect of network coding
is recoding in intermediate network nodes [103], [104]. The
conventional options for Fulcrum recoding [26] at interme-
diate nodes tend to cumulatively increase the coding density
(decreasing the decoding throughput at the receiver). In par-
ticular, for conventional recoding, an intermediate network
node buffers all received coded packets for a given generation
and XORs a randomly chosen half of the buffered pack-
ets with each other to create a recoded packet for onward
transmission. (Kodo recoding limits the number of consid-
ered coded packets to the most recently received n packets,
although more than n coded packets may be received at an
intermediate node, e.g., due to packet losses downstream.)
As more and more coded packets are received and buffered
for a given generation, more and more packets are XORed

with each other, which tends to increase the coding density
of the resulting recoded packets.

Therefore, DSEP requires novel recoding mechanisms that
control the coding density during the recoding. We exam-
ine an elementary recoding mechanism for DSEP in this
section. This elementary recoding mechanism is suitable for
network nodes with limited memory that can store only a
few recently received packets. The network node recodes
a small prescribed number of the recently received packets
e.g., the three most recently received packets, and transmits
the recoded packet. This recoding based on a few recently
received packets may alter the sparsity from the sparsity at the
encoder. However, for scenarios with slowly varying sparsity
at the encoder, the deviation from the sparsity level of the
encoder should be minor.

One potential problem with recoding a small number of
received packets is that all random coding coefficients in
GF(2) for linearly combining the received packets (i.e.,
XORing the received packets with a new coding coefficient of
one in GF(2)) to create the recoded packet are zero. In order
to avoid all zeros, our recoder deterministically assigns the
latest (most recent) incoming packet a coding coefficient
of one, and randomly generates the remaining coding coef-
ficients with the full density, i.e., each of these remaining
coding coefficients is one with probability 1/2. For example,
when recoding the three most recently received packets, the
possible new coefficients (from oldest to newest of the three
packets) can be 0 0 1, 0 1 1, 1 0 1, or 1 1 1 (whereby
each of these new coding coefficient vectors occurs with
probability 1/4).When beginning the recoding of a generation
of coded packets, our elementary DSEP recoding mechanism
forwards the first received coded packet of the generation
without recoding to the next hop; the second received coded
packet is combined with the first received coded packet with
probability 0.5, i.e., the new coding coefficients are 0 1 or 1
1 (each with probability 1/2).

In our DSEP evaluation, each intermediate network node
always recodes the three most recently received packets
to create a recoded packet for transmission, irrespective of
whether packet losses have occurred or not. Future recoding
refinements could add a protocol mechanism to detect packet
erasures, e.g., [105], and to only create a recoded packet
when a packet erasure has been detected. To illustrate the
effects of the recoding of three buffered packets, consider an
example scenario with very sparse encoding with very small
w(i) at the beginning of a generation. Suppose that each of the
three buffered coded packets is a linear combination of w(i)
different source packets, which is likely if w(i) � n. Our
recoding includes the most recently received coded packet
with probability one, and each of the two preceding coded
packets with probability 1/2. Thus, in the considered scenario,
a recoded packet will on average be a linear combination
of 2w(i) source packets, i.e., the recoding has effectively
doubled the coding density.

As an extension to the packet loss evaluation in
Section V-C3, we consider a linear multi-hop network path

78308 VOLUME 8, 2020

V. Nguyen et al.: DSEP Fulcrum

with a prescribed number of intermediate network nodes
ranging from 0 (which corresponds to the one-hop scenario
in Section V-C3) to 10 intermediate network nodes. The links
from the sender to the last intermediate network nodes have
a packet erasure probability of ε = 0.05, while the link from
the last intermediate network node to the receiver has a higher
packet erasure probability of ε = 0.3 (corresponding to an
error-prone wireless last hop).

Fig. 8(a) shows the average number of transmitted coded
packets that are required for successful decoding as a function
of the number of intermediate network nodes. In particu-
lar, Fig. 8(a) considers DSEP-R Fulcrum with recoding of
the most recently received three coded packets with inner
and combined decoding. Furthermore, Fig. 8(a) considers
the original Fulcrum with recoding by XORing a randomly
chosen half of all (up to n) coded packets that have been
received so far in a given generation. For benchmarking,
Fig. 8(a) also considers (full-vector) RLNC encoding with
full coding density in GF(2) and GF(28), with recoding in
GF(2) (by XORing) and in GF(28) (through linear combina-
tion of all buffered packets with new random GF(28) coding
coefficients), respectively, whereby the recoding considers all
buffered received coded packets (i.e., up to n packets when the
end of a generation is reached). Moreover, Fig. 8(a) gives the
required average number of transmitted coded packets when
the intermediate nodes simply forward the original Fulcrum
coded packets (without recoding).

We observe from Fig. 8(a) that recoding in intermediate
network nodes generally reduces the number of required
packet transmissions. The reduction of the number of
required packet transmissions becomes more pronounced
with increasing number of intermediate network nodes and
is due to the inherent gains of in-network recoding [38].
Examining closely the results for zero intermediate network
nodes, i.e., a direct link from encoder to decoder with a packet
erasure probability of 0.3, we observe that Full RLNC GF(2)
requires about 2.3 more transmitted coded packets than Full
RLNCGF(28). This is due to the linear dependencies of cod-
ing a generation of n = 32 source packets in GF(2), which
requires about 5%, i.e., 1.6, more coded packets for successful
decoding than coding in GF(28) [95], in combination with
the packet loss probability of 0.3, requiring then on average
1.6/0.7 = 2.3 more coded packet transmissions. We further
observe that inner decoding of DSEP-R as well as the original
Fulcrum both with recoding and forwarding requires about
51 transmitted coded packets. This is because the design of
the inner Fulcrum decoder requires n + r = 32 + 2 linearly
independent GF(2) coded packets. Considering that approx-
imately 5% additional coded packets need to be received due
to linear dependencies, in combination with the 0.3 packet
erasure probability, gives on average 34 · 1.05/0.7 = 51
required coded packet transmissions.

