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Abstract—This letter demonstrates novel hydrogen-
plasma based guard rings (GRs) for high voltage vertical
GaN p-n diodes grown on bulk GaN substrates by met-
alorganic chemical vapor deposition (MOCVD). The GR
structure can significantly improve breakdown voltages
(BV) and critical electric fields (E;) of the devices. Not
having field plates or passivation, the p-n diodes with a
9 um drift layer and 10 GRs showed BV/on-resistance
(Ron) of 1.70 kV/0.65 mQ-cm?, which are close to the GaN
theoretical limit. Moreover, the device also exhibited good
rectifying behaviors with an on-current of ~ 2.6 kA/cm?,
an on/off ratio of ~ 1010, and a turn-on voltage of 3.56 V. This
work represents one of the first effective GR techniques for
high performance kV-class GaN p-n diodes.

Index Terms— Gallium nitride, wide bandgap semicon-
ductor, guard ring, p-n diodes, power electronics, edge

termination.
-NITRIDES have been widely utilized in a variety
II of photonic and electronic devices [1]-[5]. Due to
GaN’s wide bandgap, high critical electric field (E.), and
high Baliga’s figure of merit (FOM), GaN power electronics
has been extensively investigated for efficient power conver-
sion applications [3]-[5]. With the availability of bulk GaN
substrates, vertical GaN power devices have been homoepi-
taxially grown with improved performance compared with
lateral devices, such as higher voltage and current handling
capability, smaller chip area, better scalability, easier thermal
management, and the lack of surface-related issues [3], [6].
Recently, various vertical GaN p-n diodes have been demon-
strated on both foreign substrates such as silicon [5], [7]-[10]
and bulk substrates [11]-[23]. One of the key targets of
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these efforts is to achieve high breakdown voltages (BV)
by alleviating or eliminating the electric field crowding at
the junction edge to avoid the premature breakdown [24].
Some reported edge termination techniques in GaN devices
include field plates (FPs) and beveled mesas in combination
with passivation [18], [19], and partially compensated edge
termination [20]-[22]. Guard ring (GR) structures based on
selective p-type or highly-resistive (HR) regions are one of
the most effective edge termination techniques [25]-[28].
However, there are very few reports on GRs for kV-class GaN
p-n power diodes, except a mesa-based GR structure [17].

Ion implantation has usually been used in SiC technol-
ogy to result in the HR GR structures by creating mid-
gap defect states [25], [26]. Currently, the ion-implantation
technique for GaN devices is still under development and
face some challenges [29]. Additionally, plasma treatments
are also being used to form HR GaN [29]-[32]. For example,
it’s been reported that hydrogen (H;) plasma can be utilized
to passivate p-GaN into HR GaN [30]-[32]. This is based
on the mechanism that Mg and H can form stable charge-
neutral Mg-H complexes [33]. The passivated p-GaN has
been shown to be very thermally stable as material itself
and in devices [30], [32], [33]. In this work, we demonstrate
an effective hydrogen-plasma based GR technique for high
voltage vertical GaN p-n diodes. The BV and E. of the devices
were significantly enhanced.

Il. DEVICE FABRICATION

The devices were homoepitaxially grown on n*™-GaN bulk
GaN substrates by metalorganic chemical vapor deposition
(MOCVD). The Ga and N sources were trimethylgallium
(TMGa) and ammonia (NH3), respectively. The Si and Mg
dopants were incorporated using precursors silane (SiH4) and
bis(cyclopentadienyl)magnesium (Cp>Mg), respectively. The
growth temperature was ~ 1050 °C and the carrier gas was H».
More growth details can be found elsewhere [1]. As shown in
Fig. 1(a), 1-um-thick n*-GaN ([Si] = 2x10'® cm™3) was
first grown on the substrates, followed by 9 #m n™-GaN drift
layer ([Si] = 2x10'® cm™3). Then the growth was finished
with 500 nm pT-GaN ([Mg] = 10'” cm™®) and 20 nm
ptT-GaN ([Mg] = 10%° cm™3). The carrier concentration of
the drift layer was ~ 10'® cm™3 according to capacitance-
voltage (C-V) measurements [34]. High resolution X-ray
diffraction was used to characterize the crystal quality of the
device epilayers using the PANalytical X-ray diffractometer
system. The full width at half maximum of (002) and (102)
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Fig. 1. (a) Schematic view of the cross-section of the epilayers.
(b) Fabrication process for the devices with GRs. (c) Cross-sectional
schematics of the devices with GRs. (d) Optical microscopy image
(top-view) of the p-n diodes with 10 GRs. (e) SEM images of the cross-
section of the devices with GRs.

plane rocking curves were 53.2 and 44.9 arcsec, respectively.
The dislocation density was estimated to be ~ 3.4x 10 cm—2
according to the method in [35], indicating the high quality of
the homoepitaxial layers.