As the number of recoding intermediate network nodes
increases, we observe from Fig. 8(a) that original Fulcrum
with inner decoding consistently requires about three more
transmitted coded packets than RLNC GF(2), while original

FIGURE 8. Evaluation of DSEP recoding with three most recently received
packets. Fixed parameters: generation size n = 32, r = 2 outer coding
expansion packets; δ = 5.

Fulcrum with combined decoding tends to require a very
slightly increasing number of transmitted coded packets com-
pared to full RLNC GF(28). Original Fulcrum employs the

VOLUME 8, 2020 78309

V. Nguyen et al.: DSEP Fulcrum

same inner recoding of all buffered received (up to n = 32)
packets as full RLNC GF(2); however, due to the Fulcrum
coding structure with r = 2 outer coding expansion packets,
the Fulcrum inner decoder requires an extra two linearly inde-
pendent coded packets at the receiver, which requires on aver-
age the transmission of 2 · 1.05/0.7 more coded packets due
to the linear dependence of theGF(2) coding coefficients and
the packet erasures. On the other hand, the Fulcrum combined
decoder requires the same number of linearly independent
coded packets as conventional RLNC decoding, namely n lin-
early independent coded packets. However, Fulcrum employs
only inner recoding in GF(2) in the intermediate network
nodes; whereas, full RLNC GF(28) recodes in GF(28). The
inner recoding in GF(2) is computationally less demand-
ing, but is more likely to introduce linear dependencies that
require the transmission of additional coded packets.

We observe from Fig. 8(a) that as the number of recoding
intermediate network nodes increases, DSEP with inner and
combined decoding requires slightly more (at most 2–3 more
for 10 intermediate nodes) transmitted coded packets than
the corresponding original Fulcrum with inner and combined
decoding, respectively. This is mainly due to the sparsity of
the recoding in DSEP. Our DSEP recoding considers only the
latest three received coded packets; thus, limiting the cod-
ing density during the recoding, while incurring more linear
dependencies (which in turn implies that more coded packets
need to be transmitted to enable decoding). We verified in
additional evaluations that considering all (up to n = 32)
received DSEP coded packets in the recoding would reduce
the number of required packet transmissions down to the
levels required by the original Fulcrum with recoding of
all (up to n = 32) received packets. Overall, we observe
from Fig. 8(a) that DSEP-R Fulcrum requires only slightly
(up to 2–3) more transmitted coded packets than the origi-
nal Fulcrum across the entire range of examined number of
intermediate network nodes and is thus suitable for effective
recoding in intermediate network nodes.

Fig. 8(b) shows the decoding throughput as a function
of the number of intermediate network nodes where recod-
ing occurred. We observe from Fig. 8(b) that the DSEP-R
Fulcrum decoding throughput decreases as the number of
intermediate network nodes increases from zero to two. This
is mainly due to the increase in coding density resulting from
the recoding in the intermediate network nodes. Nevertheless,
we observe from Fig. 8(b) that DSEP Fulcrum with inner
and combined decoding still achieves substantial decoding
throughput increases compared to the respective original
Fulcrum schemes and these throughput increases persist as
the number of intermediate network nodes increases beyond
two. Importantly, DSEP-R with combined decoding, which
achieved favorable decoding probabilities in Section III-C3,
suffers only minimal decoding throughput reductions with
increasing number of intermediate recoding nodes (and cor-
respondingly more lossy transmission hops). With combined
decoding, the increase in the inner coding density due to
the recoding in the intermediate network nodes causes only

a very minor reduction of the decoding throughput since
the computational complexity for the combined decoding is
dominated by the GF(28) computational components of the
combined decoding.

Fig 8(c) shows the recoding throughput at an intermediate
network node. The recoding throughput is measured as the
total recoded data volume, i.e., the number of coded pack-
ets times the packet payload size, that has to be processed
at the intermediate network nodes to successfully decode
a generation at the receiver, divided by the total recoding
computation time at all intermediate network nodes. Note
that the total recoded data volume is the aggregate of all
recoded packets that are created through recoding at all the
intermediate network nodes. For instance, the delivery of one
coded packet to the receiver via η intermediate network nodes
involves a recoded data volume of η data packet payload
sizes if there are no packet losses; with η = 1 intermediate
node and a packet loss probability of ε2 on the link from
the intermediate node to the receiver, the delivery of one
coded packet to the receiver involves on average 1/(1 − ε2)
recoded packet payload sizes. The total recoding computation
time is the aggregate of the recoding processing times at all
intermediate network nodes. Thus, the recoding throughput
gives the effective generation rate of recoded packets at a
given intermediate network node. We observe from Fig 8(c)
that DSEP recoding achieves vastly higher recoding through-
put than original Fulcrum. This is mainly due to the limited
number of only three packets involved in the DSEP recoding,
whereas the original Fulcrum recoding may linearly combine
up to n = 32 coded packets to create a recoded packet.
Full RLNC achieves the same recoding throughput as original
Fulcrum as both conduct the same GF(2) recoding opera-
tions; while the GF(28) recoding of Full RLNC GF(28) is
computationally more demanding, resulting in a low recod-
ing throughput of just slightly above 200 Mbyte/s. Overall,
these recoding throughput results in Fig 8(c) indicate that
with DSEP encoding, a network node with the computing
capacity of the experimental PC, see Section III-C1, can
simultaneously recode two packet traffic flows that operate
with the full combined decoding throughput in Fig 8(b).
An important future research direction is to further reduce the
computational complexity of recoding so that network nodes
with limited computational capabilities can recode several
traversing packet traffic flows.

An interesting direction for future research is to develop
and evaluate novel Fulcrum recoding protocol mechanisms
that preserve a prescribed sparse coding density so as to avoid
the decrease in decoding throughput observed in Fig. 8(b).
A recoding mechanism for intermediate network nodes with
abundant memory could store all packets received for a
generation thus far and examine the coding coefficients of
the received packets to detect their sparsity levels. Then,
the intermediate node can judiciously combine selected pack-
ets through the XOR operation to approximate a prescribed
sparsity level. Note that packet erasures (losses) may make it
impossible to achieve exactly the same sparsity level of the

78310 VOLUME 8, 2020

V. Nguyen et al.: DSEP Fulcrum

source node, thus some flexible packet selection mechanisms
need to be developed to closely approximate the prescribed
sparsity level.