The fabrication of vertical GaN p-n diodes was carried out
using conventional photolithography [(Fig. 1(b)]. It began with
ultrasonic sample cleaning in acetone and isopropyl alcohol,
followed by the simultaneous formation of anode and GR
patterns via photolithography. Before metal depositions by the
electron beam evaporation, the samples were treated in oxy-
gen (O7) plasma to remove any residual photoresists and then
briefly dipped in diluted hydrochloric acid (HCI) to remove
native surface oxides. The anodes with a diameter of 100 xm
and metal rings for the GRs formation consisted of metal
stacks of Pd/Ni/Au annealed by rapid thermal annealing (RTA)
at 450 °C in N, ambient. The cathodes were non-alloyed metal
stacks of Ti/Al/Ni/Au at the backside of the samples.

The metal rings have a nominal width and spacing of 10 gm
and 1.5 um, respectively. According to simulations for multi-
ple GRs, the p™-GaN ring spacing plays (i.e., the GR width)
a critical role: it should be narrow enough especially in the
inner circles to enhance the BV, usually 1-2 gm. The width of
pT-GaN rings (i.e., the GR spacing) may be further decreased
without significantly impacting device performance if the
device area needs to be reduced. In addition, a non-uniform
GR design can also be implemented where the GR width
increases with increasing distance from the main junction.
The two types of GR designs are widely used for power
devices [24]. More details about the GR geometry design can
be found in [24], [36], [37]. It should be noted the metal
rings were formed at the same time with the anodes without
additional photolithography steps, simplifying the fabrication
process.

To form GRs, the samples were loaded into the STS
AGE inductively coupled plasma (ICP) tool for Hy plasma
treatments where the metal rings served as hard masks.
After thermal annealing by RTA at 400 °C in N ambient,
the exposed p-GaN regions were fully passivated by H and
become HR GRs. [30] The ICP conditions were as follows:
H; flow of 25 sccm, ICP power of 300 W, RF power of 5 W,
and pressure of 8 mTorr. Figure 1(c) schematically shows
the cross-section of the final vertical GaN p-n diodes with
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Fig. 2. (a) Current density and ideality factor as a function of anode

voltage for the reference sample and GaN p-n diodes with different GRs
in alinear scale. (b) Current density and Ron versus anode voltage for the
reference sample and GaN p-n diodes with different GRs in a semi-log
scale.

GRs. Devices with 1, 5 and 10 metal rings were fabricated,
which will be referred to as devices with 1, 5 and 10 GRs,
respectively, in the following discussions.

Figure 1(d) shows the top-view image of the p-n diodes with
10 GRs by optical microscope. Scanning electron microscope
(SEM) images in Fig. 1(e) clearly identified the p™-GaN
regions and the GR regions. They had very different secondary
electron (SE) contrasts. The SE emission from GR regions
showed the similar contrast to that of n™-GaN, suggesting
the deactivation of Mg acceptors. More details about the
mechanisms and the interpretation of SE contrasts can be
found in [38]. The p-n diodes without metal rings were
also fabricated for reference. No FPs or passivation were
employed in this work. Forward current—voltage (/-V') curves
were measured by Keithley 2400 sourcemeter. Breakdown
measurements were conducted using Tektronix 370A curve
tracer where the samples were immersed in Fluorinert FC-70
to avoid flash-over.

Ill. EXPERIMENTAL RESULTS

Figure 2(a) presents the forward [/-V characteristics and
ideality factors (n) of the reference p-n diodes and p-n diodes
with 1 GR, 5 GRs and 10 GRs in a linear scale. By linear
extrapolation, the turn-on voltages (V,,) for the four samples
were extracted as 3.50, 3.53, 3.59, and 3.56 V, respectively.
The minimum n were 1.69, 1.65, 1.67, and 1.64 for the
four samples, respectively. The n first decreased and then
increased. The former was caused by the transition from the
Shockley-Read-Hall (SRH) recombination current to the p-n
diode diffusion current, and the latter was due to the series
resistance [18].