VI. CONCLUSION
The recently proposed Fulcrum approach to Random Linear
Network Coding (RLNC) combines a high Galois field (GF)
outer coding (generating a static number of outer expansion
packets) with a static dense small GF inner coding [26].
In the present study, we have generalized Fulcrum coding
to dynamically adapt the number of utilized outer expansion
packets and the level of density, i.e., equivalently, the sparsity,
of the inner coding. In particular, we first examined the
four possible combinations of conventional dense coding and
static sparse coding for the outer and inner coding in Fulcrum.
We concluded that sparse inner with dense outer (SIDO) cod-
ing achieves a favorable compromise between high through-
put and high decoding probability.

Next, we introduced the dynamic adaptation of the sparsity
level as a function of the number of utilized outer expansion
packets and the number of linearly independent coded packets
at the receiver (i.e., the receiver rank).We then introduced and
evaluated dynamic sparsity and expansion packets (DSEP)
policies that dynamically adapt the number of utilized outer
expansion packets as a function of the receiver rank.We found
that the DSEP policies increase the encoding throughput
more than tenfold for large generation sizes compared to the
conventional Fulcrum approach, while the decoding through-
put is increased 1.7 to 4.3 fold. DSEP incurs only very
slight reductions (less than 1%) of the decoding probabilities
compared to the original Fulcrum approach. We found that
the practical DSEP operation without feedback about the
receiver rank performs nearly as well as DSEP operation with
perfect feedback, even when coded packets are lost during
network transport. For 10% packet losses, the feedback-free
DSEP still achieved 1.4 fold or higher decoding throughput
increases compared to the original Fulcrum approach.

The DSEP concept that we introduced in this arti-
cle and the corresponding publicly available code at
https://github.com/nguyenvutud/DSEP open up several inter-
esting direction for future research. The present study has
focused on generation based RLNC. It would be interesting in
future research to explore the DSEP concept in the context of
sliding windowRLNC [42]–[47]. For sliding windowRLNC,
a DSEP policy could adapt the sparsity and extra coded pack-
ets according to the status of the receiver for a given current
sliding window position. Furthermore, the DSEP Fulcrum
coding in this article has been limited to non-systematic cod-
ing (specifically, only the outer coding has been systematic,
but the inner coding has been non-systematic); an important
future research direction is to extend DSEP Fulcrum coding
to fully systematic coding [15], [33]–[35] so as to allow
the immediate transmission of the uncoded source packets
without any encoding delay. Additionally, the speed-up of the
DSEP Fulcrum encoding and decoding computations through
specialized parallel computing strategies on multicore plat-

forms [16]–[19] should be explored in future research. More-
over, the sparsity and extra coded packets could be adapted
according to the loss conditions, e.g., high-loss periods could
delay the increase of the receiver rank. The present study has
examined the DSEP concept in the context of the Fulcrum
multi-layer networking coding paradigm. Future research
could explore the DSEP concept in other multi-layer coding
paradigms involving network coding, e.g., in the context of
batched sparse (BATS) network coding based on genera-
tions [106], [107] or a sliding window [94], employing RLNC
as the inner code and a Luby transform outer code [52].

ACKNOWLEDGMENT
The authors are grateful to Michael Luby and his team at the
International Computer Science Institute (ICSI), Berkeley,
CA, USA, for sharing the CodornicesRq (Rel. 2.1) evaluation
implementation of the RaptorQ code, and helping to under-
stand how to interpret some of the evaluation results. A pre-
liminary version of static sparse Fulcrum coding appeared
in [1], while a preliminary version of dynamic Fulcrum
expansion packets (without sparsity) appeared in [2].

REFERENCES
[1] V. Nguyen, G. T. Nguyen, F. Gabriel, D. E. Lucani, and F. H. P. Fitzek,

‘‘Integrating sparsity into Fulcrum codes: Investigating throughput, com-
plexity and overhead,’’ in Proc. IEEE Int. Conf. Commun. Workshops
(ICC Workshops), May 2018, pp. 1–6.

[2] V. Nguyen, E. Tasdemir, G. Nguyen, D. Lucani, and F. Fitzek, ‘‘Tunable
expansion packets for Fulcrum codes,’’ in Proc. Eur. Wireless, 2019,
pp. 1–7.

[3] H. Alshaheen and H. Takruri-Rizk, ‘‘Energy saving and reliability
for wireless body sensor networks (WBSN),’’ IEEE Access, vol. 6,
pp. 16678–16695, 2018.

[4] Y. N. Shnaiwer, S. Sorour, T. Y. Al-Naffouri, and S. N. Al-Ghadhban,
‘‘Opportunistic network coding-assisted cloud offloading in heteroge-
neous fog radio access networks,’’ IEEE Access, vol. 7, pp. 56147–56162,
2019.

[5] R. Torrea-Duran,M.Morales Cespedes, J. Plata-Chaves, L. Vandendorpe,
andM.Moonen, ‘‘Topology-aware space-time network coding in cellular
networks,’’ IEEE Access, vol. 6, pp. 7565–7578, 2018.

[6] H. Kang, H. Yoo, D. Kim, and Y.-S. Chung, ‘‘CANCORE: Context-
aware network COded REpetition for VANETs,’’ IEEE Access, vol. 5,
pp. 3504–3512, 2017.

[7] X. Shao, C. Wang, C. Zhao, and J. Gao, ‘‘Traffic shaped network cod-
ing aware routing for wireless sensor networks,’’ IEEE Access, vol. 6,
pp. 71767–71782, 2018.

[8] J.-W. Kim and J.-S. No, ‘‘Code equivalences between network codes with
link errors and index codes with side information errors,’’ IEEE Access,
vol. 7, pp. 54144–54154, 2019.

[9] F. A. Monteiro, A. Burr, I. Chatzigeorgiou, C. Hollanti, I. Krikidis,
H. Seferoglu, and V. Skachek, ‘‘Special issue on network coding,’’
EURASIP J. Adv. Signal Process., vol. 2017, no. 1, p. 29, Dec. 2017.

[10] H. V. Nguyen, S. X. Ng, W. Liang, P. Xiao, and L. Hanzo, ‘‘A network-
coding aided road-map of large-scale near-capacity cooperative commu-
nications,’’ IEEE Access, vol. 6, pp. 21592–21620, 2018.

[11] Q. Wang, X. Zhang, Q. Wang, P. Liu, and B. Deng, ‘‘The network coding
algorithm based on rate selection for device-to-device communications,’’
IEEE Access, vol. 7, pp. 23396–23406, 2019.

[12] C. Zhang, C. Li, and Y. Chen, ‘‘Joint opportunistic routing and intra-flow
network coding in multi-hop wireless networks: A survey,’’ IEEE Netw.,
vol. 33, no. 1, pp. 113–119, Jan. 2019.

[13] A. Ahmed, H. Shan, and A. Huang, ‘‘Modeling the delivery of coded
packets in D2D mobile caching networks,’’ IEEE Access, vol. 7,
pp. 20091–20105, 2019.

[14] W. He, Y. Su, X. Xu, Z. Luo, L. Huang, and X. Du, ‘‘Cooperative content
caching for mobile edge computing with network coding,’’ IEEE Access,
vol. 7, pp. 67695–67707, 2019.

VOLUME 8, 2020 78311

V. Nguyen et al.: DSEP Fulcrum

[15] N. Ma and M. Diao, ‘‘CoFi: Coding-assisted file distribution over a
wireless LAN,’’ Symmetry, vol. 11, no. 1, p. 71, 2019.

[16] H. Shin and J.-S. Park, ‘‘Optimizing random network coding for multi-
media content distribution over smartphones,’’ Multimedia Tools Appl.,
vol. 76, no. 19, pp. 19379–19395, Oct. 2017.

[17] H. Shin and J.-S. Park, ‘‘Reducing energy consumption of RNC based
media streaming on smartphones via sampling,’’Multimedia Tools Appl.,
vol. 78, no. 20, pp. 28461–28475, Oct. 2019.

[18] S. Wunderlich, J. A. Cabrera, F. H. P. Fitzek, and M. Reisslein, ‘‘Network
coding in heterogeneous multicore IoT nodes with DAG scheduling of
parallel matrix block operations,’’ IEEE Internet Things J., vol. 4, no. 4,
pp. 917–933, Aug. 2017.

[19] S. Wunderlich, F. H. P. Fitzek, and M. Reisslein, ‘‘Progressive multicore
RLNC decoding with online DAG scheduling,’’ IEEE Access, vol. 7,
pp. 161184–161200, 2019.

[20] A. J. Ferrer, J. M. Marques, and J. Jorba, ‘‘Towards the decentralised
cloud: Survey on approaches and challenges for mobile, ad hoc, and
edge computing,’’ ACM Comput. Surv., vol. 51, no. 6, pp. 111.1–111.36,
Feb. 2019.

[21] M.Mehrabi, D. You, V. Latzko, H. Salah,M. Reisslein, and F. H. P. Fitzek,
‘‘Device-enhanced MEC: Multi-access edge computing (MEC) aided by
end device computation and caching: A survey,’’ IEEE Access, vol. 7,
pp. 166079–166108, 2019.

[22] D. Chen, J. Cong, S. Gurumani, W.-M. Hwu, K. Rupnow, and Z. Zhang,
‘‘Platform choices and design demands for IoT platforms: Cost, power,
and performance tradeoffs,’’ IET Cyber-Phys. Syst., Theory Appl., vol. 1,
no. 1, pp. 70–77, Dec. 2016.

[23] S. J. Johnston, M. Apetroaie-Cristea, M. Scott, and S. J. Cox, ‘‘Appli-
cability of commodity, low cost, single board computers for Internet of
Things devices,’’ in Proc. IEEE 3rd World Forum Internet Things (WF-
IoT), Dec. 2016, pp. 1–6.

[24] S. J. Johnston, P. J. Basford, C. S. Perkins, H. Herry, F. P. Tso, D. Pezaros,
R. D. Mullins, E. Yoneki, S. J. Cox, and J. Singer, ‘‘Commodity single
board computer clusters and their applications,’’ Future Gener. Comput.
Syst., vol. 89, pp. 201–212, Dec. 2018.

[25] A. Raza, A. A. Ikram, A. Amin, and A. J. Ikram, ‘‘A review of low cost
and power efficient development boards for IoT applications,’’ in Proc.
Future Technol. Conf. (FTC), Dec. 2016, pp. 786–790.

[26] D. E. Lucani, M. V. Pedersen, D. Ruano, C. W. Sorensen, F. H. P. Fitzek,
J. Heide, O. Geil, V. Nguyen, and M. Reisslein, ‘‘Fulcrum: Flexi-
ble network coding for heterogeneous devices,’’ IEEE Access, vol. 6,
pp. 77890–77910, 2018.

[27] S. Brown, O. Johnson, and A. Tassi, ‘‘Reliability of broadcast commu-
nications under sparse random linear network coding,’’ IEEE Trans. Veh.
Technol., vol. 67, no. 5, pp. 4677–4682, May 2018.

[28] Y. Li, J. Wang, S. Zhang, Z. Bao, and J. Wang, ‘‘Efficient coastal com-
munications with sparse network coding,’’ IEEE Netw., vol. 32, no. 4,
pp. 122–128, Jul. 2018.

[29] Y. Li, E. Soljanin, and P. Spasojevic, ‘‘Effects of the generation size and
overlap on throughput and complexity in randomized linear network cod-
ing,’’ IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 1111–1123, Feb. 2011.

[30] P. Maymounkov, N. J. Harvey, and D. S. Lun, ‘‘Methods for efficient
network coding,’’ Proc. Allerton Conf. Commun., Control, Comp., 2006,
pp. 482–491.

[31] C. W. Sorensen, A. S. Badr, J. A. Cabrera, D. E. Lucani, J. Heide, and
F. H. Fitzek, ‘‘A practical view on tunable sparse network coding,’’ Proc.
VDE Eur. Wireless Conf., 2015, pp. 1–6.

[32] A. Tassi, I. Chatzigeorgiou, and D. E. Lucani, ‘‘Analysis and optimization
of sparse random linear network coding for reliable multicast services,’’
IEEE Trans. Commun., vol. 64, no. 1, pp. 285–299, Jan. 2016.