Figure 2(b) shows forward I-V characteristics and the
specific on-resistance (R,,) for the four samples in a semi-log
scale. They had an on-current of ~ 2.6 kA/cm? and an on/off
ratio of ~ 1010, The R,y of the four samples were 0. 65, 0.63,
0.70, and 0.65 mQ-cm?, respectively. Furthermore, strong light
emission was observed from all samples at high forward biases
due to the radiative recombination in the p-n diode depletion
region, which usually indicates the high material quality of the
devices [39]. Electroluminescence analysis revealed there were
34 eV, 3.2 eV and 2.2 eV emission peaks, which are due to
band-edge emission, donor-acceptor-pair transition, and deep-
level transition, respectively. These results show the p-n diodes
with GRs have similar forward characteristics to the reference
sample, which is desired and also good for the fair breakdown
comparisons among these samples.

Figure 3(a) shows the breakdown measurements for the ref-
erence sample and the samples with 1 GR, 5 GRs and 10 GRs.
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Fig. 3. (a) Reverse breakdown measurements for the reference sample
and samples with different GRs by Tektronix 370A curve tracer. (b) The
critical electric field for the four samples. (c) The calculated electric field
profiles of the four samples along the vertical direction of the p-n diodes.

TABLE |
DEVICE PARAMETERS FOR THE FOUR GAN P-N DIODES

Von Ron BV

" V) mQemd)  (kv) Fe(MViem)
Reference 1.69 3.50 0.65 1.08 2.11
1GR 165 353 0.63 1.39 2.50
5GRs 167  3.59 0.70 1.58 2.67
10 GRs 164 3.6 0.65 1.70 2.80

The breakdown of the devices was edge breakdown with
catastrophic damages at the device edge, as confirmed using
the optical microscope. The BV of the four samples were
1.08, 1.39, 1.58, and 1.70 kV, respectively. The breakdown
capability of the GaN p-n diodes was significantly enhanced
by the addition of GRs. And the BV was increased with
the increasing number of GRs. This is because more GRs
can better spread the electric field laterally at the device
edge, which is consistent with previous reports [24], [40].
Furthermore, the reverse breakdown and leakage characteris-
tics of the devices at elevated temperatures and reliability are
undergoing topics [30].

In punch-through structures, E. is related to BV using the
following equation [18]

eNDd2
2e0&,

BV =E.d — (1)
where e is the electron charge, d and Np are the thickness and
carrier concentration of the drift layer, &g is the permittivity
of the vacuum, and ¢, is the relative permittivity of GaN.
The calculated E. of the four samples were 2.11, 2.50, 2.67,
and 2.80 MV/cm, respectively, as shown in Fig. 3(b). E. was
increased dramatically with the increasing number of GRs,
sharing a similar trend to the BV. As a comparison to previous
reports, if assuming that 75% of the entitled BV is achieved
as in [14], [18], the p-n diodes with 10 GRs exhibited the
highest E. of 3.43 MV/cm, which is among the best values
ever reported for GaN p-n diodes [6], [14], [15], [18], [39].
With the one-dimensional Poisson’s equation, the electric field
profiles of the samples were also calculated in Fig. 3(c). Table I
summarizes the device parameters for the four GaN p-n diodes.
These results indicate employing the hydrogen-plasma based
GRs is very effective in enhancing the breakdown capability
and E. of GaN p-n diodes without degrading their forward
characteristics.

Figure 4 shows the benchmark plot of R,, vs. BV
for vertical GaN p-n diodes on silicon and bulk GaN
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Fig. 4. Ron versus BV of vertical GaN p-n diodes on silicon and GaN
substrates [7]-[20]. As-reported values are used for all the references
expect that Ron in Ref. [18] and [19] were recalculated using the anode
for a direct comparison based on [41] and [42]. The circled region shows
the devices in this work.

substrates [7]-[20]. The performance of our devices with GRs
is close to the theoretical limit line of GaN. It should be noted
that our devices only had a drift layer thickness of 9 um
without FPs or passivation. The 1.70 kV/0.65 mQ-cm? of our
GaN p-n diodes with 10 GRs is comparable to performance
of demonstrated best devices with similar and/or thicker drift
layer thicknesses [14]-[19]. These results have demonstrated
that with the simple hydrogen-plasma based GR structure,
the performance of kV-class GaN p-n diodes can be signif-
icantly improved.

IV. CONCLUSION

We have demonstrated a novel hydrogen-plasma based
GR technique for vertical GaN p-n diodes. The BV and
E. were dramatically enhanced by the GRs. In addition,
the devices also exhibited good forward characteristics with
a R,, of 0.65 mQ-cm? and an on/off ratio of ~ 1010
With a 9 pm drift layer and the simple GR technique,
1.70 kV/0.65 mQ-cm? was achieved, which is close to the
theoretical limit. These results indicate the hydrogen-plasma
based GRs are very effective for high performance kV-class
GaN p-n diodes.
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