[33] J. Heide, M. V. Pedersen, F. H. P. Fitzek, and T. Larsen, ‘‘Network coding
for mobile Devices–Systematic binary random rateless codes,’’ in Proc.
IEEE Int. Conf. Commun. Workshops, Jun. 2009, pp. 1–6.

[34] Y. Li, S. Blostein, and W.-Y. Chan, ‘‘Systematic network coding for two-
hop lossy transmissions,’’ EURASIP J. Adv. Signal Process., vol. 2015,
no. 1, pp. 1–14, Dec. 2015.

[35] S. Pandi, F. Gabriel, J. A. Cabrera, S. Wunderlich, M. Reisslein, and
F. H. P. Fitzek, ‘‘PACE: Redundancy engineering in RLNC for low-
latency communication,’’ IEEE Access, vol. 5, pp. 20477–20493, 2017.

[36] V. Nguyen, J. A. Cabrera, G. T. Nguyen, F. Gabriel, C. Lehmann,
S. Mudriievskyi, and F. H. P. Fitzek, ‘‘Adaptive decoding for Fulcrum
codes,’’ in Proc. IEEE 9th Annu. Inf. Technol., Electron. Mobile Commun.
Conf. (IEMCON), Nov. 2018, pp. 133–139.

[37] V. Nguyen, J. A. Cabrera, D. You, H. Salah, G. T. Nguyen, and
F. H. P. Fitzek, ‘‘Advanced adaptive decoder using Fulcrum network
codes,’’ IEEE Access, vol. 7, pp. 141648–141661, 2019.

[38] R. Ahlswede, N. Cai, S.-Y. R. Li, and R.W.Yeung, ‘‘Network information
flow,’’ IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[39] J. He, V. Tervo, X. Zhou, X. He, S. Qian, M. Cheng, M. Juntti, and
T. Matsumoto, ‘‘A tutorial on lossy forwarding cooperative relaying,’’
IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 66–87, 1st Quart., 2019.

[40] L. Wei and W. Chen, ‘‘Compute-and-forward network coding design
over multi-source multi-relay channels,’’ IEEE Trans. Wireless Commun.,
vol. 11, no. 9, pp. 3348–3357, Sep. 2012.

[41] M. El Soussi, A. Zaidi, and L. Vandendorpe, ‘‘Compute-and-forward on
a multiaccess relay channel: Coding and symmetric-rate optimization,’’
IEEE Trans. Wireless Commun., vol. 13, no. 4, pp. 1932–1947, Apr. 2014.

[42] F. Gabriel, S. Wunderlich, S. Pandi, F. H. P. Fitzek, and
M. Reisslein, ‘‘Caterpillar RLNC with feedback (CRLNC-FB):
Reducing delay in selective repeat ARQ through coding,’’ IEEE Access,
vol. 6, pp. 44787–44802, 2018.

[43] D. Malak, E. Ohad, M. Médard, and E. M. Yeh, ‘‘Throughput and delay
analysis for coded ARQ,’’ Proc. IFIP Int. Symp. Model. Optim. Mobile,
Ad Hoc, Wireless Netw. (WIOPT), 2019, pp. 1–8.

[44] D. Malak, M. Medard, and E. M. Yeh, ‘‘Tiny codes for guarantee-
able delay,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 4, pp. 809–825,
Apr. 2019.

[45] J. K. Sundararajan, D. Shah, M. Medard, and P. Sadeghi, ‘‘Feedback-
based online network coding,’’ IEEE Trans. Inf. Theory, vol. 63, no. 10,
pp. 6628–6649, Oct. 2017.

[46] P. U. Tournoux, E. Lochin, J. Lacan, A. Bouabdallah, and V. Roca, ‘‘On-
the-Fly erasure coding for real-time video applications,’’ IEEE Trans.
Multimedia, vol. 13, no. 4, pp. 797–812, Aug. 2011.

[47] S. Wunderlich, F. Gabriel, S. Pandi, F. H. P. Fitzek, and M. Reisslein,
‘‘Caterpillar RLNC (CRLNC): A practical finite sliding window RLNC
approach,’’ IEEE Access, vol. 5, pp. 20183–20197, 2017.

[48] J. W. Byers, M. Luby, M.Mitzenmacher, and A. Rege, ‘‘A digital fountain
approach to reliable distribution of bulk data,’’ ACM SIGCOMMComput.
Commun. Rev., vol. 28, no. 4, pp. 56–67, Oct. 1998.

[49] J.W. Byers,M. Luby, andM.Mitzenmacher, ‘‘A digital fountain approach
to asynchronous reliable multicast,’’ IEEE J. Sel. Areas Commun., vol. 20,
no. 8, pp. 1528–1540, Oct. 2002.

[50] J. W. Byers, M. Luby, and M. Mitzenmacher, ‘‘A digital fountain ret-
rospective,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 49, no. 5,
pp. 82–85, Nov. 2019.

[51] D. J. C. MacKay, ‘‘Fountain codes,’’ IEE Proc. Commun., vol. 152, no. 6,
pp. 1062–1068, 2005.

[52] M. Luby, ‘‘LT codes,’’ in Proc. 43rd Annu. IEEE Symp. Found. Comput.
Sci., Nov. 2002, pp. 271–280.

[53] M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer, Raptor For-
ward Error Correction Scheme for Object Delivery, document RFC 5053,
Oct. 2007. [Online]. Available: https://www.rfc-editor.org/rfc/rfc5053.txt

[54] A. Shokrollahi, ‘‘Raptor codes,’’ IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, Jun. 2006.

[55] A. Shokrollahi and M. Luby, ‘‘Raptor codes,’’ Found. Trends Commun.
Inf. Theory, vol. 6, nos. 3–4, pp. 213–322, May 2011.

[56] C. Bouras, N. Kanakis, V. Kokkinos, and A. Papazois, ‘‘Embracing
RaptorQ FEC in 3GPP multicast services,’’Wireless Netw., vol. 19, no. 5,
pp. 1023–1035, Jul. 2013.

[57] S. Puducheri, J. Kliewer, and T. E. Fuja, ‘‘The design and performance
of distributed LT codes,’’ IEEE Trans. Inf. Theory, vol. 53, no. 10,
pp. 3740–3754, Oct. 2007.

[58] J. He, I. Hussain, Y. Li, M. Juntti, and T. Matsumoto, ‘‘Distributed LT
codes with improved error floor performance,’’ IEEE Access, vol. 7,
pp. 8102–8110, 2019.

[59] Qualcomm. (2010) RaptorQ–Technical Overview. Accessed: Oct. 27,
2018. [Online]. Available: http://www.qualcomm.com/media/
documents/raptorq-technical-overview.pdf

[60] M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder,
RaptorQ Forward Error Correction Scheme for Object Delivery, doc-
ument RFC 6330, Aug. 2011. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc6330.txt

[61] K. Zhang, Q. Zhang, and J. Jiao, ‘‘Bounds on the reliability of RaptorQ
codes in the finite-length regime,’’ IEEEAccess, vol. 5, pp. 24766–24774,
2017.

[62] A. Ali, K. S. Kwak, N. H. Tran, Z. Han, D. Niyato, F. Zeshan, M. T. Gul,
and D. Y. Suh, ‘‘RaptorQ-based efficient multimedia transmission over
cooperative cellular cognitive radio networks,’’ IEEE Trans. Veh. Tech-
nol., vol. 67, no. 8, pp. 7275–7289, Aug. 2018.

78312 VOLUME 8, 2020

V. Nguyen et al.: DSEP Fulcrum

[63] H. Chen, X. Zhang, Y. Xu, Z. Ma, andW. Zhang, ‘‘Efficient mobile video
streaming via context-aware RaptorQ-based unequal error protection,’’
IEEE Trans. Multimedia, vol. 22, no. 2, pp. 459–473, Feb. 2020.

[64] M. Talha Gul, A. Ali, D. K. Singh, U. Imtinan, I. Raza, S. A. Hussain,
D. Y. Suh, and J.-W. Lee, ‘‘Merge-and-forward: A cooperative multime-
dia transmissions protocol using RaptorQ codes,’’ IET Commun., vol. 10,
no. 15, pp. 1884–1895, Oct. 2016.

[65] M. Taghouti, D. E. Lucani, J. A. Cabrera, M. Reisslein, M. V. Pedersen,
and F. H. P. Fitzek, ‘‘Reduction of padding overhead for RLNC media
distribution with variable size packets,’’ IEEE Trans. Broadcast., vol. 65,
no. 3, pp. 558–576, Sep. 2019.

[66] N. Thomos and P. Frossard, ‘‘Toward one symbol network coding vec-
tors,’’ IEEE Commun. Lett., vol. 16, no. 11, pp. 1860–1863, Nov. 2012.

[67] M. Luby and L. Minder. (Dec. 2019).How to use the Codornices Rq Soft-
ware Package, Version v2.1. Accessed: Jan. 17, 2020. [Online]. Available:
http://www.codornices.info

[68] I. Chatzigeorgiou and A. Tassi, ‘‘Decoding delay performance of random
linear network coding for broadcast,’’ IEEE Trans. Veh. Technol., vol. 66,
no. 8, pp. 7050–7060, Aug. 2017.

[69] A. Douik and S. Sorour, ‘‘Data dissemination using instantly decodable
binary codes in fog-radio access networks,’’ IEEE Trans. Commun.,
vol. 66, no. 5, pp. 2052–2064, May 2018.

[70] M. Nistor, D. E. Lucani, T. T. V. Vinhoza, R. A. Costa, and J. Barros,
‘‘On the delay distribution of random linear network coding,’’ IEEE
J. Sel. Areas Commun., vol. 29, no. 5, pp. 1084–1093, May 2011.

[71] J. Qureshi, C. H. Foh, and J. Cai, ‘‘Online XOR packet coding: Efficient
single-hop wireless multicasting with low decoding delay,’’ Comput.
Commun., vol. 39, pp. 65–77, Feb. 2014.

[72] H. Tang, Q. T. Sun, Z. Li, X. Yang, and K. Long, ‘‘Circular-shift linear
network coding,’’ IEEE Trans. Inf. Theory, vol. 65, no. 1, pp. 65–80,
Jan. 2019.

[73] S. Feizi, D. E. Lucani, and M. Médard, ‘‘Tunable sparse network cod-
ing,’’ in Proc. Int. Zurich Seminar Commun. (IZS), Zürich, Switzerland,
Feb. 2012, pp. 107–110.

[74] A. Fiandrotti, V. Bioglio, M. Grangetto, R. Gaeta, and E. Magli, ‘‘Band
codes for energy-efficient network coding with application to P2P
mobile streaming,’’ IEEE Trans. Multimedia, vol. 16, no. 2, pp. 521–532,
Feb. 2014.

[75] Y. Li, J. Zhu, and Z. Bao, ‘‘Sparse random linear network coding with
precoded band codes,’’ IEEE Commun. Lett., vol. 21, no. 3, pp. 480–483,
Mar. 2017.

[76] Y. Li, W.-Y. Chan, and S. D. Blostein, ‘‘On design and efficient decod-
ing of sparse random linear network codes,’’ IEEE Access, vol. 5,
pp. 17031–17044, 2017.

[77] B. Tang, S. Yang, B. Ye, Y. Yin, and S. Lu, ‘‘Expander chunked
codes,’’ EURASIP J. Adv. Signal Process., vol. 2015, no. 1, pp. 1–13,
Dec. 2015.

[78] S. Yang and R. W. Yeung, ‘‘Batched sparse codes,’’ IEEE Trans. Inf.
Theory, vol. 60, no. 9, pp. 5322–5346, Sep. 2014.

[79] H. Y. Kwan, K. W. Shum, and C. W. Sung, ‘‘Generation of innovative and
sparse encoding vectors for broadcast systems with feedback,’’ in Proc.
IEEE Int. Symp. Inf. Theory Proc., Jul. 2011, pp. 1161–1165.

[80] C. W. Sung, K. W. Shum, and H. Y. Kwan, ‘‘On the sparsity of a linear
network code for broadcast systems with feedback,’’ in Proc. Int. Symp.
Netw. Coding, Jul. 2011, pp. 1–4.

[81] C. W. Sung, K. W. Shum, L. Huang, and H. Y. Kwan, ‘‘Linear network
coding for erasure broadcast channel with feedback: Complexity and
algorithms,’’ IEEE Trans. Inf. Theory, vol. 62, no. 5, pp. 2493–2503,
May 2016.

[82] W. Li, F. Bassi, andM. Kieffer, ‘‘Sparse random linear network coding for
data compression in WSNs,’’ in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2016, pp. 2729–2733.

[83] A. Tassi, R. J. Piechocki, and A. Nix, ‘‘On intercept probability mini-
mization under sparse random linear network coding,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 6, pp. 6137–6141, Jun. 2019.

[84] I. Chatzigeorgiou, G. Kurt, S. T. Basaran, and A. S. Khan, ‘‘On the
decoding failure probability of random network coded cooperation,’’
in Proc. IEEE 89th Veh. Technol. Conf. (VTC-Spring), Apr. 2019,
pp. 1–5.

[85] G. Gankhuyag, E. Hong, and Y. Choe, ‘‘Sparse recovery using sparse
sensing matrix based finite field optimization in network coding,’’ IEICE
Trans. Inf. Syst., vol. E100.D, no. 2, pp. 375–378, 2017.

[86] P. Garrido, D. E. Lucani, and R. Aguero, ‘‘Markov chain model for the
decoding probability of sparse network coding,’’ IEEE Trans. Commun.,
vol. 65, no. 4, pp. 1675–1685, Apr. 2017.

[87] H. Sehat and P. Pahlevani, ‘‘An analytical model for rank distribu-
tion in sparse network coding,’’ IEEE Commun. Lett., vol. 23, no. 4,
pp. 556–559, Apr. 2019.

[88] A. Zarei, P. Pahlevani, and M. Davoodi, ‘‘On the partial decoding
delay of sparse network coding,’’ IEEE Commun. Lett., vol. 22, no. 8,
pp. 1668–1671, Aug. 2018.

[89] S. Feizi, D. E. Lucani, C. W. Sorensen, A. Makhdoumi, and M. Medard,
‘‘Tunable sparse network coding for multicast networks,’’ in Proc. Int.
Symp. Netw. Coding (NetCod), Jun. 2014, pp. 1–6.

[90] P. Garrido, C. W. Sorensen, D. E. Lucani, and R. Aguero, ‘‘Performance
and complexity of tunable sparse network coding with gradual growing
tuning functions over wireless networks,’’ in Proc. IEEE 27th Annu.
Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC), Sep. 2016,
pp. 1–6.

[91] P. Garrido, D. E. Lucani, and R. Aguero, ‘‘How to tune sparse network
coding over wireless links,’’ inProc. IEEEWireless Commun. Netw. Conf.
(WCNC), Mar. 2017, pp. 1–6.

[92] C. W. Sorensen, D. E. Lucani, F. H. P. Fitzek, and M. Medard, ‘‘On-
the-Fly overlapping of sparse generations: A tunable sparse network
coding perspective,’’ in Proc. IEEE 80th Veh. Technol. Conf. (VTC-Fall),
Sep. 2014, pp. 1–5.

[93] P. Garrido, D. Gomez, J. Lanza, and R. Aguero, ‘‘Exploiting sparse
coding: A sliding window enhancement of a random linear network
coding scheme,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2016,
pp. 1–6.

[94] J. Yang, Z.-P. Shi, C.-X.Wang, and J.-B. Ji, ‘‘Design of optimized sliding-
window BATS codes,’’ IEEE Commun. Lett., vol. 23, no. 3, pp. 410–413,
Mar. 2019.

[95] J. Heide, M. V. Pedersen, F. H. P. Fitzek, and M. Medard, ‘‘On code
parameters and coding vector representation for practical RLNC,’’ in
Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2011, pp. 1–5.

[96] M. V. Pedersen, J. Heide, and F. Fitzek, ‘‘Kodo: An open and research
oriented network coding library,’’ Lect. Notes Comput. Sci., vol. 6827,
pp. 145–152, Dec. 2011.

[97] J. Heide, M. V. Pedersen, and F. H. Fitzek, ‘‘Decoding algorithms for
random linear network codes,’’ in Proc. Int. Conf. Res. Netw. Berlin,
Germany: Springer, 2011, pp. 129–136.

[98] C. W. Sorensen, A. Paramanathan, J. A. Cabrera, M. V. Pedersen,
D. E. Lucani, and F. H. P. Fitzek, ‘‘Leaner and meaner: Network coding
in SIMD enabled commercial devices,’’ in Proc. IEEEWireless Commun.
Netw. Conf., Apr. 2016, pp. 1–6.

[99] N. H. Marcano, C. Sorensen, J. Cabrera, G. S. Wunderlich, D. Lucani,
and F. Fitzek, ‘‘On goodput and energy measurements of network cod-
ing schemes in the raspberry pi,’’ Electronics, vol. 5, no. 4, p. 66,
2016.

[100] M. Luby and L. Minder. (May 2019). Performance of Codornices
Rq Software Package. Accessed: Jan. 2, 2020. [Online]. Available:
http://www1.icsi.berkeley.edu/~pooja/PerformanceCodornicesRqReleas

[101] Steinwurf ApS. (Sep. 2019), Kodo Throughput Benchmarks.
Accessed: Jan. 2, 2020. [Online]. Available: https://www.steinwurf.
com/assets/images/blog/Kodo_Throughput_Benchmarks_Comparison
_RaptorQ.pdf

[102] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi,
and B. Leong, ‘‘A random linear network coding approach to mul-
ticast,’’ IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430,
Oct. 2006.

[103] P. Garrido, D. Lucani, and R. Aguero, ‘‘Role of intermediate nodes in
sparse network coding: Characterization and practical recoding,’’ in Proc.
Eur. Wireless Conf., May 2017, pp. 1–7.

[104] P. Garrido, A. Fernandez, and R. Aguero, ‘‘To recode or not to recode:
Optimizing RLNC recoding and performance evaluation over a COTS
platform,’’ in Proc. Eur. Wireless Conf., May 2018, pp. 1–7.

[105] P. Pahlevani, D. E. Lucani, M. V. Pedersen, and F. H. P. Fitzek, ‘‘PlayN-
Cool: Opportunistic network coding for local optimization of routing
in wireless mesh networks,’’ in Proc. IEEE Globecom Workshops (GC
Wkshps), Dec. 2013, pp. 812–817.

[106] X. Xu, Y. L. Guan, Y. Zeng, and C.-C. Chui, ‘‘Quasi-universal BATS
code,’’ IEEE Trans. Veh. Technol., vol. 66, no. 4, pp. 3497–3501,
Apr. 2017.

[107] S. Yang and R. W. Yeung, BATS Codes: Theory and Practice. San Rafael,
CA, USA: Morgan & Claypool, 2017.

VOLUME 8, 2020 78313

V. Nguyen et al.: DSEP Fulcrum

VU NGUYEN (Graduate Student Member, IEEE)
received the B.Tech. (IT) degree from the Hue
University of Education, Vietnam, in 2006, and
the M.Eng. degree in computer science from
the Da Nang University of Technology, Viet-
nam, in 2011. He was a Lecturer with the
Vietnam-Korea Friendship IT College, Da Nang,
Vietnam. He is currently pursuing the Ph.D. degree
with the Deutsch Telekom Chair of Communica-
tion Networks, Dresden University of Technology,

Germany. He is interested in the research areas of network coding and high
performance and low complexity communications.

ELIF TASDEMIR received the B.Sc. degree in
electronics and telecommunication engineering
from Kocaeli University, in 2012, and the M.Sc.
degree in communication engineering from Yildiz
Technical University, Turkey, in 2015. She is
currently pursuing the Ph.D. degree with the
Deutsche Telekom Chair of Communication Net-
works, TU Dresden.

GIANG T. NGUYEN (Member, IEEE) received
the M.Eng. degree in telecommunications from
the Asian Institute of Technology (AIT), Thailand,
in 2007, and the Ph.D. degree (Dr. Ing.) in com-
puter science fromTUDresden, Germany, in 2016.
He is currently a Senior Researcher with the 5G
Lab Germany. His research interests include the
area of network function virtualization (NFV) and
mobile edge computing (MEC) for 5G networks,
the reliability aspects of peer-to-peer video stream-

ing, network coding, and low-latency networking.

DANIEL E. LUCANI (Senior Member, IEEE)
received the B.S. (summa cum laude) and M.S.
(Hons.) degrees in electronics engineering from
Universidad Simón Bolívar, Caracas, Venezuela,
in 2005 and 2006, respectively, and the Ph.D.
degree in electrical engineering from the Mas-
sachusetts Institute of Technology (MIT), in 2010.
He was an Associate Professor with Aalborg Uni-
versity, from 2012 to 2017, and an Assistant Pro-
fessor with the University of Porto, from 2010 to

2012. He has been an Associate Professor with the Department of Engi-
neering, Aarhus University, since April 2017, and the CEO and the Lead
Scientist of the start-up company Chocolate Cloud ApS, since June 2014.
He has published more than 140 scientific articles in international jour-
nals and top-ranked international conferences and eight patents and patent
applications. His research interests include communications and networks,
network coding, information theory, coding theory, distributed storage and
computation, and their applications to cloud computing technologies neces-
sary to enable the Internet of Things (IoT), big data, and 5G applications
and services. He was a recipient of the IEEE ComSoc Outstanding Young
Researcher Award for the EMEA Region, in 2015, and the Danish Free
Research Foundation’s Sapere Aude Starting Grant. He was the General
Co-Chair of the 2014 International Symposium on Network Coding (Net-
Cod2014). He is an Associate Editor of the EURASIP Journal on Wireless
Communications and Networking.

FRANK H. P. FITZEK (Senior Member, IEEE)
received the diploma (Dipl.Ing.) degree in
electrical engineering from the University of
Technology–Rheinisch-Westfälische Technische
Hochschule (RWTH), Aachen, Germany, in 1997,
and the Ph.D. (Dr. Ing.) degree in electrical engi-
neering from the Technical University of Berlin,
Germany, in 2002. He is currently a Professor
and the Head of the Deutsche Telekom Chair of
Communication Networks, Technical University

Dresden, Germany, coordinating the 5G Lab Germany. He is the spokesman
of the DFG Cluster of Excellence CeTI. He became an Adjunct Professor
with the University of Ferrara, Italy, in 2002. In 2003, he joined Aalborg
University as an Associate Professor and later became a Professor. He co-
founded several start-up companies starting with Acticom GmbH, Berlin,
in 1999. His current research interests are in the areas of wireless and mobile
5G communication networks, mobile phone programming, network coding,
cross layer as well as energy efficient protocol design, and cooperative
networking. He was selected to receive the NOKIA Champion Award
several times in a row, from 2007 to 2011. In 2008, he was awarded the
Nokia Achievement Award for his work on cooperative networks. In 2011,
he received the SAPERE AUDE Research Grant from the Danish Govern-
ment, the Vodafone Innovation Prize, in 2012. In 2015, he was awarded the
Honorary Degree (Doctor Honoris Causa) from the Budapest University of
Technology and Economy (BUTE).

MARTIN REISSLEIN (Fellow, IEEE) received
the Ph.D. degree in systems engineering from
the University of Pennsylvania, in 1998. He is
currently a Professor with the School of Electri-
cal, Computer, and Energy Engineering, Arizona
State University (ASU), Tempe, and an external
associated Investigator with the Centre for Tactile
Internet With Human-in-the-Loop (CeTI), Tech-
nische Universität Dresden, Germany. He received
the IEEE Communications Society Best Tutorial

Paper Award, in 2008, the Friedrich Wilhelm Bessel Research Award from
the Alexander von Humboldt Foundation, in 2015, and the Dresden Senior
Fellowship, in 2016 and 2019. He is an Associate Editor-in-Chief of the
IEEECOMMUNICATIONS SURVEYS&TUTORIALS, a Co-Editor-in-Chief ofOptical
Switching and Networking, and chaired the Steering Committee of the IEEE
TRANSACTIONS ON MULTIMEDIA, from 2017 to 2019. He currently serves as an
Associate Editor for the IEEE TRANSACTIONS ON MOBILE COMPUTING, the IEEE
TRANSACTIONS ON EDUCATION, the IEEE ACCESS, and Computer Networks.

78314 VOLUME 8, 2020

